{"pages":{"search":{"query":"Glass of Numbers","originalQuery":"Glass of Numbers","serpid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","parentReqid":"","serpItems":[{"id":"7308717742232446400-0-0","type":"videoSnippet","props":{"videoId":"7308717742232446400"},"curPage":0},{"id":"2027473978302315265-0-1","type":"videoSnippet","props":{"videoId":"2027473978302315265"},"curPage":0},{"id":"13108657399101784800-0-2","type":"videoSnippet","props":{"videoId":"13108657399101784800"},"curPage":0},{"id":"6555698834679573546-0-3","type":"videoSnippet","props":{"videoId":"6555698834679573546"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEdsYXNzIG9mIE51bWJlcnMK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","ui":"desktop","yuid":"3007683871765284936"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"15984695455036694831-0-5","type":"videoSnippet","props":{"videoId":"15984695455036694831"},"curPage":0},{"id":"13285432627413121646-0-6","type":"videoSnippet","props":{"videoId":"13285432627413121646"},"curPage":0},{"id":"14820752432214797345-0-7","type":"videoSnippet","props":{"videoId":"14820752432214797345"},"curPage":0},{"id":"9082440047665321925-0-8","type":"videoSnippet","props":{"videoId":"9082440047665321925"},"curPage":0},{"id":"3595509060354667957-0-9","type":"videoSnippet","props":{"videoId":"3595509060354667957"},"curPage":0},{"id":"2239487872520730452-0-10","type":"videoSnippet","props":{"videoId":"2239487872520730452"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEdsYXNzIG9mIE51bWJlcnMK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","ui":"desktop","yuid":"3007683871765284936"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"12389424945089952042-0-12","type":"videoSnippet","props":{"videoId":"12389424945089952042"},"curPage":0},{"id":"1881294460934729058-0-13","type":"videoSnippet","props":{"videoId":"1881294460934729058"},"curPage":0},{"id":"17863877664140562146-0-14","type":"videoSnippet","props":{"videoId":"17863877664140562146"},"curPage":0},{"id":"3411444587725932261-0-15","type":"videoSnippet","props":{"videoId":"3411444587725932261"},"curPage":0},{"id":"16092927216015431922-0-16","type":"videoSnippet","props":{"videoId":"16092927216015431922"},"curPage":0},{"id":"7759740822217721590-0-17","type":"videoSnippet","props":{"videoId":"7759740822217721590"},"curPage":0},{"id":"3056054412035023964-0-18","type":"videoSnippet","props":{"videoId":"3056054412035023964"},"curPage":0},{"id":"9304383937284625226-0-19","type":"videoSnippet","props":{"videoId":"9304383937284625226"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEdsYXNzIG9mIE51bWJlcnMK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","ui":"desktop","yuid":"3007683871765284936"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DGlass%2Bof%2BNumbers"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"1138331116759616037160","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1374659,0,13;1397829,0,4;1433082,0,66;1424970,0,88;1432976,0,47;1436971,0,1;1437735,0,79;1430176,0,91;1427780,0,6;1434897,0,70;1428502,0,65;1417320,0,23;1002672,0,1;1434392,0,85;123831,0,34;1418769,0,12;1433377,0,71;1434149,0,39;1425772,0,64;1433738,0,53;1282204,0,26;1417819,0,97;1366397,0,12;1352123,0,60;1436006,0,81;1419899,0,27;1349038,0,37;1430507,0,26;1425586,0,32;123856,0,41;1417540,0,19;1432730,0,24;45963,0,58;1436780,0,34;1422263,0,99;1357003,0,0;1433911,0,10;1435593,0,35;850909,0,59;151171,0,43;126356,0,17;1281084,0,21;287509,0,30;86182,0,48;1006737,0,22;1296808,0,41"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DGlass%2Bof%2BNumbers","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Glass+of+Numbers","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Glass+of+Numbers","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Glass of Numbers: 2 bin video Yandex'te bulundu","description":"\"Glass of Numbers\" sorgusu için arama sonuçları Yandex'te","shareTitle":"Glass of Numbers — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y347c35da1b0f54addbfd1da79c2bd300","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1374659,1397829,1433082,1424970,1432976,1436971,1437735,1430176,1427780,1434897,1428502,1417320,1002672,1434392,123831,1418769,1433377,1434149,1425772,1433738,1282204,1417819,1366397,1352123,1436006,1419899,1349038,1430507,1425586,123856,1417540,1432730,45963,1436780,1422263,1357003,1433911,1435593,850909,151171,126356,1281084,287509,86182,1006737,1296808","queryText":"Glass of Numbers","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"3007683871765284936","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1437540,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765285084","tz":"America/Louisville","to_iso":"2025-12-09T07:58:04-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1374659,1397829,1433082,1424970,1432976,1436971,1437735,1430176,1427780,1434897,1428502,1417320,1002672,1434392,123831,1418769,1433377,1434149,1425772,1433738,1282204,1417819,1366397,1352123,1436006,1419899,1349038,1430507,1425586,123856,1417540,1432730,45963,1436780,1422263,1357003,1433911,1435593,850909,151171,126356,1281084,287509,86182,1006737,1296808","queryText":"Glass of Numbers","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"3007683871765284936","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"1138331116759616037160","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":161,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"3007683871765284936","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"7308717742232446400":{"videoId":"7308717742232446400","docid":"34-8-8-Z130851EA2271FA47","description":"Integrating a simple function xe^(-2x) using the row integration by parts (RIP) methods (and many people call this the "tabular method"). What we do differently compare to others is that we...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3806025/b7e1b5c3dbcaaba5f62b1bed8bfa061c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/rjl-EQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHMBU6uBfXZE","linkTemplate":"/video/preview/7308717742232446400?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration by Parts of xe^(-2x) using Tabular Method | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HMBU6uBfXZE\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhUKEzczMDg3MTc3NDIyMzI0NDY0MDBaEzczMDg3MTc3NDIyMzI0NDY0MDBqtg8SATAYACJFGjEACipoaGdtbnRoZHFubXRoeXRjaGhVQ3BBSUZtek1vU013ZHlQZzhjQ3U1X3cSAgASKhDCDw8aDz8T9gWCBCQBgAQrKosBEAEaeIHjAQf6DPEA7u7y-fwBAQEbA_vv8gIC_-H3AxIF_gEA_wUQ8QoBAADyDfv4BgAAAPbn8fz4_gAAF_7rCQMAAAAk-ALy_AAAAA0TBAD9AQAA6O4F8QIAAAAfEfIH_wAAAPQCCPP__wAA__oJ_QEAAAAO_A_zAAAAACAALSUAqTs4E0AJSE5QAiqEAhAAGvABfxET_vjmxAOr98wAx0XqAY8WDf84FMQArxDpAMgX1QAKC_cA0RXk_zUEAQHIFfMAHQHCAALnGAA82_wAXuYA_-AUBAEV2gQCKBoc__ENAv7hKPr_8QEOAvPZsgAbDPn_C_IT-fH09QAeF8kC7_BHAwEK8QE93wgF9PcD-_AZIQH3-MX-CyYEAwMCBvrrFjwB9ALw-ygZ-vb_BvL_-wIBBOHtF__49dYCLP3zBwv5HPXm3hL49u4EAh_5JAb5Eu4E8vYnAuXuDvzuNxr9SuQQDOIA9wXk-fH5FgIaBA3c-gPU__nz3vj8-d4o__IFDvYCIAAtHUYQOzgTQAlIYVACKnMQABpgEP4ANRIo79f3Def6w_AH2dEh7RzFCf_n5wAUD_3w-STfrh79_wXsEAW5AAAA-xoCCAIA-l7d4LsT6Q7dzbvUNAp_9xUh-NP7CNneFhoO-OYZDBZDAN8OsOUx59EpEC8TIAAtYEI8OzgTQAlIb1ACKq8GEAwaoAYAAABCAACuwgAApkIAAPjBAAAQQgAAREIAANBCAACIQQAAyMEAACBBAACAwAAARMIAABTCAAAgwQAAAMEAAKDBAACgwQAAQMIAAAxCAAA8wgAABEIAAATCAABAwQAADEIAAADCAAD4QQAA6MEAAGDCAADYQQAABEIAALDBAAAAQQAAEMEAACjCAACIwgAAQEEAAIjBAABQQgAABMIAAMhBAABAQAAAwEEAAGBCAACAQQAATEIAAJzCAADYQQAAGEIAAAxCAAAkQgAA4EAAAEzCAACAwAAAqEEAAKDAAADAQQAAQMEAAIDBAAC4QQAAREIAAFxCAAB0wgAAgsIAAJjCAADoQQAAwsIAAPDBAACYwgAAEMEAADjCAABEQgAANEIAADDCAAAgQQAAyMEAAN7CAABQwgAAUMEAAOBBAAAcwgAAEMIAALxCAAAQwQAAiEEAABBCAACAPwAA4EEAALhBAABUQgAAfMIAAFBBAACyQgAAJMIAAMDBAABwwQAA-MEAABDBAADowQAAyEIAAABCAABQwgAAcEIAAAxCAACAQAAAmsIAAHDBAADwwQAAgEIAABDBAACqQgAAMEIAAABBAAC4wQAAGEIAAGDBAACQwQAAqEEAAJjBAABwwgAAQMAAAEDBAACOwgAAGMIAAIDBAABQQQAAEMIAACTCAACQQQAANMIAAFDBAAAcwgAACEIAAAjCAAAwQgAAUMIAAJBBAAA0QgAA-MEAAODAAABwwgAAoEEAAMjBAABIQgAA6MEAALBBAACAQAAAWMIAAADBAADgQAAAyMEAACBBAACAQAAAJEIAAADAAAAwQgAAAMAAAHTCAAAIwgAAWMIAAAAAAAA4wgAAAEAAAABAAAAIwgAA2MEAABxCAABQQgAAcEIAAIhBAAAAQAAAyEEAAERCAACAwQAAIMIAALDBAABwwQAAgMEAAFjCAABQQQAAsEEAAJrCAACgQAAARMIAAMBBAABUQgAAHMIAANDBAAAAwgAAAMEAAIBBAACowQAADMIAAGhCAAAAwgAA4MEAAChCAACAQAAAYEEAAADAAACwwSAAOBNACUh1UAEqjwIQABqAAgAAxr4AAKK-AADYPQAAjr4AAGw-AAAUPgAAgj4AAEe_AADSvgAABL4AAPg9AAD4vQAALD4AAHQ-AABMvgAAfL4AADw-AAA8PgAA4DwAACM_AAB_PwAAiL0AABS-AABUPgAAqL0AAFA9AABEPgAAyL0AABU_AAAPPwAAsj4AABu_AACoPQAA7j4AAK4-AACCPgAAJD4AANq-AACCvgAAFL4AADQ-AAAMPgAABD4AAAy-AAC-vgAAsj4AAPg9AABcvgAAuD0AAEy-AACIPQAAUL0AAA0_AAA8PgAAVL4AAHA9AAB1PwAAUD0AABA9AADuPgAAhr4AAI4-AACoPQAA2r4gADgTQAlIfFABKo8CEAEagAIAABy-AABkvgAAXL4AAGu_AAA8vgAAdL4AAKg9AACCvgAAED0AANi9AACKvgAAHL4AAIq-AAAsvgAAFD4AAKC8AADYvQAAHT8AAOA8AADOPgAAML0AAIq-AAAkvgAAFD4AABy-AAAQvQAAJL4AAMi9AAAsPgAAcD0AAEA8AAAEPgAAqD0AAGy-AABwPQAAXD4AAJY-AAD4vQAAVL4AAJg9AAAQvQAAPD4AABS-AADIPQAAEL0AAKg9AAB_vwAAVL4AAKA8AACGvgAAgLsAAJa-AABQvQAAFD4AALi9AAAsPgAAED0AAAQ-AAAQPQAA-D0AAFQ-AABQPQAAJL4AAEC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=HMBU6uBfXZE","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7308717742232446400"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2027473978302315265":{"videoId":"2027473978302315265","docid":"34-6-13-Z58E36B80E228D2A5","description":"In this video, we are using the Geometric Series Test to determine whether the given geometric series is convergent or divergent. And we can also find the sum of the geometric series it's...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3106557/8fe909c085d6e05d8a36a2df58e13e47/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/KJnCHgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DF7InELMnq9Y","linkTemplate":"/video/preview/2027473978302315265?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Geometric Series Test and Finding the Sum - Typical Example | Series | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=F7InELMnq9Y\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhUKEzIwMjc0NzM5NzgzMDIzMTUyNjVaEzIwMjc0NzM5NzgzMDIzMTUyNjVqtg8SATAYACJFGjEACipoaGdtbnRoZHFubXRoeXRjaGhVQ3BBSUZtek1vU013ZHlQZzhjQ3U1X3cSAgASKhDCDw8aDz8TkAOCBCQBgAQrKosBEAEaeIHy7gT8_wEA-AcFCAAG_QIP_QYC9wAAAPQGAv8HAv8A_fgO__gAAAACAQX8CwAAAP0B8ggC_gAAFQn9_wQAAAASCff99gAAAAoG9wn-AQAA-gDxDgP_AAAQBAcQAAAAAPr9Av39_gAA_wX2AwAAAAAG_gsNAAAAACAALcnW1Ds4E0AJSE5QAiqEAhAAGvABf_T_ANTp4__I8PgAwhje_74iNP_8NdEAt_ELAdQG3wEFJgoA4f3XAO0RDwDML_7_FNizAtrT_QE83PwAIM0CAObo4QEsuPQBWi4FAP4C9_7qCicA883t_xjW0QMKGAH9_uYW_w4M2AH0FtgBD_4_AfgBJwYfAxj78cQI_9bq-vv85d398xX6B_riC_6-2icC_OLmARYTCfnWGAMFCPD3_gjvGPb6POT6CQsDDwYG9AnC-wMBAtL7BfYTEwjmLAP6--kZ_s8gDvb76gUFHN_t9ADoBPoUxOUJHc_-_uUHFAUb__H35S71_-wK6gb4C_bxIAAtpDcROzgTQAlIYVACKnMQABpgOfUAIAoh4fsLHvjzzQco0boY2Ail_f_7xwDbJbscF1fPyPI6AAfCHOyhAAAAHfgbBN4ABn_S6xEt8OnMvKm-Hzh04Sz1pMwn-bLfETEdB-wc3fcwAMr3iUZC89A4Bx0GIAAtJ84ROzgTQAlIb1ACKq8GEAwaoAYAAEBBAABAwAAADEIAABDCAADowQAAwEEAAIhCAACAQAAARMIAADDBAAAMQgAAuMEAAKDBAAB8wgAACEIAABBBAACgwQAAUMIAAABAAAAswgAAmMEAAFjCAACgwQAAEEIAAIDBAAAwQQAAdMIAAKBAAADQQQAAiEEAAKrCAACoQQAAQMIAAADBAAC4wQAAgMAAAOBBAACWQgAAyMEAAIBCAACQQQAA0EEAAMpCAACIQQAA4EEAAIbCAABgQQAA4MAAAPpCAAAAQgAAAEAAADDBAACYQQAAgEAAAIhCAABAQQAAusIAAFBBAACYwQAAXEIAAAhCAAAEwgAAAEAAAMrCAAAgwQAAWMIAAPDBAADwwQAAmEEAAFDCAABgQgAAnkIAANjBAACaQgAAIMIAAAjCAABUwgAA4EEAANhBAAAgQQAAEMIAAEBAAACgwAAAsEEAADDBAACgwAAAeEIAAFBBAAAAQgAAgMIAAGzCAABgQgAAwMAAAEzCAABAQQAAVMIAAABAAAA0QgAAOEIAAAxCAABEwgAADEIAAAAAAACMwgAAiMIAAOhBAACwwQAABEIAAIC_AAAIQgAAcEIAAMBAAAA4wgAAoEAAABBBAADYQQAAwMEAAEzCAAAcQgAAiMEAAHzCAACowgAAKMIAAJjBAAAUQgAAgEAAAFjCAADgwAAAqMIAABTCAACQwQAAiEEAADDBAAAcQgAALMIAAODAAADgwQAAsMEAAEDAAAAgwgAA4MAAAFBBAACgwAAAMMEAAIBCAADAwAAARMIAAIBCAABAQAAAMMIAAFDBAAAgQQAA2EEAAODBAAAAQQAAbMIAAOhBAACGwgAAWMIAAHBCAAAgwQAAwEEAACDBAACKwgAAuMEAAGBBAAAAQAAAnkIAAHBBAAAgQQAAEMEAAKhBAADIwQAANMIAABjCAAAQQgAAsMEAAEDCAABcQgAAgEIAABjCAACQQQAAMEEAAHDBAABoQgAAnsIAAFTCAACoQQAA-MEAAIBAAAAwwQAAfMIAAEhCAAC4QQAAgEAAABBBAABQwgAAPEIAAEzCAAAowiAAOBNACUh1UAEqjwIQABqAAgAAHL4AAAy-AACePgAAUD0AAMi9AAAkPgAAND4AADm_AACIvQAA2L0AAGy-AAAQvQAAMD0AAFQ-AAAUvgAAMD0AAFQ-AAAQvQAAUL0AACc_AAB_PwAAoLwAABA9AACKPgAAQDwAAKg9AACOPgAAcL0AALo-AAAkPgAA-D0AAIK-AAA0vgAAlj4AAAM_AACIPQAAUD0AAHC9AACevgAA3r4AAOi9AABwPQAAmj4AAMi9AAB8vgAAmD0AAM4-AACIvQAAuD0AADy-AAAwPQAAQLwAAHA9AACmPgAAhr4AAHC9AABlPwAAqD0AAPi9AAB0PgAA4DwAADw-AAA8PgAA-L0gADgTQAlIfFABKo8CEAEagAIAADS-AABUvgAAHL4AAE2_AABEvgAAuL0AABQ-AAAwvQAABL4AADA9AABAPAAAiL0AAKi9AACovQAAJD4AANi9AABQPQAAET8AAIg9AAD2PgAAFL4AABC9AADYvQAAQLwAAIA7AAAcvgAA-D0AAIC7AACaPgAAED0AAKC8AAC4PQAADL4AAGS-AAAEPgAAoDwAADw-AAAUPgAAdL4AANg9AAAwvQAAoLwAAES-AAAsPgAAmL0AAHA9AAB_vwAAQLwAABC9AACgPAAAoDwAADy-AAAkvgAA2D0AAEA8AADoPQAAmD0AAEQ-AADIPQAAEL0AAEQ-AACoPQAA2D0AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=F7InELMnq9Y","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2027473978302315265"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13108657399101784800":{"videoId":"13108657399101784800","docid":"34-0-0-Z258DA697FCB3677D","description":"In this video, we are using the Ratio Test to test the convergence of a series. This series test can show that a series is absolutely convergent, which means that the series is convergent.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3385910/4ff6f56967ba9d9282c1d22df763a124/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9knPEAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmUuwGFpRcVY","linkTemplate":"/video/preview/13108657399101784800?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Ratio Test - How to Deal with Factorials | Series | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mUuwGFpRcVY\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhYKFDEzMTA4NjU3Mzk5MTAxNzg0ODAwWhQxMzEwODY1NzM5OTEwMTc4NDgwMGq2DxIBMBgAIkUaMQAKKmhoZ21udGhkcW5tdGh5dGNoaFVDcEFJRm16TW9TTXdkeVBnOGNDdTVfdxICABIqEMIPDxoPPxPhA4IEJAGABCsqiwEQARp4gfQDAv7_AQD8-QYIAgf8Agb1APr4_v4A8gD5DQUC_wD9AwD59gEAAP0T-vMEAAAA9_j3BAL_AAANBPnuAwAAAB8ACf_6AAAAEBH6-f4BAAAECPYEBP8AAA0JAQUAAAAABQLy8wAA_wH-9gkFAAAAAAz-_gEAAAAAIAAt2DLUOzgTQAlITlACKoQCEAAa8AF_ERP-9_PmAbb-9AC-LQoApC8l__w10QDHAg8AsfP1APYq8AHh_dYAAg35AMwjFAAdAcIA_-MIACO-9v8m0u4B5gXtASy49AFRFhEB-_v-_8cTOQEF6PP__NL6AAIY5wPqAxj8F_ThAB4XyQIhFScBGOw8ACniKf7fqyYA3Pv8AvbU8ALrA_4EA9T_-b3ZJwIT2e38HOj4-8EV-gQJ8Pf-6eIK9Agv1P0JCwMP8Ab8-c_t9_f8AeYE_PkZC98P7wPl4R__yujv_OkNBAEQ5vIG4gD3BQnu9Qgd7f_2-fEPBQf36PHXEO4L5CP8B_gL9vEgAC0dRhA7OBNACUhhUAIqcxAAGmAq7QAl_BLz7CAp-xvYCAjQ1y0H-rD4__XBAAQuzwoPUJjNBy0AHNoS0KIAAAAZ6BMW1gAMf77f0SX2_uLTobgfKG3jHxWSzhnu6_QdA-n9_0vbCEwAyPmQOTrnuC8PARsgAC31aRQ7OBNACUhvUAIqrwYQDBqgBgAADEIAAHDBAABcQgAAPMIAAKDAAACoQQAAikIAAADAAAAUwgAAwEAAAOBAAADgwAAA6MEAAHjCAAD4QQAAUMEAAADAAABQwgAAgEAAADDCAAAEwgAAYMIAAHjCAABcQgAAIMEAAPhBAABMwgAAAMAAAEBAAACQQQAAVMIAALhBAABowgAAuMEAAADAAACQQQAAmEEAALpCAADIwQAAlkIAAMBAAADAQQAA4EIAAPBBAADYQQAApMIAADBBAACIQQAAvkIAABBCAADgwAAAUMEAAJBBAABAwQAADEIAAADAAACwwgAAoMAAAODAAACmQgAA2EEAABzCAACIwQAApsIAAJDBAABgwgAAkMEAAHzCAACQQQAAgMIAAI5CAABwQgAA4MEAALRCAACAwQAAksIAADzCAADIQQAAQEAAAKDAAAAgwgAAIEEAAMDAAADAQQAAQEAAAODBAAAsQgAALEIAAAxCAADAwQAA6MEAAJpCAAAAwQAAnMIAAIBAAAAMwgAAoEAAAIBBAACSQgAAmEEAAEjCAAAEQgAADEIAAGzCAABYwgAAQEEAAIBAAACgQQAAAEEAAMBBAABsQgAAgD8AAADCAABQQQAAMMEAAGBBAACAwAAAZMIAAIhBAABwwQAAFMIAAJbCAAAowgAAFMIAAAxCAAAQQQAA-MEAAKBAAACCwgAAuMEAAEDAAACAQQAAQEAAAGhCAAAcwgAAgEAAAPjBAABQwQAAwMEAAIDCAAAwwQAADEIAACBBAACgwQAAWEIAABBBAABowgAACEIAAIBAAACIwQAADMIAAKBAAADAQAAAMMIAAEBAAAAMwgAAgEEAAI7CAACSwgAAQEIAAADAAACgQQAA4MAAAEDCAACowQAAMEEAABBCAACcQgAAcEEAAMBAAADgQAAAAEAAAADCAADwwQAAXMIAAJhBAAC4wQAAYMIAAAhCAAA8QgAAkMIAAIA_AACIQQAAkMEAAKBCAACgwgAAAMIAALjBAACIwQAAAMAAAIBBAACewgAAVEIAANBBAADQQQAAgD8AAGDCAABYQgAAIMIAAPjBIAA4E0AJSHVQASqPAhAAGoACAADGvgAAmD0AAII-AACmPgAA2L0AANI-AABkPgAAH78AAEA8AACgvAAA4LwAANi9AAC4PQAA2D0AAAy-AAAMPgAAkj4AAEA8AABAvAAAUT8AAH8_AAD4vQAA6L0AAOg9AAAEvgAAdD4AABw-AAA0PgAAcD0AADw-AAAUPgAATL4AAJa-AADKPgAAgj4AAAS-AADgPAAAuL0AAKK-AAC6vgAAPL4AAMg9AADaPgAAgLsAABS-AAA8PgAAkj4AAIq-AAAwPQAA4DwAAAw-AAAcPgAAqD0AAMo-AAB8vgAAcL0AAE8_AABEPgAA2D0AANo-AADIPQAAuD0AAMg9AAAMviAAOBNACUh8UAEqjwIQARqAAgAAbL4AALi9AAAMvgAALb8AAMi9AAAUvgAAED0AAKi9AACgPAAAoDwAAMi9AACIvQAAED0AAFC9AABsPgAAiL0AAAw-AAAFPwAAmD0AANI-AACgPAAAQDwAAAQ-AAAwvQAA4DwAAMg9AAAwvQAAQDwAAAw-AABQPQAAUL0AABw-AACovQAAdL4AAHA9AACYPQAARD4AAIg9AADovQAAEL0AAIA7AACYPQAAuL0AAPg9AACoPQAAgLsAAH-_AABQvQAAyL0AAOg9AACgPAAABL4AAHy-AAC-PgAAUL0AABQ-AADgPAAAML0AAKC8AAAQPQAALD4AADC9AAAUPgAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=mUuwGFpRcVY","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13108657399101784800"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6555698834679573546":{"videoId":"6555698834679573546","docid":"34-7-12-ZF4908D2B8D50B1B4","description":"In this video, we deal with the limit of x to the 1/(x-1): x^(1/(x-1)). Limits of the same type have 1^∞ or 1^inf. This is an indeterminate form, but bad news is, we can't use L'Hospital&a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2108104/b09fc2d8888532f010af28e185ea1948/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lqdIDwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJiYrRRkAG_g","linkTemplate":"/video/preview/6555698834679573546?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding limits using L'Hospital's Rule - 1^inf | Limits | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JiYrRRkAG_g\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhUKEzY1NTU2OTg4MzQ2Nzk1NzM1NDZaEzY1NTU2OTg4MzQ2Nzk1NzM1NDZqtg8SATAYACJFGjEACipoaGdtbnRoZHFubXRoeXRjaGhVQ3BBSUZtek1vU013ZHlQZzhjQ3U1X3cSAgASKhDCDw8aDz8TjQSCBCQBgAQrKosBEAEaeIH2-gL-AQAA7vr7CgsE_QAM_voJ9v__AN76_QID-wIA_AIKAAoBAAD2BAr8_wAAAAD78Q34_gAA9P0AAP0AAAATAAUE_AAAAAcKAgr-AQAA9f_zAgP_AAAZAPIH_wAAAAX1BAgAAAAA9AX2BQAAAAD78vv5AAAAACAALa0-0Ts4E0AJSE5QAiqEAhAAGvABdwcIAebv0QHdEOAAxCkJAIEiCv4QFdQAzw8D_8Lr4QEJCvcA793U_wcXJf-5J_n_MNjT_wT5DgA4y-f_M8oKAPwQ-wEj1vQBNSYYAP8NAP7dDhr_HuPnAOzO8wEN_-UABwIN_v8M7QEFLNkDIvwsAQT5GgJI9yIA8skH_-n39QL85-D9BBb9Bf3XFgDi9i0HEd3u_Rrq-fvcKvUCCPH4_vP0GvkHK9f-A-4LBP_zA_3SCQ8BCOz7CRQHEgbuKPcI8_ckAtT67fXq-fX6J-j3AOQA-AUJ7_YHIAcQ9xfh-vr7_fgB6RfyBOgT_APkI_ryIAAt_yEdOzgTQAlIYVACKnMQABpgBgUAJ_UxwBLuStEb2wUg19AR3QG6Ff8n2__zCtIA7zGYphoI_wTVKvmdAAAAIP7t9vsAyn-_-7E2AAHly4XjNwRiBAz7197156C4ABMiBgkREgw8AL34rxMxzZs9ABDwIAAtRa0TOzgTQAlIb1ACKq8GEAwaoAYAAOBBAAAEwgAAyEEAAHDCAAAAwAAAqEEAAMJCAACAQQAAYMIAACDBAADgQQAABMIAAKDBAABMwgAABEIAAIA_AAAAQAAAYMEAALDBAABAwQAAoMEAAETCAACiwgAArEIAAMjBAACYQQAAYMEAAADAAADIQQAA8EEAAGDCAADgQAAAUMIAABBBAAAUwgAAIEEAAEBBAAD-QgAAUMEAACxCAAAoQgAAwEEAALpCAACoQQAAkEEAAJbCAACAvwAA6EEAANJCAAAQQgAAwEAAAEDAAACAwAAAQMEAAJBBAADgQAAAqMIAANBBAACAwQAAbEIAAEhCAAA8wgAAsMEAAIjCAADwwQAAbMIAAIjCAABgwgAAIEEAAIDCAABcQgAAqkIAAODBAACIQgAA4MEAAIbCAAA4wgAAoEEAANBBAAAQQgAAHMIAADBCAACQQQAAPEIAAKBAAADwQQAABEIAABxCAABQQgAA2MEAAEDBAABwQgAAEMEAAKzCAABAwAAAsMEAAKBAAADoQQAAjEIAABBCAACKwgAAQEIAAIhBAACGwgAATMIAABDBAACAvwAAwEEAAOBAAAAkQgAAgEIAACxCAADwwQAAwMAAAEDAAABQQQAAqEEAACjCAABwQQAAIMEAADDCAAC2wgAAHMIAABjCAADYQQAAgL8AADTCAACYwQAAXMIAAKDBAACAwAAAQEAAAAzCAADQQQAAdMIAAADAAAAgwQAAkEEAABDBAACQwgAAoMEAAPBBAAAMQgAAQEAAAHRCAABAQAAACMIAAJhBAADAwAAAXMIAAMDAAADQQQAADEIAADDBAAAAwAAACMIAALBBAACCwgAArsIAAAxCAACgwAAAQEEAABBBAADwwQAAgMAAAMBAAAAgQgAAZEIAAFBBAAAAwAAAMMEAANhBAADIwQAAgD8AAOjBAAAAQAAAgMEAACDCAADIQQAAPEIAAHjCAADQwQAAgMEAAABBAACSQgAANMIAADjCAAAMQgAAGMIAALDBAADAQAAAwsIAAMBAAABAQAAAmEEAAADBAACowQAAPEIAANDBAAC4wSAAOBNACUh1UAEqjwIQABqAAgAAQLwAAHS-AAAkPgAADL4AAJg9AACOPgAAqD0AANK-AACovQAAED0AAKi9AACIvQAAVD4AADw-AAB8vgAAQLwAAOA8AACgPAAAmL0AAJI-AAB_PwAAEL0AAGy-AAAUPgAA4LwAABS-AACiPgAALD4AABA9AACePgAAJD4AAJa-AAA0vgAAcD0AAHQ-AACgPAAAjj4AADS-AACWvgAAoDwAAGS-AADYPQAAlj4AAPi9AACePgAAML0AABw-AAAwvQAAyD0AANi9AAAsPgAAJL4AAIo-AADgvAAAgDsAADC9AADyPgAAoLwAABC9AACmPgAAiD0AAOg9AAD4PQAAoDwgADgTQAlIfFABKo8CEAEagAIAANi9AAAMvgAAUL0AADO_AACYvQAA4DwAAMg9AAA0PgAAcL0AAOA8AADIvQAAuD0AANi9AABQvQAABD4AAHC9AAAQvQAADT8AAAy-AAAJPwAAHL4AALi9AAAcvgAAgLsAAKC8AABUvgAAoLwAAEA8AACSPgAAoDwAAFC9AACYPQAA2L0AAAy-AAA8PgAAmD0AAKo-AAAMvgAARL4AAFQ-AAB0vgAALL4AAIa-AABkPgAAmL0AAJi9AAB_vwAAqD0AAAy-AAAkPgAAfL4AABA9AAAUvgAAoj4AAAy-AAAUPgAAQLwAAKi9AABEPgAAFD4AAMg9AABQPQAAnj4AAKC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=JiYrRRkAG_g","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6555698834679573546"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15984695455036694831":{"videoId":"15984695455036694831","docid":"34-6-11-ZFCA3D0208636EEF2","description":"In this video, we use the First Derivative Test to find the local maximum and minimum values of a polynomial function. How to find the local extreme values? We first need to find critical...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4240522/5067d944c86d6bde679ecaeb038b4e91/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xnF4DgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHuaez7lXFcM","linkTemplate":"/video/preview/15984695455036694831?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Find Local Maximum and Minimum Values of a Polynomial Function | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Huaez7lXFcM\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhYKFDE1OTg0Njk1NDU1MDM2Njk0ODMxWhQxNTk4NDY5NTQ1NTAzNjY5NDgzMWqIFxIBMBgAIkUaMQAKKmhoZ21udGhkcW5tdGh5dGNoaFVDcEFJRm16TW9TTXdkeVBnOGNDdTVfdxICABIqEMIPDxoPPxOnB4IEJAGABCsqiwEQARp4ge_6AQD8BQD39Q8H-wb-AQD89v34_v0A9gf8__8C_wD3-QD3AQAAAP4GBAoEAAAA_-71CP3-AAD1B_TyAwAAAA79CfP9AAAAEhAGCf4BAAD2__wMBP8AAAsE-QUAAAAA-wEJAPv_AAD7AfwEAAAAAPz4CQEAAAAAIAAtfGXeOzgTQAlITlACKoQCEAAa8AF_9w__3PbnAcYGAADGJPcApR0KAPw30AC5BfwAyf_rAdwe6wDg_dUA6PwaAuwYAv9D9cf_79oS_0Hm5_8n0e0B4xPqABTDAwA_FDD_3wr7_ukKKQADAe4C9ODjAvwE5P__Cx38CfrXAewDvgLtLjsCDgkuBFjcIf3tyR0D8_cF_evb1_0FGP0G88MDAt_0Mggl1dAHMPESBNhI7wAD5uUH_t0Y_Agx0v064AMAD_oJ_r8NBAn08PIHFwgUBugZ9PPx2xULvs349tEF_gw_2AD39_0PBiPX5wIb8w8EDvQLAPjx9u_nHwEAy_IFDPgM9vEgAC1O_As7OBNACUhhUAIqzwcQABrAB9hF-b4orD-7gpzmPJqCm72ptRe8AwVevU04mr3QpGK7SMETvR5P6z3an4W9czO3vGzsUr53ZFE9AyoXvcVVhT5UMG-9m38qvHE9Wr7nFr89hUyovLMj1b2Dlwo99R3yvPQ2Nryd-pu8cSSrvGmEyD2tchw9JJO4vG-LCL1DRwe6I9gYvaSYk7pqNLm6kXfzvD52Vz041gc8nsETvGxIVz2x7Pi8VIaWvAPFF7xUQmY9XMBTu2V7k737lqQ9_3WuvPBZzTyscoA7RtJuPBMJi70KN1S9sraOvP4FZ73AQ2w9PJkHuy3hmrzLXKo8-gZLvC0dWD2Zcck8R3_cO_mgB770Gps9L4GAO_fWtj2q8NQ5aFcEOyKUrbx0S6E9zsGzPBLJxjwqT4W8QkN_vADyhD2JKwI9-CsuPC4Klrx1bZS8V5mEvKoeRrqAgYA9VNNkPE0dWj1jzW28JIp_vKYTRD3VTl69-Y2nu1XJhr0CicG8vEYmvJZLOT3WJHM9EzXqO4AzpzzoWNQ8ksE8O6A9Uj3MHxi9SNoyPJXcPL088cG9Q-nmu4nT6T1on609XwyAOPYFqT3BvNG8b3zxu45PUr1JII-9s3XTO9pk3jz86j46RMQoPJfiKr3L3Q66QNTku_4s1rxhXKC88747vLMa3DwDYDw8Fos6vLIS872WMXS9-lmrORt0yD1AN089VwZVuy2Lkz2erx49oKIPOsJM2z07Hei9ds_YOTx8o7yC56m91n9fuNbuC7wVG-k5NnosOv4MPz7JIq29TbCPuCinjD3DjH89d26BOQeW4737m-s8NJV6NzlYKT0I6Sm82_VpOcui8LxbQh6-NwXjOZ32NL10rYO66oh_udgydL0K2Rk9kpIsODznnTzWTwO8KApEuS09Hjw5SU68IehzuFkcmT11hWg94U6OOMayC7xvXVa8dDCQtw8WBL1ceBo8zK5duB80Fj3xr-88mgOJODvWVjwpYHa9yVBQuAdcjD2rgSE9-8enODM0fj1Plno9tXWrN9yUHD1OopQ9usCHN8PT6zxnJvi9IiQkuE-lwD2bx0E9ssjcuKKTqr1Xp8Q9vTagOC_IUT3PVem8-VIzOHzhhDw3_LC6bMzUNj1brLyRIQy9eqxAOJJdGT7ZT1C9rMI_uTkcyLmfPde9big_t9VdmbwRl4K9B3EDuMya2LzjtWE9kN-ht9WU5Dy-Nqa986NNuMr0cD0i4Ss-8cuKOOIYrjxvpaI9TCdSuEyeHL0Wyrq6JN7It-sWBr1JMoa8u4WfOCAAOBNACUhtUAEqcxAAGmAr_gBA8BnD7AM45g_iGgvLv_bO6McT_xH-_-kY_ugEPsjBIDIAG9pM3aMAAAAz1e8S7ADof7_tzin9IfqMqtQZBmbzBCSo2xfapNMKCxcE5TEYFiUADeaWC2MSzkL2AwIgAC0RRRU7OBNACUhvUAIqrwYQDBqgBgAASEIAAJDBAABAQQAAQMIAAIA_AAAwQgAAykIAAABBAADAwQAAAMEAAAhCAAB4wgAAUMIAAMDBAACYQQAAsMEAAOBBAACowQAAoMAAAKjBAAC4wQAARMIAAIjCAADwQQAAwMEAAJBBAACCwgAAQMEAABBBAADYQQAAAMIAAPhBAACgwgAA4EAAACDCAABQwQAA4EEAAMJCAACAwAAAYEIAAOBAAADwQQAApkIAAAAAAAAYQgAAnsIAALhBAADIQQAAokIAABhCAAC4wQAA0MEAAKBBAABAwAAAAEEAAOBAAACuwgAAQMAAAODAAAAYQgAA8EEAAJ7CAAAswgAAdMIAAEBAAABgwgAA2MEAAIjCAABwQQAAwMIAADhCAACSQgAAiMIAADBCAACgwAAAnMIAAJrCAAAkQgAAwEEAAGBBAACEwgAAFEIAAKBAAABAQgAAoMEAAIhBAAAwQQAAOEIAAERCAABYwgAAQMAAAJRCAAAQwgAAisIAABDBAAC4wQAAqMEAAEDAAABcQgAAcEEAALLCAABEQgAAoEEAABBBAACowgAA4EAAABBBAADAQQAAiMEAAEBCAAA0QgAAEEIAACzCAAAAQQAA2MEAAADAAAAgQQAABMIAACBBAADQwQAACMIAAEDCAABowgAAAMAAAMBAAACQQQAAgMAAALhBAAB4wgAAqEEAAADBAACYwQAAgEAAAJxCAADYwQAAcMEAAODAAACAPwAARMIAALLCAADIwQAAEEIAACBBAAAQQQAAQEEAAMDAAABowgAAuEEAACBBAACIwQAAqMEAAABBAABAQQAACMIAACBBAAAQwQAAmMEAAFDCAADSwgAAGEIAACDCAACAvwAAAEAAAEDAAAAEwgAAwEAAAGBBAABwQgAAcEEAAKDAAADAwAAAmEEAACTCAACAvwAADMIAAEDBAABQwQAAOMIAALhBAABQQgAAnsIAAMDAAACYwQAAgEEAAHxCAAAQwgAAPMIAAOhBAAAUwgAAiMEAAPjBAABgwgAAKEIAAFBBAACwQQAAIEIAAIjBAABkQgAAWMIAACzCIAA4E0AJSHVQASqPAhAAGoACAABAPAAAsr4AAKI-AABMvgAAUL0AAJY-AABcPgAAT78AAAS-AACIPQAAED0AALq-AABEPgAAQLwAACS-AACAOwAAcD0AANg9AABcPgAAij4AAH8_AACYvQAAtj4AAFQ-AAC2vgAAqL0AAFw-AABAPAAAsj4AAII-AACOPgAAlr4AAGy-AACSPgAAND4AALg9AAAwvQAAhr4AALq-AACKvgAAgDsAAHC9AABUPgAAZL4AAM6-AAAwvQAADD4AAI6-AABAPAAAhr4AAEw-AACgPAAAtj4AAOA8AADIPQAAyL0AAEE_AADgPAAAJL4AAKA8AADgvAAAFL4AAMg9AABAPCAAOBNACUh8UAEqjwIQARqAAgAApr4AAKC8AABAPAAAXb8AADy-AAB8vgAAqD0AAHQ-AADIPQAAJL4AAAy-AADgvAAAoLwAALi9AACgPAAAiL0AAIC7AAC-PgAAmD0AANI-AAAwvQAAgDsAABy-AACAuwAAiL0AAFy-AAAUPgAAgDsAAIg9AABAPAAA4LwAADw-AABAPAAAmD0AALi9AAD4vQAAqj4AABA9AAAkvgAAzj4AAEy-AACyvgAAfL4AAIo-AABQPQAA-L0AAH-_AAAcPgAAvr4AAGQ-AADgPAAAmD0AANg9AABkPgAAgr4AACQ-AAAQvQAA2D0AAIo-AAAEvgAAqD0AABS-AAAsvgAAiD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Huaez7lXFcM","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15984695455036694831"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13285432627413121646":{"videoId":"13285432627413121646","docid":"34-7-8-Z508E15750163322A","description":"In this video, we use the First Derivative Test to find the local maximum and minimum values of a rational function. How to find the local extreme values? We first need to find critical numbers...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4219512/972a2d88ef2b9f89492c657702583daa/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vdFlHQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Ddw_ujbbN8ys","linkTemplate":"/video/preview/13285432627413121646?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Find Local Maximum and Minimum Values of a Rational Function | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dw_ujbbN8ys\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhYKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2WhQxMzI4NTQzMjYyNzQxMzEyMTY0NmqIFxIBMBgAIkUaMQAKKmhoZ21udGhkcW5tdGh5dGNoaFVDcEFJRm16TW9TTXdkeVBnOGNDdTVfdxICABIqEMIPDxoPPxO7BoIEJAGABCsqiwEQARp4ger4_PsC_gD29BAI-gb9Ag3--gn2__8A7AT8-AUAAADrBAnxAAAAAPoRBP4HAAAA9vf2BAL_AAD_B_z1BAAAACABCf_5AAAADwz7BP4BAAD7C_YNBP8AAAsG_fz_AAAA-gEKAPr_AAD2B_4KAAAAAPv3CgEA_wAAIAAtjk7LOzgTQAlITlACKoQCEAAa8AF_Avr_6ebjAs8W9wG_LAoAnjUD__w00gCxFwEBuwPhAP4Y8wDmFNP_DywXAMwv_v8U2LMC_-QHADzc_AAl0-4B2gL8ASbT8wE5KRkA_gL3_ssFHf8B9Ov9_NP6ACAu4_7z-Sn8B_DsAPQV2AEKHzUDDQgsBDXvGQHfqyUA3fv8AvXq7_vgDQoDC98P-L7aJwILyusFFhMI-tEnDAQTAvQH8vMc-Agv1P0Y-AgJFgP__NT97P_08fMHAwkcA98O7wPl4R7_uAfr-u0CD_kb9fYB5BLwCCHY6AIM6wv6-fEPBQTf-PnoGfEFzx33Dt8I9OwgAC34xhE7OBNACUhhUAIqzwcQABrAB3pR475vUSC6hTJDPHdlJ74VRJO8QcnuvO1-1b076oO855RbvB5P6z3an4W9czO3vPaWYr4FeIE8eT8NvMuAMz7m0Yi9mGIzPIc0Kr6eaag9tnJlvLeyJL4pFcM8RNBivNz1Ej2RC868oAcQu6nB1D3qqDQ87UqmvAK1Xb1fehs907AuvYlH_byTnai9a3ARvfSV9jx7IAi9eI99POvgsD1_eIy8fBVPvBasJzxxtak8-8QmuxCUmbvIK4s97ubOvHVmLD2mi8M8_3SoPBMJi70KN1S9sraOvGwHg73NFto8ljCJvOITH7zo__A86M4dvcjw8zw0AGq9vJ_LO_mgB770Gps9L4GAO_CLCz7zP7O74jrGOzHCCr3b0B49-d9Gu1KHDzxQE6K8oGyKvM98oz24MlI9p9BUPOlrET1NGn68TPIOPG62I735WHA9CRLAPPTzUD3TwA-9u5KuvPelsz1myKe8_GXBvCcHrb0XVmC89Pt-vJZLOT3WJHM9EzXqOyGNLzyqR5o8vM9xPMU1Qz34UQ2-CW8su_pYpr3LUJC9Haeuu-i-zD0AMGM9ruYMO_YFqT3BvNG8b3zxu6xx9rx8j2S9gMKPOtpk3jz86j46RMQoPCGGZ706aAQ8XYyeu9i_xrzE3lU8f_ExvDd1-TzVQik94B-Au_GeY71ddo69idXGuTqcnz3aOrg8XHxAOyVIuz2eoCM9YE8ruYFb9z0IS5a9-F_uOM41Cju_jY69tkHUup2ovroD2ZG9GkoIuu6vDj6fEpG9ftCUOZnAiD3zdt88xQeKt6w84b1pQ1Q9lVuyOLnSYT0u3pS9c0_dOMui8LxbQh6-NwXjOUC4J73jfaY83IEiOh4IfzzmaUo967MEOu_14juIKpG9bYMMOTdTobyzrxU5_TI1OZH4cD2779g81Y9POONMODw_FzI84v4Bup-7M70lO5s80ngjOWl7Cj2TFWg8G5CpOEHxAz1xT8G91zh7Oae9Fz1oTmg9hmA6OZvO6TzW8lQ9VMseuFWZlDuTTIM9lA-ZuN5Z-zzY8Z-9GA2XOE-lwD2bx0E9ssjcuCL7AL7GXyQ9F5hlOJpWs7udwwu93ei-N686FTz5f3o8ckY8OFfCA7wACI48jOKaOPcBKD5wYd298We_uVxJAb3K3tK9FyIEubvtgryX5qG9-jj_tzILs70S_kA9snK2Nw0SRzx0fPS9VlhZuMr0cD0i4Ss-8cuKOO3EmzxFScg97lIKubKrj718uvo8c5Q0N5hnSr1BFCc88kRMNyAAOBNACUhtUAEqcxAAGmAs-wBJ-RjR7_A-6xjfERHIyPPK6LwO_wXn_-Uh6ggCOrXUDB8ADu0dyaQAAAA0xuwX2wDmf9LnxBkAJ-KXnrQiEGPwBh-14xjXp94HCBkK7yACJiEA_fmNM2UWy0XkA_wgAC2ooRQ7OBNACUhvUAIqrwYQDBqgBgAAmEEAAGDBAAAYQgAA8MEAALDBAABAQAAA5kIAAHBBAAAgwgAAFMIAABxCAACQQQAAGMIAAKjBAAA0QgAAmEEAAFRCAAAAQAAAkEEAAEzCAACYQQAAiMEAAETCAAAMQgAAHMIAABBCAAAgwQAAgL8AANhBAACgQQAAHMIAAMBBAACmwgAAgEAAAJDBAACAPwAAQEEAANRCAACoQQAAgEIAAIDBAABkQgAA_kIAAIBAAACAQAAAnMIAAFRCAACwQQAAgEIAAIpCAADAQAAANMIAAFDBAACAQAAAmEEAAGBBAACcwgAACMIAAKDBAAAkQgAATEIAANDBAAAgQQAAaMIAAMDBAADgwQAAaMIAAADCAADgQQAAUMIAAExCAAC-QgAAgMEAAChCAAAgwgAAwMEAAIjCAAAIQgAAKEIAAARCAABQwgAAWEIAAOBAAAA0QgAAGEIAAIA_AACgQQAAqEEAAJBCAACAPwAAwMAAAKxCAADgwAAAtsIAAJBBAABIwgAAIMIAAMhBAACKQgAAGEIAAJjCAAAkQgAANMIAABDBAACUwgAAKEIAAABBAABAwAAAgL8AAKBBAABQQgAAHEIAAMDBAAD4QQAAQMEAAEBAAABgQQAAUMIAAHBBAABgwQAA-MEAAIjCAAAcwgAAGMIAAABAAADIwQAAkMEAAIC_AACQwgAAMMEAACjCAADIQQAAVMIAAKhBAACOwgAACEIAAMhBAABgwQAAJMIAAKDBAABQQQAA6EEAAKDAAAAQwQAAUEIAAAAAAAAcwgAAOEIAABBBAABgwQAAGMIAABDBAACgQAAATMIAANhBAAAwwgAAsMEAAIjCAACOwgAA0EEAABBBAACAQAAAkEEAAODBAAAkwgAAEMEAADBBAAAkQgAAMEEAAODAAAAwwQAAAEAAAEjCAAAUwgAAcMEAACDBAAAcwgAATMIAAMDBAAAgQQAAuMIAAABAAAAMwgAAWEIAAChCAAAQwgAAwMEAAFBBAAAUwgAAYEEAADDBAABUwgAAIEEAAEzCAAAQwQAAoMAAALhBAACaQgAAGMIAAPhBIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAmr4AAI4-AABkvgAAQLwAAKY-AACOPgAAT78AAPi9AACAOwAAEL0AAMq-AABcPgAAgDsAADS-AAAwPQAAqD0AAMg9AAAUPgAAxj4AAH8_AAAMvgAAij4AAII-AACOvgAAgDsAAFw-AACgPAAAtj4AAEw-AABsPgAA4r4AAHy-AABsPgAAHD4AADA9AAC4vQAArr4AAMK-AACivgAAUL0AAFA9AACaPgAAFL4AAO6-AADIvQAALD4AAIa-AACgvAAAXL4AAKA8AADoPQAArj4AACw-AACAOwAAqL0AAD0_AACYPQAAcL0AAOg9AABwvQAAgDsAAKg9AADgvCAAOBNACUh8UAEqjwIQARqAAgAAmr4AAKC8AADgPAAATb8AAGS-AAA0vgAAJD4AAIY-AAC4PQAA6L0AAIi9AABAvAAAqD0AAJi9AAAwPQAAUL0AAKA8AACqPgAAcD0AAMo-AACIvQAA-D0AAAS-AACgvAAAUL0AAHS-AABkPgAAiD0AAIC7AACIvQAAgDsAAHQ-AAAMvgAAcD0AAOi9AAAcvgAA2j4AAGQ-AACGvgAAij4AAGy-AACivgAAjr4AAI4-AABUPgAALL4AAH-_AABkPgAAfL4AAIo-AACoPQAAqD0AAKA8AAB8PgAANL4AADw-AACgvAAA2D0AAIo-AAC4vQAAFD4AAAS-AACovQAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=dw_ujbbN8ys","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13285432627413121646"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14820752432214797345":{"videoId":"14820752432214797345","docid":"34-8-17-Z6E1BE3F009AEDC7C","description":"In this video, we use the Root Test to test the convergence of the series. This is a typical example because the series involves an expression raised to the nth power. What other series tests...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4535967/51ff18fabc0e1e0d3cc81713d46ad6d6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LRloFAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Den0P62HAwsU","linkTemplate":"/video/preview/14820752432214797345?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Divergent by Root Test | Series | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=en0P62HAwsU\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhYKFDE0ODIwNzUyNDMyMjE0Nzk3MzQ1WhQxNDgyMDc1MjQzMjIxNDc5NzM0NWq2DxIBMBgAIkUaMQAKKmhoZ21udGhkcW5tdGh5dGNoaFVDcEFJRm16TW9TTXdkeVBnOGNDdTVfdxICABIqEMIPDxoPPxOkA4IEJAGABCsqiwEQARp4gfv6AQT-AgDs9v4E-QIAAAcDCQn4__8A5gQLCAb-AQAB-QD3-gEAAP0T-vQEAAAA8QD5CQEAAAAEB_D3AwAAAA_9CfL9AAAADgv8A_4BAAD6APEOA_8AABX-BgMAAAAA__j4____AAD7-wIDAAAAAAAAAgYAAAAAIAAtwqTaOzgTQAlITlACKoQCEAAa8AFyHwkD5u_RAcgS5ADRFQQAgSIK_hAV1ADBIPQAwAPjAAAN4QDoEtb_Agz5AL0pGwEw2NP_D9oFADfe_AA-4hgA3AL8ARD_5gE6LQH_2fQF_s8FG__44O7_3Mzj_wgL0_7-6BX_BxTnAhsVzgEO_jsBBPkaAjjOFf_ezQwBAhkOAgnx2QDSBgQG_vAVALD-GgcC3vUCJBf69-YE8gH8AgED6-UJ9Qcr1_7__foDDRIAA-zb8fn_-voABAcq__ETBfjn4xz_2QL5_wgLCP8a4P4B0fvxDQjf6wEE9_4CDPEA7v8H9vDMFfP16BP8A_kK9_IgAC3_IR07OBNACUhhUAIqcxAAGmAU-gBR6hrwABkiAPTb_RvNyiIY38MD_wncAPsg1icMYKvF90AAE8365KIAAAAU8BMU1wARf7jP7Q3tHNG_srgoG3HhDQiX4RTw6vcxFxfgCTfkHT4AswKMNj_hqywK9wIgAC1KwBM7OBNACUhvUAIqrwYQDBqgBgAAcEEAACDCAAB0QgAAPMIAAJjBAABIQgAAhkIAAKBBAAA8wgAAEMEAAKBBAADAwAAAMMEAAEDCAACAwAAA4EAAAJDBAAAowgAAQMEAAJDBAACgwQAAyMEAAFTCAABUQgAAJMIAAMhBAACMwgAANEIAANBBAABwQQAASMIAAADBAABIwgAAAEAAAKjBAACgQQAAyEEAAIJCAACQwQAANEIAAIBBAAAQQQAAoEIAAEBBAAAgQgAAUMIAACRCAAAAQAAA-EIAAKhBAAAgQQAAYMEAALBBAACAPwAACEIAAOBAAACKwgAAmEEAAAAAAACIQgAA2EEAADjCAACIwQAAlMIAAODBAAA4wgAAAEAAADjCAACAPwAAfMIAABRCAAB4QgAAiMIAAN5CAACIwQAANMIAACzCAADIQQAAgEEAAIhBAAAgwQAAuEEAAAAAAABQwQAAFMIAACBBAABUQgAAUMEAAJhBAACAwQAA2MIAAChCAAAgQQAAUMIAACBBAACgwQAAgMAAAIJCAABIQgAAiEIAANjBAAAUQgAA4EAAADDCAABowgAAUMEAABDBAABIQgAAoEEAACBCAAC4QgAAgEEAAFzCAACgQQAAmEEAAHBBAACAQAAARMIAAFhCAADowQAAFMIAAJDCAACwwQAAkMEAAAhCAAAAwAAAjMIAADDBAADAwgAAqMEAAEDBAACIQQAA2EEAAGhCAAAgwgAAyMEAAIjBAADowQAAoMAAAATCAADQwQAATEIAAOBAAACYwQAAbEIAAIhBAACgwQAALEIAAAAAAAAYwgAAkMEAAIjBAADYQQAAFMIAAKhBAAAMwgAAAEEAAEzCAACSwgAAMEIAADBBAABAQQAAgD8AAHDCAAC4wQAAyEEAAABCAABwQgAAUEEAAEBBAACAwQAA4EAAADDBAAD4wQAAbMIAAKhBAAAMwgAAcMIAACBCAACuQgAAlMIAAKBBAABwQQAADMIAAGBCAADEwgAA6MEAAJhBAACAwQAAYEEAABBCAACMwgAAREIAAMBBAACAwQAACEIAANjBAADAQQAATMIAADzCIAA4E0AJSHVQASqPAhAAGoACAABEvgAADD4AAOg9AACIPQAAyL0AAJ4-AACgPAAA1r4AAOA8AABQvQAANL4AALi9AAA8PgAAHD4AAAy-AAAQPQAAcD0AAEA8AACgPAAAGT8AAH8_AAA0vgAADL4AADA9AADovQAAZD4AAMg9AACIPQAAhj4AAIY-AABwPQAAwr4AAPi9AAC2PgAACT8AAPi9AABwPQAAHL4AACS-AADCvgAAiL0AAIg9AAC6PgAADL4AAFA9AAC4PQAAHD4AAEC8AADIPQAAUD0AAPg9AAAcPgAAED0AAPg9AACgvAAAgDsAACM_AABAPAAAoj4AAHw-AADovQAAoDwAAMg9AAD4vSAAOBNACUh8UAEqjwIQARqAAgAAXL4AADA9AACYvQAAK78AADS-AABAPAAA6D0AABC9AAC4PQAA2D0AAOi9AACgvAAAgLsAAMi9AABcPgAA4LwAAJg9AAAxPwAAoLwAAP4-AACOvgAANL4AAFA9AAAQvQAAEL0AAMg9AACgPAAAgDsAAJg9AABwvQAAqL0AAAQ-AADYvQAARL4AACQ-AACoPQAATD4AALg9AAA0vgAAiL0AAEy-AADYPQAATL4AAIg9AABAvAAAyL0AAH-_AAA0vgAANL4AAMg9AABwPQAAUL0AAOi9AACePgAAQDwAAJg9AADgPAAAoDwAABC9AADIPQAAnj4AAMg9AACOPgAAHL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=en0P62HAwsU","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14820752432214797345"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9082440047665321925":{"videoId":"9082440047665321925","docid":"34-0-5-Z60CF91922505722B","description":"In this video, we use the traditional method of integration by parts to find the antiderivative of Cosine Squared. This is an even power of cosine. It is presented in textbooks that we are using...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1819580/bbd0de4864b23971c71fc11b203b601a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/68ngEAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXJPJ7PQzyko","linkTemplate":"/video/preview/9082440047665321925?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integrating Cos^2 by Parts - No Half-Angle Formula | Integration | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XJPJ7PQzyko\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhUKEzkwODI0NDAwNDc2NjUzMjE5MjVaEzkwODI0NDAwNDc2NjUzMjE5MjVqtg8SATAYACJFGjEACipoaGdtbnRoZHFubXRoeXRjaGhVQ3BBSUZtek1vU013ZHlQZzhjQ3U1X3cSAgASKhDCDw8aDz8TqQSCBCQBgAQrKosBEAEaeIH2AQr2AQAA6vv4APkAAQAWAvH69AICAOwC-wQAAAAA-vkL-QIAAAD9FPrzBAAAAPr9_gf9_gAAEAH3_AQAAAAW7_b2_QAAAAIV9Pf_AQAA7f7z-QIAAAAP_gEIAAAAAPn5APQAAAAAAQIJAAAAAAANBgn6AAAAACAALSODzzs4E0AJSE5QAiqEAhAAGvABfw_o_sb74__XE9sAuy8KAKMeCwATGM4ArBkBAbL2wgHbH-oA3_3UAPMN_gDNDwoAFdWuAvrr9wBA2fwAFu3_AAEdFQEo1gwAPSwbAAwM8f7dJDH9FuMP__3C2wAdHdoA_wwd_PD73_nrA70C_gUxAA4JLwQN70IB9vYi_-wUAQX2-tsABRoPBO7a__nqGD8B7tPm_DLu8vvHK__5CAz4_vHSJv8JMtH9NOnsCf_U7PrV9v4H7vTl9iH5JgbIFur98fYpAuTQ9PboBvvxYtXtAtEi-vYp5fYIEP7-_P_oCPL_6OsA4PEDA9EbAv0B9vL9IAAtCE8IOzgTQAlIYVACKnMQABpgSQAAMBEX4dgELtz0r_b2zNAA3-vnD__g3P8XHBD1LEiVogEZ_xzFEOOgAAAAFfkdNuoAE3_E5eXp5CPH36e0NxZ-AxRqr8kp6-bhMf39CBIiLQ09AMz6tQ8W9wld_iD4IAAtoMMSOzgTQAlIb1ACKq8GEAwaoAYAAKBBAADAwQAAqEEAACjCAADgwQAAgEAAADhCAAAwwQAANMIAADBBAADAQQAA2MEAAEzCAABYwgAAFEIAAEDBAACIwQAAfMIAAABAAAAEwgAAQMEAACDCAACgQQAAUEEAAJjBAACoQQAAOMIAAODBAAAoQgAAcEEAAFDCAAAYQgAARMIAAIBAAADAQAAABEIAAEDBAADQQgAAGMIAAEBBAACYQQAAGEIAAKhCAADAwAAACEIAAFzCAADgQAAAmMEAAGhCAACAvwAAQMEAAMDBAADAwAAAiMEAAERCAADwQQAAlMIAAJDBAACAQQAAgEIAAABCAACAwQAAuMEAAJzCAACgQAAA4MEAACxCAAAAwQAAEEEAAGTCAAC0QgAAykIAAGzCAABsQgAAmEEAAJLCAABMwgAA8EEAAMhBAAAAQQAAOMIAADDBAACgwAAAGEIAAIjBAAAAwQAAbEIAABhCAABgQQAAxsIAAHjCAABcQgAAkMIAAHzCAACAPwAA-MEAAIDBAAAwQgAAUEIAAIBAAABYwgAAuEEAABBBAAAMwgAAsMIAAExCAAD4wQAAVEIAAMDAAABMQgAAhEIAAGDBAAAgwgAAgL8AAMBAAAAgQQAAiMEAAFjCAAAgQgAAiMEAABDCAACEwgAA-MEAAGTCAADoQQAAiMEAABjCAADgQAAAQMIAAFjCAACIwQAAcEEAAKDAAAB0QgAAoMEAABRCAAAwQQAAGMIAAFBBAACwwgAAEEEAABDBAACAwQAAUMEAALhBAADowQAAFMIAAIZCAADAQQAADMIAAHDBAABwQQAA4EEAAAjCAABMQgAAQMAAAABBAABwwgAAIMEAABxCAAC4wQAANEIAAHDBAACIwgAAMMEAAEBBAADgQAAAdEIAABBBAAAAQQAAHMIAALhBAADYwQAA2MEAADTCAAAsQgAAYMIAAGDCAACIQgAAdEIAABTCAAC4QQAAgD8AADDBAACSQgAAZMIAAEzCAAAEQgAADMIAABBCAAC4wQAAfMIAAHBCAAAgQQAAMMEAAEhCAAA4wgAABEIAADjCAACMwiAAOBNACUh1UAEqjwIQABqAAgAAmL0AAHS-AABAPAAAJL4AAJi9AAB0PgAArj4AADW_AADIPQAALD4AACS-AAAcvgAAmD0AAOo-AAAEvgAANL4AAJY-AACoPQAAML0AACk_AABFPwAABL4AADy-AACSPgAAML0AAM4-AADYPQAAXL4AAMo-AACSPgAAmD0AAO6-AACgPAAAMD0AABQ-AADovQAAML0AAKC8AAA0vgAAqL0AAIA7AAAsPgAAdD4AABS-AAD4vQAADD4AAFQ-AAAMvgAAgLsAABA9AABcPgAAyL0AABE_AABEPgAARL4AAEA8AAB_PwAAoDwAAAy-AADoPQAA6L0AAIi9AACIPQAANL4gADgTQAlIfFABKo8CEAEagAIAAOi9AAAcvgAAiL0AAF-_AAAMvgAALL4AAMg9AACGvgAAQDwAAIC7AACYvQAAEL0AAMi9AAD4vQAAFD4AAOC8AACIvQAACz8AAJg9AADSPgAAqL0AAPi9AADYvQAAcL0AAMi9AACgPAAAUL0AADC9AACIPQAAuD0AAIC7AABkPgAAEL0AAKa-AACAuwAALD4AAFw-AAAsPgAAXL4AAIi9AABAvAAAqD0AACS-AAD4PQAAMD0AAOC8AAB_vwAAHL4AABQ-AACgvAAAJD4AAIq-AADovQAA-D0AAKC8AAAEPgAAUD0AAEC8AAAQvQAAiD0AAIY-AACAOwAAgLsAABC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=XJPJ7PQzyko","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9082440047665321925"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3595509060354667957":{"videoId":"3595509060354667957","docid":"34-0-13-Z90C4101F6E446AE4","description":"In this video we use the Direct Comparison Test (also Ordinary Comparison Test, OCT) to test the convergence of the series (2^n)/(n!). Is n! larger or 3^n for large n? We will find out in this...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1023230/2b652c74849a994f3e30401823875901/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/KCtZKgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWorNP-NjxIw","linkTemplate":"/video/preview/3595509060354667957?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Direct Comparison Test - 2^n/n! is Smaller | Series | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WorNP-NjxIw\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhUKEzM1OTU1MDkwNjAzNTQ2Njc5NTdaEzM1OTU1MDkwNjAzNTQ2Njc5NTdqtg8SATAYACJFGjEACipoaGdtbnRoZHFubXRoeXRjaGhVQ3BBSUZtek1vU013ZHlQZzhjQ3U1X3cSAgASKhDCDw8aDz8TxwWCBCQBgAQrKosBEAEaeIH2-gL-AQAA8-_8CQAF_gEPAxMA9wEAAOwK_wYI_wAA9vkA9gEAAADwFv7_BAAAAP0B8ggC_gAADQT57QMAAAAD8v70-QAAAP8I8f3_AQAA-An2AgP_AAAXBf4GAAAAAP_8-_f8_wAABQIHCQAAAAAL_wb-AAEAACAALa0-0Ts4E0AJSE5QAiqEAhAAGvABf_sTAeXv0QHmC-wAzCH4AKssI__9MdQAwAX9AL0K_gEPH_AB6BPV_-0DCQDPLP7_MdfT_w_aBQA5yub_DeL0ANf02QD62tkBSxUQAQfm7f7OBRv_-ODt_xPVBwIZGd8A_ugV_ycF2v729N0GCR0yAx7tJAIy8BcB8sgH_-4v-wf17PD73AH4BArhDvjC3CQCCs3sBBQSCPrkAgULEgL1B-vlCfX6OOb6Ig34BQ0SAAO48Pj-9fL0BhjwEwDqFvkF5-Mc_7Yj9vwIDAj_Gvb3Adzy8QII3uoBHPsB_vf9BQkG-Ony6hwBAM_87QsFKQTuIAAtXDAbOzgTQAlIYVACKnMQABpgF_0ALvku7f8cIRL5yyUpxt4L-O_T_P8S0ADq-df1F0fAxvka_zT3_tClAAAAIvzR8cEA8XXW5fYo6AbqybeyCSR_3xABy9A1-Q0BMfgD__sx9QRZAM8SlFRSCbQ7AB4yIAAtfGIbOzgTQAlIb1ACKq8GEAwaoAYAABBBAACAwQAAuEEAAHzCAABAQQAAgEEAAJBCAADgwAAACMIAAEDAAADwQQAAgMEAALDBAAAswgAASEIAAABBAAAwwQAAuMEAAIDBAABgwgAAHMIAACzCAABMwgAAYEIAAIDBAACwQQAAoMEAAOjBAADIQQAA4EAAAJjCAABwQQAATMIAABBBAACAPwAAwMAAAADAAADyQgAA0MEAAJJCAADAQQAAsEEAANZCAADgQAAAAEIAAJbCAADAQAAAiEEAALZCAACoQQAAmMEAAFBBAABgQQAAAEEAAHxCAACAPwAAwMIAALBBAACQwQAAnkIAAHhCAAAYwgAAAAAAAL7CAACAPwAAgMIAACTCAAAswgAAkEEAAGTCAACSQgAAkkIAAFDCAACYQgAAyMEAAEjCAABQwgAAuEEAANhBAAAUQgAAEMIAALBBAAAAwAAAsEEAAMDAAACIQQAA2EEAADxCAAAYQgAADMIAAAjCAABEQgAAAMIAAITCAAAAwQAA8MEAAABBAAAIQgAAnkIAAJBBAACQwgAAJEIAAEBAAABYwgAAdMIAANhBAAAUwgAAHEIAADDBAADwQQAAIEIAAMDAAAAkwgAAkMEAAABAAAAAQgAAiMEAAFzCAAAMQgAAMMEAADjCAACYwgAAIMIAAADAAADgQQAAYMEAABTCAACAwQAAkMIAABDCAAAowgAAEEEAAIjBAAD4QQAAaMIAAABAAABgwQAAgMAAAOjBAABUwgAAQEEAAABAAAAYQgAAAEAAAHBCAAAgwQAAXMIAACRCAAAIQgAAHMIAACDBAAAEQgAAMEEAAIjBAACgQAAAJMIAAMDAAACKwgAAnMIAAHRCAAAQQQAABEIAAHBBAABwwgAAUMEAAHBBAACIQQAAmEIAAABBAAAwQQAAMMEAAJBBAABQwQAA8MEAAETCAAAQQQAAMMIAABTCAAAwQgAAuEEAAEzCAABAQQAAIEEAAKDAAACOQgAAQMIAACzCAACAwAAA2MEAAADBAACAPwAAlsIAACxCAACAQAAAsEEAAIBAAABEwgAAYEIAAFDBAADQwSAAOBNACUh1UAEqjwIQABqAAgAAqr4AADS-AAB0PgAA-D0AAJi9AACYPQAAyD0AAKa-AAAEPgAAJD4AAAy-AADYvQAAdD4AAII-AACIvQAADD4AANo-AABAvAAARD4AAB0_AAB_PwAAuL0AABC9AADoPQAAML0AACw-AACWPgAAkj4AAGw-AACuPgAAyD0AAEy-AAA0vgAAEL0AAIo-AADYvQAAML0AABQ-AACCvgAAkr4AAKC8AABcPgAAAz8AANi9AACYvQAAXD4AAGw-AABUvgAA6D0AAGw-AACgPAAAyD0AAGw-AAAUPgAA4LwAADA9AAAxPwAALD4AALg9AACuPgAAML0AAJg9AADoPQAAXL4gADgTQAlIfFABKo8CEAEagAIAAK6-AACYvQAAyL0AAD-_AAC4vQAAuL0AAFQ-AADIvQAAQDwAAAw-AABQPQAAcL0AAIi9AABAvAAAfD4AAEA8AAAwPQAAHz8AAFA9AAD2PgAA2D0AALg9AABAPAAAoLwAAIi9AABAPAAAqL0AAKg9AAAQvQAAoLwAAKC8AAAsPgAAoLwAAIq-AABcPgAAoLwAAFQ-AADgvAAAZL4AABC9AADYvQAAED0AAES-AACAuwAAuD0AAEA8AAB_vwAADL4AAIA7AAAcvgAAUL0AAFA9AAB0vgAAwj4AAHA9AAA8PgAAgDsAAEA8AACSPgAA2D0AACQ-AAC4vQAARD4AAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=WorNP-NjxIw","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3595509060354667957"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2239487872520730452":{"videoId":"2239487872520730452","docid":"34-6-8-Z792FE2F0A16C1C73","description":"In this video we use the Ordinary Comparison Test (OCT) or Direct Comparison Test to test whether the series is convergent or divergent. For this series, we can pick a p-series to do the direct...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1570076/3b8b3bfe76e558d8f72cbdc473e08f2e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0__VFwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DssffipfxtvQ","linkTemplate":"/video/preview/2239487872520730452?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Comparison Test - Directly Compare with a P-Series | Series | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ssffipfxtvQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhUKEzIyMzk0ODc4NzI1MjA3MzA0NTJaEzIyMzk0ODc4NzI1MjA3MzA0NTJqtg8SATAYACJFGjEACipoaGdtbnRoZHFubXRoeXRjaGhVQ3BBSUZtek1vU013ZHlQZzhjQ3U1X3cSAgASKhDCDw8aDz8TjwOCBCQBgAQrKosBEAEaeIH3-QT7_AQA9PD8CAAF_gEEAAAC-P_-AO0J_wYIAAAA_QMA-fcBAADxFf7_BAAAAPf49wQB_wAAEgv19wMAAAAP_Qnz_QAAAAYL-v3-AQAA7gjwBAMAAAAcBAcIAAAAAAD_8fwAAAAABAED_AAAAAABBAb-_wAAACAALZbg3Ts4E0AJSE5QAiqEAhAAGvABfwgIAeTuzgHlC-wAsRkBAJ80A__8NNIAyAIPAMz_7AEKC_cAz_rH_-wDCQDMLv7_E9i0AvPxFQA8yOX_IM0CAOwL-wAT1e8CTxYQAQ8B4__rCicAAfTr_fzU-gAIC9H-_ucW_yEF5gAABuAECh81AwLrKfws-yUBA8MSAO0x-wf85t798xX6BwvgD_jg9TAHEtrt_BUTCPreNAYDDAME_vL0HPkILtX9DgbxBw76CP7H5v4F_OH2BhYHEwbALO0E5eEe_9IU-vEJChsGGwL9Cdry8AIJ3ekBDv7-_P7hAwYkEOoD_ycBBLcH9wkDTwH1IAAtjbsTOzgTQAlIYVACKnMQABpgJPQAJgsi-f8XJAH80BIa3dsVAPLdAf8V3gDwAsn_HEvKyf4k_yzZ_9axAAAAFPbh_NUA-mrc-NcaAOfdz8u1BRx_0xnvvcoq_RP2NAD8APo59xdBAMT-nUhABs8w6w0kIAAt_L8qOzgTQAlIb1ACKq8GEAwaoAYAAAxCAAAwwgAAFEIAABDCAADIwQAAmEEAAKxCAACAQQAAGMIAAMDAAADoQQAA-MEAAIBAAACEwgAAsEEAAEDBAADAwAAA8MEAAADAAAAkwgAAIEEAADjCAACowQAA-EEAADTCAADQQQAAoMIAAEBAAAA4QgAAwEEAAFTCAACAQAAAeMIAABBBAAAUwgAAAMEAANBBAAC8QgAA0MEAAHhCAAAAAAAAyEEAAMZCAAAsQgAAMEIAAI7CAADgQQAAqEEAAM5CAAAUQgAA4EAAADTCAABwQQAAgEAAACRCAACoQQAAmsIAAFBBAADwwQAAgEIAAKhBAAAowgAA8MEAAMDCAACwwQAA-MEAAMjBAAAQwgAAIEEAADzCAABsQgAAokIAABzCAACmQgAAQMIAAHTCAAAowgAAwEAAAPBBAAAQwQAANMIAABxCAAAwQQAA0EEAAJjBAACAPwAAQEIAAIC_AACYQQAAPMIAADDCAAAgQgAAwEAAAGjCAAAQQQAAIMIAAIC_AAAwQgAA6EEAABhCAADowQAAFEIAAKBAAABcwgAAnsIAAMBAAAAgwQAAMEIAAIhBAAAgQgAAbEIAAIBAAAAowgAAwMAAAKBBAADAQQAA2MEAAGzCAAAYQgAAoMEAAAjCAAC2wgAAPMIAAJjBAAAoQgAAgMAAAIzCAACgwQAAmsIAAIjBAAAMwgAAuEEAAADBAAAUQgAAIMIAAIDBAACAwQAAkMEAAIjBAACIwgAAsMEAAPBBAAAAwQAAgMEAAABCAABAwQAANMIAAChCAAAAwAAASMIAAKDAAAAwQQAADEIAACDCAACAQQAATMIAAIA_AACGwgAAOMIAAFRCAAAgwQAABEIAACDBAAB0wgAAmMEAAARCAAD4QQAAhkIAAAhCAABgQQAAgMEAAOBAAAAswgAAqMEAAFzCAAD4QQAA6MEAABDCAABgQgAAsEIAACDCAABAwAAAwMAAAIjBAAA4QgAAosIAACTCAADAQQAAyMEAABDBAAAAwQAAmsIAAMhBAACAQQAAkEEAANBBAAAAwgAAsEEAAHzCAABQwiAAOBNACUh1UAEqjwIQABqAAgAApr4AAFC9AACiPgAABD4AAEy-AAAwPQAA-D0AAK6-AAAkPgAAUL0AAIg9AABQvQAAmj4AAPg9AABsvgAAnj4AAJI-AAAEvgAAdD4AAEU_AAB_PwAAEL0AALg9AABEPgAAQLwAAAQ-AACKPgAAdD4AAI4-AABMPgAA2D0AAES-AAA0vgAAJD4AANI-AAB0vgAAMD0AAIC7AACmvgAArr4AAFC9AADIvQAAJz8AAAy-AABQvQAAhj4AAKI-AAC-vgAAVD4AAHC9AABQvQAAyD0AADA9AACSPgAAED0AAEA8AABBPwAAJD4AAIg9AAC6PgAAED0AADQ-AACAOwAAkr4gADgTQAlIfFABKo8CEAEagAIAAKK-AABUvgAATL4AAFO_AABQvQAA6L0AAEw-AAAkvgAAuL0AADw-AABAPAAAUL0AAFC9AACovQAATD4AAFC9AABQvQAAFz8AADA9AAC-PgAA4DwAABA9AAAwPQAAiD0AAKC8AAAQPQAAgDsAABA9AABAvAAAMD0AAKA8AAC4PQAA-L0AAHS-AACoPQAAcL0AABw-AAAQvQAAkr4AAHA9AADovQAAyD0AAHC9AAAkPgAAFD4AAAS-AAB_vwAAiL0AAFA9AACovQAAUL0AALi9AABQvQAAXD4AAEA8AAD4PQAAED0AAPg9AADIPQAAmL0AAFQ-AAAkPgAABD4AABy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ssffipfxtvQ","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2239487872520730452"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12389424945089952042":{"videoId":"12389424945089952042","docid":"34-1-0-Z71A492F465A4750B","description":"In this video, we look at a limit problem whose form is an indeterminate 0 raised to the 0th power. To deal with the limits that are of the form of 0^0, we need to first find the limit of the log...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3023243/58ffe0024a8ec49478926fa8e982ad49/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qmBWDwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDWt-XaAupmc","linkTemplate":"/video/preview/12389424945089952042?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding Limits using l'Hospital's Rule - x to the x and 0^0 | Limits | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DWt-XaAupmc\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhYKFDEyMzg5NDI0OTQ1MDg5OTUyMDQyWhQxMjM4OTQyNDk0NTA4OTk1MjA0Mmq2DxIBMBgAIkUaMQAKKmhoZ21udGhkcW5tdGh5dGNoaFVDcEFJRm16TW9TTXdkeVBnOGNDdTVfdxICABIqEMIPDxoPPxO5A4IEJAGABCsqiwEQARp4gfQDAv7_AQDw9wIIAwT-AQz--gn3__8A4wH2_wr8AgAB_Q4J_wEAAPkEBPcHAAAAD_7xCf_-AgD8_wT7_AAAABMABQT8AAAA_REBD_4BAAD1Bu_4AgAAAAz79Pn_AAAABfcH_QAAAADvDPwFAAAAAPzy_O4AAAAAIAAt2DLUOzgTQAlITlACKoQCEAAa8AF_FPv_1g_aANAwzgC7LwoAiRcO_xMXzgCrEegAsvbCAQr93wDL2cb_JP4C_7YFGQAfAb8AAuYZACzp7_9CARkBDhkFAEDV_QFAFDH_BfXvAMgkHv4I9_n__cLcAPUV3v4L-SIBEfjy_B8YxwIa4zADBfgeAi_7KAHq4PQB5hTwBf7avP4cCvj8_u0XAN70Mwga6-_8IAvx--kn_gUJ7_f98fMe-B8d3_38298BAuoU-dbaBQH--fkAIfkmBs4i9wjy9ikC1OMA9-gG-_Ee3P4By_rvD-3s-gsSCgn-6sYA7wIEDwbkEQMI2gH-Cesb8wEgAC1SbQk7OBNACUhhUAIqcxAAGmAbAQAx-TC_FPo7ywbUDhfT3hDn8skM_ybeAOn_xgX6MqufA_7_ANsZ-qMAAAAhFOoE-gDSd8D2sTQAAujVgeY2BHbtBg7u5gIAnLnkCxMJCxjrFiEAuACwD0zerj8MAAIgAC0Lphg7OBNACUhvUAIqrwYQDBqgBgAABEIAAHDBAABAQAAAyMEAAGBBAACgwAAAfEIAAJDBAACCwgAAAAAAAPBBAAAIwgAAHMIAAILCAABQQgAAkMEAAHDBAAAcwgAAQMEAAATCAAAowgAATMIAACjCAABsQgAAgMEAADBBAABIwgAAoMAAADBCAACIQQAAjsIAAKhBAABIwgAAEEEAAODAAACwwQAAcEEAAP5CAAAAwQAAikIAACxCAAAEQgAAwkIAAIhBAABAwAAAjMIAAHDBAAAAwAAA2kIAACBCAAAAwAAAQMAAACDBAADQwQAAOEIAABBBAACWwgAA4EEAAMDBAABEQgAATEIAACDCAACQwQAAoMIAAEDAAABYwgAAUMIAAEzCAAAQQQAAaMIAADhCAACmQgAA-MEAABRCAACAwAAAdMIAAILCAAAIQgAAwEEAAKBAAAAMwgAAFEIAAEDAAABcQgAAQEAAAEBBAAAQQgAAKEIAAGxCAABcwgAAIMEAADRCAAAAAAAAysIAAKhBAADQwQAAMEEAANhBAABIQgAAgEAAAHDCAACAQgAAiEEAAHjCAACAwgAAiEEAAIjBAAAMQgAAEMEAAABCAABgQgAAoEAAAADAAACQwQAAAMEAAGBBAAAwQQAAMMIAAMBBAABAQAAA4MEAANrCAABIwgAAwMEAAMBAAABAQAAAyMEAAMDAAABwwgAAOMIAAFDBAADgQAAAKMIAADxCAAAowgAAgD8AAKBAAADgQAAAoMAAALjCAAC4wQAAAMAAALhBAACQQQAAMEIAAODAAABIwgAAfEIAAEBBAAA4wgAAQEAAAIhBAACAQQAAUMEAAADCAADIwQAADEIAAJDCAACCwgAADEIAAODAAABQwQAAkMEAALjBAAAQwQAAAEAAAABBAABwQgAA4EAAAIDBAABQwQAAKEIAAKDBAAAAQAAAYMEAAMDAAAAAwgAAuMEAAPhBAABQQgAAKMIAAFDBAADgwAAAmMEAAKRCAAAEwgAAgMIAABBCAADIwQAAwEAAACDBAACuwgAAjEIAAKBBAADAQQAAwEAAACzCAABsQgAARMIAALDBIAA4E0AJSHVQASqPAhAAGoACAABAvAAAbL4AAGw-AACovQAAgLsAAI4-AADgPAAA4r4AAFC9AABQvQAAcL0AAJi9AABcPgAATD4AAJK-AADgPAAAFD4AAEC8AADIvQAAij4AAH8_AACgvAAAZL4AAOg9AAAQvQAA6L0AADQ-AABwPQAAiD0AAFw-AAAMPgAAnr4AAPi9AAAwPQAAnj4AAOA8AACCPgAAFL4AAI6-AACAuwAAXL4AACw-AABsPgAADL4AAJo-AAAQPQAALD4AAKC8AAAsPgAAHL4AAAw-AAAMvgAARD4AAHA9AACovQAAcL0AAPo-AACovQAAcL0AALI-AACovQAAoDwAAOg9AACgPCAAOBNACUh8UAEqjwIQARqAAgAA-L0AAEy-AABQPQAAKb8AAHC9AADIPQAAHD4AACw-AAAMvgAAmD0AAFC9AACAOwAAgLsAAHC9AAD4PQAAmL0AAOA8AAAnPwAAoLwAAPY-AACAuwAAyL0AAJi9AABAvAAAmD0AADS-AACgPAAAiD0AAKY-AAAwPQAAiL0AAIC7AADovQAATL4AAHw-AACgPAAAjj4AAES-AABMvgAAfD4AABS-AAAsvgAAmL0AADQ-AABQvQAAiL0AAH-_AADYPQAAHL4AAEQ-AACCvgAAiD0AACS-AAB0PgAAqL0AAMg9AADgvAAAQLwAACQ-AADYPQAA-D0AAFA9AACqPgAAQLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=DWt-XaAupmc","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12389424945089952042"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1881294460934729058":{"videoId":"1881294460934729058","docid":"34-5-0-ZE3006A55C8F252E5","description":"In this video we use the Limit Comparison Test (LCT) to test the series n^2/(n^4 + 4) for convergence. Unlike the Ordinary Comparison Test, we do not need to determine which series has larger or...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3142728/de8d37a5a807bca21abd4e747dcf06bb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/p1J7EwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dk153dS83cA4","linkTemplate":"/video/preview/1881294460934729058?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limit Comparison Test for Series with Rational Terms | Series | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=k153dS83cA4\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhUKEzE4ODEyOTQ0NjA5MzQ3MjkwNThaEzE4ODEyOTQ0NjA5MzQ3MjkwNThq1hASATAYACJFGjEACipoaGdtbnRoZHFubXRoeXRjaGhVQ3BBSUZtek1vU013ZHlQZzhjQ3U1X3cSAgASKhDCDw8aDz8TwQOCBCQBgAQrKosBEAEaeIHw_QoA_gIA8fcCCAME_gENBv8C9gAAAO4E_PgFAAAA_wIG-f8BAAAJFv4BCQAAAPf49wQC_wAAEgv19wQAAAAV-A_59wAAAAEQAAT-AQAA-Qn2AgP_AAAWBf4GAAAAAPb-9fMAAAAA__wDCgAAAAAF_QL5AAAAACAALegN1zs4E0AJSE5QAiqEAhAAGvABfw35AeXv0AHZBMsA3iALAqosI__9MdQAzhAD_78D4gAUGQIB0fvK__L6___PLP7_MdfT_w_aBQAgw_b_HufvANLa_wAU9sEBOy4B_wgIBgDdDhv_-ODt__3J4AAZGd8AAfEF_g0L2wELDeYCOAwrAALsJ_wp4w8B3rP9AdYy9QD85-D93AH4BPvkCv7C3CQCCtL9_iL7_P__BvP_Bwr5__P0G_kNEtIACQoDDh8l_gbG-wMB_wX5Cir1FfnqFvkF5-Md_9QT-vILChb1D_ACBtzy8QL84vMJGfQOBPnk8QIG-Ony6RfyBN4M9v3kI_rxIAAt9YoaOzgTQAlIYVACKs8HEAAawAe77tW-2xkmvILxQjtOY_u9N-kMvXfp8Lz4Mzy8h0szPcTBlLsUdhE-3w7evCa-gzv2lmK-BXiBPHk_DbzLgDM-5tGIvZhiMzyHNCq-nmmoPbZyZby3siS-KRXDPETQYrwTwa48DUEEvYJy27wnwHA99M4ZvE-x6rxviwi9Q0cHuiPYGL2JR_28k52ovWtwEb3EHbU7JCVdvTU_o7xEac895MQyPHGqNbwv67Q8CQApvdtdFr3WMTO9jVL4PDQ_yLyT6Zs9SuoKPM3-5bsTCYu9CjdUvbK2jrzo_kU8FDEWPRq9_btBCwk9vuxIPRFKqby9oKq8vB98ve3rBjo5Qra9pGaUPU-wvzzshu09jPeDPXJbkTtkO8S9FXWBPKQLe7zFIgE9M7nivNNGu7vEzB496dUQPovpGbxCA1Y9xN3PPHloqzpc68a9PrTPPCF97jwgS6o9qBb2vFx2iLzPPpA9XPr8PCofwrzZeDC8he0ju0udNrzgfTq9RiFuPRKpArynB2U9W5TZPNjCYjwFI6U91gI7vknlmjr6WKa9y1CQvR2nrrsLTx48wADnvN8p8LtbPpc9-KTDvajUOruW-NI8QXYIvSKx9ro9kXE9-GEuvfnmirt2J8m9GhzAvJAaizv8ZYG9jqFSPN_rWrwwZss8KqcNPm6TKLo5oAA8olcLvGlTDTjqbui7S1X_vOtyjDqGcUc-ozRAvBTt7blU-p49mug4vXhaTziVnuk8IqESvUfkMTo3FtQ87ECsvQNX0LjVN3U9KxaPve6wyzmlBZo7WTVjPNE64jlCTLi9rvI9um3Bj7eZLp87TH_AvYaUVjjdKqO8Vz3AvZEGHjmw5Eo9NWs_PXpNCbm0_re6HIQvPR-juLqzxSC7UUDEvW897DjzhL-9aVFkPfwyOLk_o9m8CKEtvdBdG7n-gvg8oUeMPObm8LiHTH49SLRTvRE9aTisuru6UMiOPWTM-jdB43i8fEftvWETqzlFnO87PdHVPeIJR7l1RzW8HdNJPfssMrfo2AE9EhNUPaqcgrbD0-s8Zyb4vSIkJLgLDbQ9juYIPEGvXzZlU869wuioPP4y6DddvwA9vxkLvclyYjglUE698oZqvbOefbiEG1-82hU_PSRUDjiSXRk-2U9QvazCP7mBQQ68_PkbveMlHbhyNAk7cI60vTjSjbbwuw69xxY9Pb_SszYm3JC8FjAxvkGgWrnK9HA9IuErPvHLiji_Fgo9oW_BPf8vnLd8ToW9Y4RLvMLI6LbeSfo777i3PW5jRzggADgTQAlIbVABKnMQABpgHfoALQU-7QIhG_Pu1hEb1c4L_vnD9v8UywDuA8cCGVi1zvgl_yzuB-KnAAAAFuXb_9oA63TY8ecx7ufjtMOyCQN__ibuxNob-A39GhESBPMg6h4_ALj_p1BqAKU8DQ4WIAAt7JIcOzgTQAlIb1ACKo8CEAAagAIAAJq-AACovQAAkj4AAKA8AAD4vQAAgj4AAOg9AAC-vgAAND4AABC9AAC4vQAABL4AAIo-AACIPQAAZL4AAFw-AADCPgAAHL4AAKg9AAAvPwAAfz8AAKC8AACAOwAAJD4AAEC8AAAUPgAAgj4AAGQ-AAAwvQAAuD0AAAw-AADKvgAAyL0AAFA9AACqPgAAhr4AAEA8AACgPAAAyr4AAKK-AABMvgAAQLwAAAk_AAAUvgAAmD0AAFA9AADmPgAAkr4AAAw-AACIvQAADL4AAOi9AAAEPgAAqj4AAFC9AADgvAAALz8AAAQ-AADgvAAAsj4AADC9AAA8PgAA4DwAADy-IAA4E0AJSHxQASqPAhABGoACAAC2vgAAqL0AADS-AABDvwAAML0AADy-AACKPgAAFL4AAOA8AAA8PgAAXD4AAOA8AAAQvQAAEL0AADw-AABwvQAAqL0AABs_AAAwPQAAvj4AAMg9AACIvQAAyD0AAKA8AAAQPQAAED0AALi9AADoPQAA6D0AAFC9AADgvAAAmD0AAFS-AAAcvgAARD4AAOi9AAAEPgAAyL0AAGS-AACgPAAAgLsAAEA8AADIvQAAmD0AACQ-AAC4vQAAf78AADA9AAC4PQAALL4AAPi9AACgPAAAVL4AAIo-AADgvAAALD4AAEC8AACAuwAALD4AAIi9AAC4PQAABL4AAOg9AABwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=k153dS83cA4","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1881294460934729058"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17863877664140562146":{"videoId":"17863877664140562146","docid":"34-0-2-Z7416F6F0D1769C75","description":"In this integration video, we are integrating a simple rational function of the form 1/(ax + b), where a, b are real numbers and a is nonzero. No need to do u-substitution!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2981098/f4d60df735ef7e22f308e4140bf4efa9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/7zeeDwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXeOHwLwEj6s","linkTemplate":"/video/preview/17863877664140562146?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration of 1/(ax + b) - It's Natural Log! | Integration | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XeOHwLwEj6s\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhYKFDE3ODYzODc3NjY0MTQwNTYyMTQ2WhQxNzg2Mzg3NzY2NDE0MDU2MjE0Nmq2DxIBMBgAIkUaMQAKKmhoZ21udGhkcW5tdGh5dGNoaFVDcEFJRm16TW9TTXdkeVBnOGNDdTVfdxICABIqEMIPDxoPPxOYBYIEJAGABCsqiwEQARp4gfcMB_z-AwDxAvz_-gIAAQAD__j4_v4A8g8F-QQBAAD18An8_gAAAPEV_v8EAAAA7fP9AvYAAAAPAff8BAAAABD69QH1AAAAARAABP4BAADxBPv9AwAAAAgEAgoAAAAA-wQE_QAAAAAE9AIHAAAAAAEEBv7_AAAAIAAtxELYOzgTQAlITlACKoQCEAAa8AF_F_AA3Ab0AdgEygDZJCwBojMD_zUTyAC_Bf0AtvT2APQcCADQ3cz__-Ln_8f3MP8bAcUAE94Y_yT03v5I8gb_7hENASTaCwA-De8A-RD0ANz3Af8X9e8A28ri_wgL0v7z-ij88vzj-u4DxAIL9CD_Hv4fBR3uEgLb8gX_8xsJ_gzR2P7zFPsG--QK_tkEIQL_4QT4FhLoAdYB_gUA4uf3EQAI-PQS2v_n4wAG-NwD8-fzEv4RAd4BHfoiBuoX-QXz9yUC2uHo-uwZ-v5G5hALzwAK-g3LCfwcDwPzGbIAAef6Avfg-f35zhES--cY4PIgAC3vuRg7OBNACUhhUAIqcxAAGmAlAAA4_hHu2_go4gDG9xXo7f7q29AE_-7WABQe-OQEP7iyARn_GdwABLEAAAANABUo4QAUacD0nh3tCcLwr9MuDH_jDyi41-n809gZEfvk_CINDCkA2_6yCx4H0EsDIxMgAC2CWis7OBNACUhvUAIqrwYQDBqgBgAAgL8AAETCAABgQgAAUMIAABDBAACAQAAAokIAAEBBAABYwgAANMIAAMBAAADYwQAA4MAAAIzCAACowQAAsEEAABBBAABQwQAAQMEAAEBAAACAQAAAMMEAABzCAABwQgAAVMIAANhBAABQwQAAFEIAAPhBAAD4QQAAVMIAAOBBAACowQAAwEEAAKDBAADQQQAAqEEAAJBCAABAwAAAiEEAAOBBAACgQQAAvEIAAOBBAACwQQAAQMIAADBBAABgQQAAnkIAAIDBAABQQQAAHMIAADzCAADowQAADEIAACBBAAB4wgAAmMEAAMBBAABwQgAAIEIAANjBAACQwQAAnMIAAFDBAACYwgAAoEAAAFDCAADAQQAAaMIAAIBCAACiQgAAdMIAAMZCAAAAQQAAmsIAANjBAABkQgAAIEEAAMDAAACowQAACEIAACxCAADYQQAAIMEAAEBAAABMQgAAQEIAABxCAABIwgAAhMIAAHxCAACgwAAAgMIAAABAAACowQAAoMAAAARCAAAsQgAA2EEAAKDBAABwQQAA4EAAADjCAAA4wgAAiEEAAAxCAACoQQAAyEEAAHxCAACeQgAAqMEAABzCAACgQAAAgD8AAIC_AADYQQAAHMIAANBBAAAIwgAAIMIAANjCAABYwgAAisIAADhCAAAQwQAAdMIAABBBAABYwgAASMIAAKDAAAAsQgAAoMEAABBCAADYwQAAkEEAALhBAABQwQAAqEEAAGzCAABgQQAAAEIAAEDBAADwwQAADEIAAIDAAAA0wgAAQEIAAMDAAAAMwgAAAEAAAODAAAAQQQAADMIAAEhCAACQwQAAiEEAAJLCAABMwgAAUEIAAHDBAACgQAAAoMAAAETCAADAwQAAAEAAADhCAAAsQgAAIMEAAGDBAAAAwQAAUMEAALDBAACQwQAAkMIAABxCAABEwgAAlsIAAPhBAACSQgAAaMIAADBBAACIwQAAyMEAABRCAACcwgAAmMEAANBBAACwwQAAEEEAAAAAAAAAwwAALEIAAKBBAAAAwQAAwEEAAODBAADIQQAAMMIAAADCIAA4E0AJSHVQASqPAhAAGoACAABcvgAAwr4AAKC8AABUvgAAJD4AAPI-AACmPgAAbb8AABw-AAD4PQAAMD0AABS-AADgvAAAqj4AAIa-AACgvAAA6D0AAKC8AADIvQAAYT8AAH0_AADovQAAbL4AAPg9AACgvAAAkj4AAIo-AAAEvgAAmj4AABE_AAAcPgAANL4AADS-AACqPgAARD4AABS-AABQPQAAuL0AALi9AACIPQAAiL0AAEy-AACyPgAAcL0AAHA9AAAkPgAAFD4AAN6-AADSvgAAwr4AADQ-AAA8PgAA5j4AALg9AACqvgAAUL0AAH8_AADYvQAAUD0AAMo-AABQPQAApj4AAFC9AADuviAAOBNACUh8UAEqjwIQARqAAgAA6L0AANi9AABUvgAAeb8AAMq-AABMvgAAhj4AADS-AAAQPQAAyL0AAKC8AAAcvgAANL4AAGS-AAC4PQAA4DwAACy-AADuPgAAiL0AAKI-AACAOwAAEL0AADS-AADgvAAANL4AAFA9AACevgAAED0AAOA8AAAkvgAAUD0AAFw-AACovQAA9r4AAFA9AAAMPgAAAz8AAMg9AACivgAAJL4AAFC9AADYPQAAxr4AABQ-AAAkPgAAEL0AAH-_AAAEvgAAPD4AAKi9AABkPgAAPL4AAES-AAB8PgAAMD0AADQ-AAAwvQAAUD0AALg9AAAwPQAAsj4AALg9AADoPQAAUL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=XeOHwLwEj6s","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17863877664140562146"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3411444587725932261":{"videoId":"3411444587725932261","docid":"34-3-15-Z1289058F563EA5CD","description":"In this video of optimization, we are trying to find the maximum volume of a right circular cylinder that can be inscribed in a right circular cone with given dimensions. If you find this video...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1368624/4bdd6fd403ae55cf2089303ba4bb373d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RBZZIQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeLHYtie3lvw","linkTemplate":"/video/preview/3411444587725932261?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Optimization - Max Volume of Cylinder Inscribed in a Cone | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eLHYtie3lvw\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhUKEzM0MTE0NDQ1ODc3MjU5MzIyNjFaEzM0MTE0NDQ1ODc3MjU5MzIyNjFqtg8SATAYACJFGjEACipoaGdtbnRoZHFubXRoeXRjaGhVQ3BBSUZtek1vU013ZHlQZzhjQ3U1X3cSAgASKhDCDw8aDz8T3g6CBCQBgAQrKosBEAEaeIHw_QoA_gIA-AEACvcH_QIP_QYC9wAAAO4E_PgFAAAACPsL9f4BAAD0Agfx_gAAAP356v7-_QAAF_f7-fQAAAAZAv0A9wAAAAwJB_f_AQAA9QYCAgMAAAAbEAP9_wAAAAgBC_X__wAA8vb9EAAAAAAHBgoD_wAAACAALegN1zs4E0AJSE5QAiqEAhAAGvABZPn0_unx-wPQ-NoAyxTj_4H-5QAwEc0A4OX9AMH4zgAdG-EA7ewOACvyIwC_EO__FgTa_xHiFv82-RH_DAbyAAEYEQEevxkAGgUZARrz5gHFJQj-EgcnAPff2P8M_-cACfQQ-voBz_8J7cIIHBIhARMOBQLx-AwDAAEO_NP5F__4_OIA5PoIBNj_BAH5HhgEEN_w_SsjB_3IAPb_Bd38CPn4_QQMENYA_gja_Mz4GQL0C_74DwHiASoSDAITCv387BIM9-LeAADx9RMEEcsHBvD3AgnvFQ_85vUJ_xfYD_TyFAn_zQYJ8xTz_AT26vPrIAAtCZcpOzgTQAlIYVACKnMQABpgDvUAOuwf2tb3TOnG2Nw9oAj45djJ-f_6pf_lMA79JUPPtg8S_-HnD_-cAAAACQTgF-8A6H-c_slB-CgZs-bQOf1hE_oB1fccB-bnKg_M3ek5KC5PANLgxyhE_qJk6BMdIAAt4DATOzgTQAlIb1ACKq8GEAwaoAYAADzCAAC4QQAAAMAAAEDBAACwQQAACEIAAP5CAADQwQAAHMIAALjBAAAgQgAAgD8AABzCAADQwQAA4MAAADBCAAAAAAAAwMAAAIA_AADYwQAAQEEAACjCAADYQQAAREIAAIxCAACoQQAAEEEAABjCAADgwQAAoMEAACDCAAAwQQAAmsIAACTCAABEwgAALMIAALBBAACEQgAAyMEAAFRCAABAQgAAwMAAAARCAADAQQAAAEIAAHzCAAAcwgAAFEIAALZCAAAYwgAABMIAAIzCAAAwwgAAwEEAABBBAADwQQAAwMIAAODAAAAgwgAATEIAACTCAACMwgAA4EEAAKjBAAAAQAAAkEEAAPDBAACIwQAAAEIAAPjBAABEQgAAkEEAAETCAACCQgAAuEEAALbCAACAQAAAgL8AAIC_AADIQQAApsIAANhBAADQwQAA4EAAAPhBAADAQQAA0EEAAIBCAADCQgAAFMIAADRCAACqQgAAgL8AAIbCAADAQAAAoMIAAKDAAAAMwgAAoEEAACDBAADgwgAAhEIAAIZCAABMwgAAhsIAACRCAADAQAAAgL8AAABCAACwQQAAOEIAAJjBAACwwQAA8EEAAFDBAACIwQAAqEEAACzCAABAwQAAYMIAALLCAAAgQQAAMMIAAAAAAACAwAAATEIAAGTCAAAgQQAAuMEAAJhBAAAwQQAAoMEAAAjCAACUQgAAiMEAAKBAAACgQQAAcEEAAFDBAACwwgAAkMEAAIDAAAAcQgAAoEEAAHhCAADgwQAAMMIAACjCAAAkQgAAgMEAAIA_AAAAQgAAQEAAAKBBAADQQQAAoEAAAEBAAAAQwQAALMIAAIA_AAD4wQAAAEIAABzCAABAwQAAEEIAABhCAAAMQgAAAEAAAMhBAAAAQQAAAMAAAIC_AAAEwgAASMIAAHjCAADgQQAAUMEAAAAAAACYwQAAVEIAAGTCAACoQQAAgMEAADhCAACyQgAAPEIAANjBAADgQAAADEIAAAjCAAAQwgAAAEEAAOBBAAAAwgAAVEIAACDBAAAAwQAAuEEAADzCAADgwCAAOBNACUh1UAEqjwIQABqAAgAAPL4AAPi9AABEPgAAlr4AACy-AACyPgAAnj4AAEm_AACWvgAAQLwAABw-AADIvQAAdD4AAO4-AACAuwAAdL4AAL4-AABQPQAAgDsAACU_AAB7PwAAED0AANg9AABEPgAAqr4AAIC7AACCPgAADL4AAGw-AAC4PQAA-D0AAAm_AABAvAAAxj4AABw-AACAuwAAcD0AAAy-AAD4vQAANL4AAMq-AAAsPgAAgj4AAIg9AAAMvgAAQLwAAAQ-AABsvgAAZD4AACy-AACYPQAAXD4AAGQ-AACWPgAAor4AAFC9AAB_PwAA6D0AAIg9AAAsPgAApr4AADA9AAB8PgAAPL4gADgTQAlIfFABKo8CEAEagAIAAPi9AADIvQAAEL0AAFm_AAA8vgAALL4AAKC8AADgvAAAmL0AAOA8AAAEvgAAHL4AAOi9AAD4vQAAZD4AAHC9AABAPAAAGT8AAAw-AADmPgAAJL4AABA9AAC4vQAAUL0AAHC9AADIvQAA4DwAAKC8AADoPQAAUL0AALi9AABMPgAA4DwAAJq-AAAQvQAAMD0AACQ-AAAsPgAANL4AADC9AABEvgAA6D0AAJ6-AAAwPQAAQLwAADC9AAB_vwAAFL4AALg9AADgPAAAML0AABS-AABkvgAAoj4AABC9AAC4PQAAUD0AABQ-AAAQPQAAqD0AAHQ-AACAOwAAND4AANi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=eLHYtie3lvw","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3411444587725932261"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16092927216015431922":{"videoId":"16092927216015431922","docid":"34-9-0-ZBFA6B55134C8DB90","description":"In this video we find the limit of ln(x)/sqrt(x), as x approaches infinity. For limits like this, we first need to check whether we have the form of ∞/∞ or 0/0 before applying L'Hospital's ...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/475674/c9b186639d6cf95394b2132d98f2620a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/q20xFgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3MrU3ZCXMm0","linkTemplate":"/video/preview/16092927216015431922?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding Limits using L'Hospital - Natural Log and Square Root | Limits | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3MrU3ZCXMm0\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhYKFDE2MDkyOTI3MjE2MDE1NDMxOTIyWhQxNjA5MjkyNzIxNjAxNTQzMTkyMmq2DxIBMBgAIkUaMQAKKmhoZ21udGhkcW5tdGh5dGNoaFVDcEFJRm16TW9TTXdkeVBnOGNDdTVfdxICABIqEMIPDxoPPxPPBIIEJAGABCsqiwEQARp4gfQDAv7_AQDw9wIIAwT-AQ0G_wL2AAAA7QT8-AUAAAAH-wgB-wEAAPUK_PkEAAAAAPvxDfj-AAD9-gP77gD_ABgICgz7AAAACRD7Dv4AAAD2__QCA_8AABf7_P4AAAAA-foDC_3_AAD2Bv4KAAAAAAD6_PkAAAAAIAAt2DLUOzgTQAlITlACKoQCEAAa8AF_EwQD-enLAsoR5QDSFAQArikh_wkd6P_EH_QA0P_uAQAN4gDl_tsABAMGALwl-f869s__EfALASHa8v8v5AcB6QTvASLY9QEzJRcA_Pv__-4FCQAE6_UACd7q_x4W9v4J-h0BDvn0_QoN5wIdEyMB9-ggBTr5CgMDyBAA_ybnAfzo4f7nCPAB_u0p_OP2KwcF8u7_IBoQ_QAb9AAg_egC8xcR_AwR1QAn_fQGDfoI_8zo_gUM8hEFHPogBfElBgnb8yoF0iLx_QsqEvoIGvoH2QfmCAXx4wMcF_8CBMbvChYC-ALrGwEA2BcC_vMbAPIgAC0EuiI7OBNACUhhUAIqcxAAGmAMAAA4-jzYFPEi0gboGA7Q0hrlA6kX_yzaAO0f3f_qNKO28B7_Bdcf854AAAAvCNQAGwC7f8D0ry7j-9a4n8pDBl_o-RTqDRLvq8zn_zXtBArtMRYAvgW4HSbgmTP5OP8gAC1iqRY7OBNACUhvUAIqrwYQDBqgBgAAuEEAAADCAADoQQAAoMIAAJDBAAAAwQAAwkIAAMDBAABAwgAAQEEAADhCAAAgwQAAwMAAAGzCAAAMQgAAsMEAAOBBAADwwQAAEEEAAMDBAADgQAAAYMIAAEjCAACwQQAAsMEAAEDAAAAIwgAAmMEAAAhCAADgQAAANMIAAExCAABgwgAAoEAAABDCAAC4QQAA8EEAAPhCAAAAQAAArkIAAEBAAADgQQAA2kIAAMBBAACAPwAAEMIAAOBBAAAQQgAAVEIAAMBAAAAAwAAAPMIAABDBAACIwQAAGEIAAABAAADuwgAAQEAAAFDBAADQQQAA-EEAAABAAACAwAAAjMIAAJjBAAB0wgAAyMEAAAzCAAAAQAAAbMIAAEhCAAC6QgAA4EAAAK5CAAA8wgAAQMIAAATCAACQQQAAiEEAABBCAACgwgAAUEEAAIhBAACQQgAAAMEAAIDBAAA4QgAASEIAACxCAAAkwgAAQEEAAKhCAACowQAAhMIAAJhBAABAwgAABMIAAARCAAAgQgAAUEEAAEDCAACwQQAAgD8AAHTCAACGwgAA4EEAAKBBAAAgQgAAQEEAAAhCAACEQgAAqEEAALDBAABAQAAA8EEAAFBBAACAwQAASMIAANhBAABQwQAAUMEAAFDCAACowQAAUMIAAOBBAACAQAAAoMEAAABBAAAkwgAAAMAAACDBAADAQAAA6MEAAFBBAACgwQAAAEEAAIjBAAAQQQAAsMEAALLCAACoQQAAyEEAAEBBAAAgQQAAEEIAAIBAAAAkwgAAoEEAAIBBAABwwQAA6MEAABhCAACgQQAAiMIAALhBAAAAwQAAkEEAAEzCAACCwgAA4EEAAITCAAAAQgAAoMEAAFDCAABswgAAwMAAAKDAAACsQgAAwEEAAAxCAADIwQAAAEAAANDBAADAwQAARMIAAIhBAABAwQAATMIAAEDAAACMQgAAQMIAACDBAAC4wQAAuEEAAFRCAADgwQAAcMIAADBCAACWwgAAiMEAABjCAADEwgAAAEEAAIDBAADAQAAAgMAAAPDBAACUQgAA4MEAAJDBIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAPL4AAPg9AABcvgAAiD0AALo-AAD4PQAAE78AAIA7AAAQPQAAML0AANi9AAAkPgAA-D0AALq-AABQPQAAoDwAAFC9AABwvQAAnj4AAH8_AAC4vQAARL4AAMg9AAAwvQAAoLwAACQ-AABQvQAA6D0AALY-AAA8PgAAJL4AANi9AADgvAAAXD4AABC9AACaPgAA2L0AAES-AADIPQAAVL4AAEw-AABcPgAAFL4AAGQ-AABwPQAABD4AAOi9AACIPQAAiL0AAFQ-AACCvgAAij4AAEA8AABQPQAAoLwAAN4-AABcvgAAuL0AALo-AADovQAABD4AABQ-AADgPCAAOBNACUh8UAEqjwIQARqAAgAAML0AAFS-AADovQAAP78AAPi9AACAuwAAiD0AAEw-AAD4vQAAqL0AAIi9AABwPQAAZL4AAKi9AACoPQAA4LwAABy-AAAHPwAAHL4AAPY-AABQvQAAUL0AADy-AAAEvgAAmL0AABy-AAAMvgAAgDsAAHQ-AADIPQAAQDwAANg9AAAcvgAAjr4AACQ-AACYPQAApj4AANi9AABcvgAATD4AAKi9AABUvgAAnr4AAIY-AAC4vQAAmL0AAH-_AABwvQAAgLsAAAQ-AABMvgAAUD0AAFS-AABkPgAAyD0AAOg9AABwvQAAuL0AABw-AAAEPgAA-D0AACw-AACaPgAA2L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=3MrU3ZCXMm0","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16092927216015431922"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7759740822217721590":{"videoId":"7759740822217721590","docid":"34-1-4-Z59B6457E113238B5","description":"Ever wonder what the numbers on your glasses are for? Check out this video from SportRx's Eyeglass Tyler as he breaks down what each one means! 0:12 Intro 0:55 The Numbers on the Frame 2:57 Wha...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2035159/25a4781b3c58a5b3af5ec6b37a34ff63/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ADbCMAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5ng3s_vAMDE","linkTemplate":"/video/preview/7759740822217721590?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What Do the Numbers on Glasses Mean? | SportRx","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5ng3s_vAMDE\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhUKEzc3NTk3NDA4MjIyMTc3MjE1OTBaEzc3NTk3NDA4MjIyMTc3MjE1OTBqiBcSATAYACJFGjEACipoaG52cGFkZndyamRpbGdkaGhVQ08wcTZSbjVkdWlKVU1pSU5lNXlsOEESAgASKhDCDw8aDz8T9wOCBCQBgAQrKosBEAEaeIH69QT0Af8A_AMFAvkG_gL5A_8B-P39AOMGBwL3_AIAEgT3AfsAAAD6EQT-BwAAAO_98f0CAAAAAgzzAe8A_wAD8v70-QAAAAkDCAj_AQAA6vvyCQP_AAAXBf4GAAAAAPn5APQAAAAAC__2DwAAAAAP9wb7AAEAACAALUNSzzs4E0AJSE5QAiqEAhAAGvABf-oPAfH-9wDc2vkA2gUEAYXuG_8G5OkA4AogAMMJ_gHi_uAA4fQEAUMIFAER89cA9gA6_ybsAwDQA_j_DAbyABEHBgEFHOEB1OcP__Hl3__9G_r_CujqATPyAQIX_wb-FNr1_wvp4AAl_vL_8fMB_9bw6AIG7t8BRv7zACzu_ADa_vUAO_AKAD77Av4ZAfkH-c8DAOYoHwDoBPMBEAL2BgvR4QD_Fg_7Hf3v-tfqAPzP6f4FF_X58wTuBvrwAAEPHv788hn-7_gCF_z8GBoA-QfhCwYGCQD4yvH7CvX1-_7qBgUB1gAB_B8VBQD5IP8EIAAt9FYqOzgTQAlIYVACKs8HEAAawAeqJ5u-YmsVPIO85LuqC529y4G_O8D-kLwawAu-m-fIvPlfGL2kAHE-4nH2PMpZr7t06uq9OEIQvbZgELyftt-7deQovRBLFrwF_WW-_wc4vXqk0zmm1AW-P0ypugVmqrxMGQg-pozuPDOuUbs10hK9KDGEuz4hLbpyCIs965ylvSR-xTzE6Bk-NnyDu0FPPj22QgK93q6XOuiKDT1dlfq6TfE9PWXo8zy3V0s9VnTWu8anIL1Hk4s9UHsgPeCUwzyBP_w9cz4GPRNU3rx1m6a9GirOutc4Nj2v7x49dvfCO8MxBj0NFzm9RJEkvCqQWTyl4ro9YDSlPdweTjwxfyA9May3vRzSqLxzwfQ8fMmQPGQNDzxK4Ys8WBrYPSA4eLwdW2o9OrSjPatV5DsuSZ-9NivRPEKABjwrs_M7F9DwvPFUFj1F_xo9_-gbvUT0kDvOili-At59vUlngboMwmY95wekPCfDTDzDCpy9STXHPCQpirvLrgW9oYggvaMkfzxLnTa9IsH0vfnnM7u2FAs9kVSAveVrhbz5ujG8iW0BPS2Bb7ucMbG9imyxPUNT9rutmJu8wnnCvFYRibwY7MY8OzO2vaDhLDvwEye-IrdwvIzaO7vU8Ti9iRiFvQb63bs7WcU8vzCEvTlrxztd4AI-p9WrvcNTwLq1vu08qJMnvWjqs7sPF--84p-4vSqgGrpz_Is9ZF3HPe-osLeHRqC7CXqcO6uykDs-A2q7N-Hevdl8zrnI6lY8dh7wPNTvQrs5BFO9kKN5PTZO_LbkeG-9QgkTPfoi3rh90L49_P3iPVnHvDg_GaO8svZXvUP1C7jDvAe-qT9svdp7ZTdCBME8jgMPPg8jtzkEgsq8ZNdsvVO5JrcGJEa9w1e1vQjIXTdlRJi8clNDPa0ZMbdSF588UvbBPZeO7bggjKk8Z55XPVIANzgKBqE83t9FvN7L9Dmnf0Q9vNK9PScq-zbCtLm8TIqfvQZgdjgJ3xs9hI83PVwp_LidXi49BgqRvczCizgX3ps9sIHDvRLi5Td1ryM-mLXePJV2-7jzFnm972a3vQaUoTjViiC9A7PCvJ5g_zVkhAE9a5K5vZiXlTjsSrA9jNbRPWanlDiSEvE8Gw1AvfRmYzjb1VU970GJOb4mHbhBymA65vOAPTnrkzeKjdy7Oe__PUZ8NTjo5Fu91vAjvUkiMLUxX949HyApPFcucDS5wXU8LewJPoYn5zjEkjc9X2gFPFWFu7ircBW8DHMCvsrKHLfiP_29Dt0svfam3bggADgTQAlIbVABKnMQABpgIPkAOOwR-s_GLeW-_fg37tohI9rlFv8w8QALEeDuBXXCtOHp_xMC7hakAAAABh_sPu4A0nT-7vZY9Aj_uIkBDQF_-wQHEEo2E-bVGewA0Po-_RJIAKIO1DEBCr4m-yQvIAAtu34ZOzgTQAlIb1ACKq8GEAwaoAYAAKhBAAAkwgAAiEEAANhBAAAwQQAAoEEAAFBBAACwQQAALMIAALBBAABAwAAAAEAAAJzCAACawgAAkEEAADDBAAC4wQAAAAAAAAAAAACCwgAAnEIAAI7CAACQwQAALMIAANhBAAC4QQAAisIAAKDAAABcQgAAwEEAAHBBAACqQgAAIMIAAOBBAAC4wQAAfEIAAJhBAACoQQAAgMAAAGDBAACYwQAAPEIAABBBAAAAQAAAwMAAABDBAACgwQAA4MEAAIpCAAAkwgAA6MEAACzCAACIQQAAuEEAAKhBAACgwAAANMIAAMjBAABwQQAAqEEAAKDAAADgwAAAVMIAAETCAAAsQgAAOEIAANBBAADwwQAAwMAAAABBAAAkQgAAYMEAAK7CAADGQgAAAEIAAK7CAACgwgAAkMEAAJBBAACAwgAAgMIAANDBAABEQgAA2EEAACBBAACgwQAAUMEAAFBBAABAQgAA6MEAAHBBAADQQQAAmEEAAEjCAABQwQAAMMIAACBCAAAAQAAAkEEAABDBAAAEwgAAIEEAAJ5CAAAQQQAATMIAAIDAAABEQgAAREIAAKDAAAB0QgAABEIAAFDBAAAcwgAAcMIAAORCAACIQQAALEIAAFDBAACgwQAAksIAAADCAABAQAAAgL8AAIjCAABUQgAAhkIAAIDAAAAQwgAAgMIAALzCAAD4QQAAcMEAANDBAABoQgAAPEIAABzCAABQQQAAgL8AACTCAADMwgAAQEAAADRCAAA8wgAAgMAAAEBAAADAwQAAQEEAAKBAAACIwQAA4EAAAKhBAAAwwQAAcMEAAHjCAADAQAAAJMIAABRCAACAwgAA2MEAAJBBAAAgwgAALEIAAJDBAABQQgAAoMAAAJbCAAAwQgAALMIAAJhCAACYwQAAssIAAKjBAAAwwgAA4MAAAMDBAADwQQAADMIAADTCAACAPwAAmkIAACDCAABwwQAAgsIAAEDBAAA4QgAAwEAAAMDBAACiQgAAgMEAAKDAAADAwQAAgD8AAOBAAAC4QQAAUMEAAOhBAABowgAAwEEAAGDCAADQwSAAOBNACUh1UAEqjwIQABqAAgAAtr4AAEy-AACmPgAAoLwAANg9AACGPgAAuL0AAA2_AADgvAAAND4AAJK-AAD4PQAA2D0AABU_AADoPQAA4DwAAOA8AADgPAAABD4AAB0_AAB_PwAAoLwAADC9AAAkvgAATL4AAOi9AACaPgAAqD0AAES-AAAHPwAAyD0AALq-AAD4vQAAgLsAANg9AAA8vgAA2D0AACQ-AADavgAAXL4AAOg9AABUPgAAAz8AAIi9AAAUPgAA-L0AAEw-AAAsvgAAmj4AAOi9AACAOwAAEL0AAHQ-AACIvQAAgDsAALg9AABdPwAAuD0AAGQ-AAD-PgAAmL0AADQ-AAAMPgAAgr4gADgTQAlIfFABKo8CEAEagAIAAGS-AAAEvgAAML0AAEG_AAAcPgAAFL4AADA9AABUvgAAUL0AAOA8AABAvAAAoDwAAKA8AABEvgAAMD0AAIC7AAAQPQAAMT8AABw-AADuPgAA2L0AABA9AAD4PQAA-L0AAFC9AACIvQAAJL4AAKA8AABEPgAAgLsAAEA8AAA8PgAA4LwAACy-AAAMPgAAuL0AAIY-AADovQAANL4AAFA9AACgvAAAcL0AAMK-AABQPQAALL4AAPg9AAB_vwAAnr4AAHC9AAAUPgAAyD0AAJi9AAAkvgAAbD4AAHC9AADIPQAAUL0AAEy-AAAMPgAAMD0AAHA9AAAwvQAAED0AAOi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=5ng3s_vAMDE","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["7759740822217721590"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3056054412035023964":{"videoId":"3056054412035023964","docid":"34-6-8-Z42F9913BD6A78936","description":"In this video, we use a Maclaurin Series (Taylor Series centered at 0) for cosine to find the sum of the given series. The trick is to recognize which function has a Taylor series expansion of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4078439/cf6d2979a56355c1a85ab69f7573a6c0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mzfXEAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0CSmsZIjgs4","linkTemplate":"/video/preview/3056054412035023964?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Find the Exact Sum of a Series using Taylor Series | Series | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0CSmsZIjgs4\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhUKEzMwNTYwNTQ0MTIwMzUwMjM5NjRaEzMwNTYwNTQ0MTIwMzUwMjM5NjRqiBcSATAYACJFGjEACipoaGdtbnRoZHFubXRoeXRjaGhVQ3BBSUZtek1vU013ZHlQZzhjQ3U1X3cSAgASKhDCDw8aDz8T_gaCBCQBgAQrKosBEAEaeIHv-gEA_AUA9_cBCfkG_gIHAwkJ-P__AO0C_AQAAAAA_QMA-fcBAAD1Cvz6BAAAAPv9_gf-_gAADwH4_AQAAAASAAUE_AAAAAP89gf_AQAACP_2CQT_AAACCQQFAAAAAP_9-_f8_wAA__r7BQAAAAAE_v8DB_UA_yAALXxl3js4E0AJSE5QAiqEAhAAGvABfxMEA9_3twHUFPgAzh_4AK4pIf8bI-MA0Q8D_9Tf7QAJ_eQA1hLo_-YQIQHRKv7_L9nV__rUAgA2zej_Ct0LANsH6wA23P0ARxQPAeX02ADtCSMAC-fpAQDBFf8uDuz-_RAJ_RsEAwDx6Or_ChQhABfsDABG-CEA47QhAPgV8ATu4Nz-0wYEBfvmCf7j9isHCtT9_wAGCfreKPUCFeX__vP1GfniL-37Mv0BBA36CP_M6P4F9hL0BgMIGQL6EPAD--sW_s0O9gTqMAAFDvEBBvYJ9Q8I4OsBG_sB_gz2CQAGAQD78wjyCeAM9v3zGwDyIAAtBLoiOzgTQAlIYVACKs8HEAAawAdihAC__XMHvcIwATyimNy9IYNLO32QyLtfJX-9FK8yPBmikru4GYM9lDlRvX_mAr04aYq-0Qw9PO2ufTzLgDM-5tGIvZhiMzx1dPy9LxOaPQsCEL23siS-KRXDPETQYrxfP-k8N-eauyOsvLxphMg9rXIcPSSTuLwBnMW7ff7Bu6CSbr0riMG8wxccvUlb5rz-1UM9YD55vXzWtTzr4LA9f3iMvHwVT7wWrCc8cbWpPPvEJrt7rgW9wwd7PSPKDb3ikgM-h6OQPDgPTDwlPby9rZnGvNkWlLzejtM6IsFUPWtMozz3SSS9tD6APFDTHb2XU8K8qXa8vM3fzjxRh9W9FQ5TPahZe7zkhv89OXb1PIxvnjzSV5u93UhUPRr0LbsqcJI9ZXF_vBv2Vrz0NOA9OJPAPXcCUDwseoy8dmVhPMkvLLtutiO9-VhwPQkSwDz081A908APvbuSrryXPSQ9QSvyO0_ClrusptC8gOGLvIHpk7sdWmS8eYcFPcLsjrrbYX09f9ZBPd64uTvFNUM9-FENvglvLLu1Ri69FBlHvQbrazrovsw9ADBjPa7mDDtbPpc9-KTDvajUOru8uyW7_RCLvdODo7exKQE9K3KjvLYiezx2cVm6uO8svGet0zr8ZYG9jqFSPN_rWrzp7Mk8TBjNPV_omrmRoFO83yatvRbtnroanI095McOPZ6R77sGvgI-KNDMvMwmQLkW65o9Eav_vWzXAbrZEBK9Sc3ovFpCpTvvZay8WG0jvSxPHDuqgqE9GhiZvUdKoDiLdis9IJdYPfaoX7iURsG9Bs-OvE0wpbi19I08cJjovGug4jfdKqO8Vz3AvZEGHjl5tsO7os5hPVYFE7lhDNU7c0w2PbnuZrgT8VY9suWGvVAxu7gtQSa9Ik7Mu5R_C7mSnhg9-t0KPWR4ADj-sEo8xCAVvemxBzeuHXs83HksvRdCBjehpUY9ZTs6PfB_vziYtFI7P3DFvfcuYDlQiIU9RghvPR_WJjg6K5g8EvmePWyeh7gXH7A8S6CHPTgzx7ga5-U8XQ9rvbiwjTemK9g9RpgCPYFGf7hYn8y9pi40PYN_LDkvyFE9z1XpvPlSMziMSPm8kjwXveQvGzdhXva8_U_ZPJTiUTiSXRk-2U9QvazCP7mED6U7a-1CvQaOk7jDJv23s0OMvU2KDjcgTau9zkSHPWc8NDhDIsg8pU3VvVAHd7jK9HA9IuErPvHLijiXuwO80tPBPVFqybjnI5-9N8BxPO1kl7feAR69GbGNO9UDPjggADgTQAlIbVABKnMQABpgIQQAGgwP-d3-IvEq2-n41dMm-N27I_8DsQDpBMwNCDW_ywkc_xDo_-OxAAAAGAgb_uEADnDy9tQK8yjJx8DE_yp_5yIDrbfp9ePNJAwAE_0q5RBWANr8ojcz5-c7ADUMIAAtlKIlOzgTQAlIb1ACKq8GEAwaoAYAAIBBAABgwgAATEIAAGzCAAAQwQAAqEEAAIZCAACYQQAASMIAAIDBAAAwQgAAwMAAAJDBAAA0wgAAoEAAAMBAAAAAQQAAEMEAAIjBAADowQAAwEAAAMDBAAAswgAADEIAAJbCAAAcQgAAgMIAAMhBAADIQQAAAMAAAFzCAACAQAAAdMIAANBBAAAQwQAAQEEAAEDAAACgQgAAqMEAAIZCAAAAAAAAgEEAAPxCAABwwQAA6EEAADzCAAA4QgAAgEAAAJZCAAAgQQAAYMEAAAzCAACgQQAAcEEAAPhBAABwwQAAjMIAAEDAAABAwAAApkIAAFRCAACAwAAAQMEAAIbCAABgwQAAcMIAAEBAAAAQwgAAoEAAAETCAAAwQgAAXEIAAHDCAACsQgAAAMAAAAjCAAAkwgAAwEEAABRCAACgQQAAQEAAAOBBAAAQQQAAqMEAANjBAABgQQAA-EEAAOBAAAAEQgAAoEAAAKjCAAAgQgAAcMEAAFzCAACAQQAA-MEAADjCAACOQgAAhEIAAPhBAAB4wgAAQEEAALDBAAC4wQAAZMIAALBBAAAIwgAAREIAAEBBAAAkQgAAuEIAACBBAAA0wgAAgEAAAABAAAAgQgAAgL8AACzCAABYQgAAwMEAABjCAACOwgAA4MEAACTCAAD4QQAA8MEAAJDCAAAYQgAAyMIAAMjBAAAowgAANEIAAADBAAAkQgAAgsIAAJjBAADAwAAAwMAAALDBAAC4wQAAQEEAABRCAABwwQAAIMEAAKBCAAAAwAAAiMEAAEhCAAAAwAAAAMIAAIDBAADAwAAAiEEAAFDCAACAQQAAQMIAANDBAADowQAAsMIAABhCAAAAAAAA0EEAACBBAABowgAAQMEAAOBBAAAwQQAAjEIAABBBAACAQQAAgMEAABBBAACAPwAAPMIAACzCAABQQQAAeMIAAIzCAACgQQAAlkIAAK7CAACQQQAAYEEAABDBAAAoQgAAjsIAAJDBAADIQQAAAMIAALhBAADwQQAARMIAADhCAACgwAAAsMEAANBBAACowQAAXEIAAADCAADwwSAAOBNACUh1UAEqjwIQABqAAgAAcL0AAAy-AACaPgAA4LwAAIg9AACgvAAAiD0AABG_AAAEvgAAQDwAAIA7AACAuwAAgLsAAAQ-AABwvQAAoDwAAII-AACAuwAA2L0AALo-AAB_PwAAUD0AAKg9AABkPgAABL4AADA9AAAcPgAA4DwAAKI-AACIPQAAyD0AAJa-AAD4vQAApj4AAKI-AADYvQAAoDwAAFy-AACevgAAwr4AANi9AACgvAAA-D0AALi9AACSvgAAoDwAAN4-AAAMvgAAFD4AANi9AADYPQAAuD0AAKg9AACGPgAAmr4AAKi9AAAxPwAAgLsAAIA7AAAcPgAA4LwAANg9AAAsPgAAor4gADgTQAlIfFABKo8CEAEagAIAAJ6-AAA8vgAA-L0AAFW_AABMvgAAPL4AAEA8AADovQAAJD4AADA9AAB0vgAAUD0AAPg9AADovQAAyD0AAJi9AABQPQAADT8AAEC8AADqPgAAsr4AAEy-AABAvAAA2D0AAEC8AAAwPQAAkj4AAEC8AABcPgAAiL0AAFC9AADoPQAAcL0AACy-AAAwvQAAPD4AAFQ-AACmPgAAHL4AABA9AAAUvgAAUD0AAMi9AACYPQAAcD0AAI6-AAB_vwAAiD0AAJa-AAAcPgAAiD0AAFy-AAD4PQAAVD4AAIa-AACoPQAAED0AAGw-AAD4vQAAJL4AAHw-AAAQPQAAmD0AAKi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0CSmsZIjgs4","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3056054412035023964"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9304383937284625226":{"videoId":"9304383937284625226","docid":"34-6-14-Z1E30C833416D5C84","description":"In this video, we are dealing with a series with rational terms. It's hard to compare using direct comparison. So, we are going to using the Limit Comparison Test (LCT). Follow me...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/213885/7a9dcad6436704171c421f03999dc720/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/dHTTEQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DP9V4k4B-kxs","linkTemplate":"/video/preview/9304383937284625226?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limit Comparison Test - Hard to use Direct Comparison | Series | Calculus | Glass of Numbers","related_orig_text":"Glass of Numbers","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Glass of Numbers\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=P9V4k4B-kxs\",\"src\":\"serp\",\"rvb\":\"Eq0DChM3MzA4NzE3NzQyMjMyNDQ2NDAwChMyMDI3NDczOTc4MzAyMzE1MjY1ChQxMzEwODY1NzM5OTEwMTc4NDgwMAoTNjU1NTY5ODgzNDY3OTU3MzU0NgoUMTU5ODQ2OTU0NTUwMzY2OTQ4MzEKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxNDgyMDc1MjQzMjIxNDc5NzM0NQoTOTA4MjQ0MDA0NzY2NTMyMTkyNQoTMzU5NTUwOTA2MDM1NDY2Nzk1NwoTMjIzOTQ4Nzg3MjUyMDczMDQ1MgoUMTIzODk0MjQ5NDUwODk5NTIwNDIKEzE4ODEyOTQ0NjA5MzQ3MjkwNTgKFDE3ODYzODc3NjY0MTQwNTYyMTQ2ChMzNDExNDQ0NTg3NzI1OTMyMjYxChQxNjA5MjkyNzIxNjAxNTQzMTkyMgoTNzc1OTc0MDgyMjIxNzcyMTU5MAoTMzA1NjA1NDQxMjAzNTAyMzk2NAoTOTMwNDM4MzkzNzI4NDYyNTIyNgoUMTI5MjIxNjE1OTc3MTU5ODM4MjMKFDEzMDA0OTMzNzM4ODQ0OTcyNzY2GhUKEzkzMDQzODM5MzcyODQ2MjUyMjZaEzkzMDQzODM5MzcyODQ2MjUyMjZqtg8SATAYACJFGjEACipoaGdtbnRoZHFubXRoeXRjaGhVQ3BBSUZtek1vU013ZHlQZzhjQ3U1X3cSAgASKhDCDw8aDz8TkwSCBCQBgAQrKosBEAEaeIH3-QT7_AQA8fgCCAME_gESAgT69gEBAO4E_PgFAAAA-_0G7_0AAADxFf7_BAAAAPf49wQB_wAADAT57gMAAAAT-gn9AQAAAAEQAAT-AQAA-Qn2AgP_AAAWBf4GAAAAAAD_8fwAAAAA__wDCgAAAAAG_QwBAAAAACAALZbg3Ts4E0AJSE5QAiqEAhAAGvABf-j0AeTuzQHIBgAA3CILAqUuJf_8NdEA1CH9AtQG3wEKC_cA5hTS_wUEBwDhOvEAHQHCANrBDgAiv_b_JtLuAdbw9wEb3tsANh3z_wr4Df7gAT3-DOTmAf3G3gAEJNn-E-wHAQ4M2AEXI-cBIRUnAQX4HAIf7RIC3K79AdQK9gLr3Nj92BH5__3UGADG_iABC8_9_iIIBf_kBPEB9vr2_QjvGPYIL9T9DPT7DQ4TAAPTFugE_wb4CzDhBgfg8ekB5eEe_9EU-vHiA_0DEe3399UH4gkUxOUJAdkV_AHvBAcb__H31xDuC-wK6gbiJvnxIAAtPDsROzgTQAlIYVACKnMQABpgFfcALAoT4vgfGPrwyCYa2ugU_-fU-_8b1wDx_rsDJjbMsfsM_yDmDO2rAAAAIPzFBNkA-2za-eki7fvStMPBFP9_8hbQ4ccR6wgALgj96eMbBhtZALH0tk5DDMVL_AQYIAAtNvAlOzgTQAlIb1ACKq8GEAwaoAYAALhBAADgwQAAHEIAAFjCAABQwQAAwMAAAKBCAADAQQAAMMEAAEDAAAAYQgAAQMAAAKDAAADwwQAAYEEAAJBBAACgwAAAKMIAAJBBAAAkwgAAwMEAAPjBAAA4wgAAAEIAALjBAAAAwAAAbMIAAODAAADIQQAAMEEAAILCAABAwQAAZMIAAOBAAACYwQAAoEAAAOBAAACgQgAADMIAAGBCAACgQAAAiEEAAMJCAADgwAAAQEIAAMbCAADYQQAAgMAAANBCAACAQQAAAMAAAEBAAADgQQAAMEEAAHBCAADQQQAA2sIAAIA_AAAAwQAAskIAAFxCAAB8wgAAcMEAAJLCAAAAwQAAPMIAAOjBAABIwgAAIEEAAFjCAABwQgAAjkIAAEjCAACeQgAADMIAAEjCAADYwQAA4MAAALhBAABQQQAAcMEAAPhBAADAQAAAQEAAAGDBAABAQAAABEIAAIA_AAAUQgAAHMIAAGDCAABAQgAAgMEAADzCAABQQQAAPMIAAADAAABkQgAANEIAADxCAAAswgAAGEIAAKDAAAA4wgAAgMIAAAAAAABAwQAAcEEAAADBAAC4QQAAeEIAAMBAAAB4wgAAMEEAAEDAAABsQgAAgMAAAFTCAACIQQAA4MEAAHTCAAC-wgAAGMIAAADAAAAYQgAAQMEAAFjCAABAwQAArMIAAPDBAAAYwgAAQMAAAADBAAAQQgAAbMIAAIBAAAAAwQAAgMEAANDBAABYwgAAQEAAAIhBAACgQAAA0MEAAIJCAACAwAAAOMIAABBCAACAQAAANMIAAKDBAABAQAAAuEEAAJDBAABwQQAAYMIAAAAAAACUwgAAjMIAAEhCAABAQAAAFEIAACBBAACGwgAAwMAAAMhBAADgwAAAhkIAAIBBAAAAQQAAMMEAABhCAAAAwgAAMMIAAHzCAAAMQgAAHMIAAFzCAACEQgAAPEIAANjBAAAgQQAAYEEAALjBAABYQgAAqsIAAFjCAADYwQAAGMIAAIBAAABAQQAAcMIAAPBBAACgQQAAAEIAAEBBAAAYwgAAMEIAABTCAAAAwiAAOBNACUh1UAEqjwIQABqAAgAANL4AAGy-AACiPgAA4DwAADA9AAAMPgAADD4AANa-AABUPgAAiD0AAMi9AABMvgAAkj4AAMg9AAB0vgAA3j4AAKo-AABwvQAABD4AAD0_AAB_PwAAuL0AAKi9AABQPQAA4DwAADw-AABkPgAATD4AABw-AACKPgAAHD4AAJK-AADIvQAAiD0AAI4-AADIvQAAgDsAAOA8AAC2vgAAbL4AADS-AACgPAAA_j4AAES-AAAwPQAAiD0AAKY-AABsvgAALD4AABC9AACgvAAADL4AAFQ-AACqPgAAQDwAAIA7AAAtPwAAMD0AAIC7AADWPgAAiD0AALg9AAAwPQAAiL0gADgTQAlIfFABKo8CEAEagAIAAIq-AADovQAAXL4AADu_AADgvAAA-L0AAJI-AADovQAAQLwAACw-AABwPQAAgDsAAIA7AADgvAAAbD4AAHC9AAD4vQAAFz8AAIA7AADGPgAA-D0AABC9AACoPQAAMD0AAOA8AAAQPQAAuL0AAIg9AACAOwAAEL0AADC9AABwPQAAuL0AAES-AAAEPgAADL4AABQ-AABEvgAATL4AABA9AABAvAAAuD0AAKC8AACoPQAAFD4AACy-AAB_vwAAQLwAAKg9AAA0vgAAHL4AAHA9AABsvgAAmj4AAOA8AAAsPgAAQLwAABC9AAAUPgAAED0AAOg9AACAuwAA-D0AAAS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=P9V4k4B-kxs","parent-reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9304383937284625226"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"7308717742232446400":{"videoId":"7308717742232446400","title":"Integration by Parts of xe^(-2x) using Tabular Method | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[Numbers\u0007]","cleanTitle":"Integration by Parts of xe^(-2x) using Tabular Method | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HMBU6uBfXZE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HMBU6uBfXZE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":758,"text":"12:38","a11yText":"Süre 12 dakika 38 saniye","shortText":"12 dk."},"date":"14 şub 2020","modifyTime":1581638400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HMBU6uBfXZE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HMBU6uBfXZE","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":758},"parentClipId":"7308717742232446400","href":"/preview/7308717742232446400?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/7308717742232446400?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2027473978302315265":{"videoId":"2027473978302315265","title":"Geometric Series Test and Finding the Sum - Typical Example | Series | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007...","cleanTitle":"Geometric Series Test and Finding the Sum - Typical Example | Series | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=F7InELMnq9Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/F7InELMnq9Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":400,"text":"6:40","a11yText":"Süre 6 dakika 40 saniye","shortText":"6 dk."},"date":"15 mayıs 2020","modifyTime":1589500800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/F7InELMnq9Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=F7InELMnq9Y","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":400},"parentClipId":"2027473978302315265","href":"/preview/2027473978302315265?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/2027473978302315265?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13108657399101784800":{"videoId":"13108657399101784800","title":"Ratio Test - How to Deal with Factorials | Series | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[Numbers\u0007]","cleanTitle":"Ratio Test - How to Deal with Factorials | Series | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mUuwGFpRcVY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mUuwGFpRcVY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":481,"text":"8:01","a11yText":"Süre 8 dakika 1 saniye","shortText":"8 dk."},"views":{"text":"31,4bin","a11yText":"31,4 bin izleme"},"date":"18 mar 2020","modifyTime":1584489600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mUuwGFpRcVY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mUuwGFpRcVY","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":481},"parentClipId":"13108657399101784800","href":"/preview/13108657399101784800?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/13108657399101784800?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6555698834679573546":{"videoId":"6555698834679573546","title":"Finding limits using L'Hospital's Rule - 1^inf | Limits | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[Nu...","cleanTitle":"Finding limits using L'Hospital's Rule - 1^inf | Limits | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JiYrRRkAG_g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JiYrRRkAG_g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":525,"text":"8:45","a11yText":"Süre 8 dakika 45 saniye","shortText":"8 dk."},"date":"20 mar 2020","modifyTime":1584662400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JiYrRRkAG_g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JiYrRRkAG_g","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":525},"parentClipId":"6555698834679573546","href":"/preview/6555698834679573546?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/6555698834679573546?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15984695455036694831":{"videoId":"15984695455036694831","title":"How to Find Local Maximum and Minimum Values of a Polynomial Function | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[Numbers\u0007]","cleanTitle":"How to Find Local Maximum and Minimum Values of a Polynomial Function | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Huaez7lXFcM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Huaez7lXFcM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":935,"text":"15:35","a11yText":"Süre 15 dakika 35 saniye","shortText":"15 dk."},"views":{"text":"72,8bin","a11yText":"72,8 bin izleme"},"date":"15 mar 2020","modifyTime":1584230400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Huaez7lXFcM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Huaez7lXFcM","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":935},"parentClipId":"15984695455036694831","href":"/preview/15984695455036694831?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/15984695455036694831?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13285432627413121646":{"videoId":"13285432627413121646","title":"How to Find Local Maximum and Minimum Values of a Rational Function | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[...","cleanTitle":"How to Find Local Maximum and Minimum Values of a Rational Function | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dw_ujbbN8ys","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dw_ujbbN8ys?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":827,"text":"13:47","a11yText":"Süre 13 dakika 47 saniye","shortText":"13 dk."},"views":{"text":"27,6bin","a11yText":"27,6 bin izleme"},"date":"19 mar 2020","modifyTime":1584576000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dw_ujbbN8ys?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dw_ujbbN8ys","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":827},"parentClipId":"13285432627413121646","href":"/preview/13285432627413121646?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/13285432627413121646?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14820752432214797345":{"videoId":"14820752432214797345","title":"Divergent by Root Test | Series | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[Numbers\u0007]","cleanTitle":"Divergent by Root Test | Series | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=en0P62HAwsU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/en0P62HAwsU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":420,"text":"7:00","a11yText":"Süre 7 dakika","shortText":"7 dk."},"date":"22 mar 2020","modifyTime":1584835200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/en0P62HAwsU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=en0P62HAwsU","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":420},"parentClipId":"14820752432214797345","href":"/preview/14820752432214797345?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/14820752432214797345?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9082440047665321925":{"videoId":"9082440047665321925","title":"Integrating Cos^2 by Parts - No Half-Angle Formula | Integration | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[Num...","cleanTitle":"Integrating Cos^2 by Parts - No Half-Angle Formula | Integration | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XJPJ7PQzyko","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XJPJ7PQzyko?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":553,"text":"9:13","a11yText":"Süre 9 dakika 13 saniye","shortText":"9 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"20 nis 2020","modifyTime":1587340800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XJPJ7PQzyko?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XJPJ7PQzyko","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":553},"parentClipId":"9082440047665321925","href":"/preview/9082440047665321925?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/9082440047665321925?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3595509060354667957":{"videoId":"3595509060354667957","title":"Direct Comparison Test - 2^n/n! is Smaller | Series | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[Numbers\u0007]","cleanTitle":"Direct Comparison Test - 2^n/n! is Smaller | Series | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WorNP-NjxIw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WorNP-NjxIw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":711,"text":"11:51","a11yText":"Süre 11 dakika 51 saniye","shortText":"11 dk."},"date":"19 mar 2020","modifyTime":1584576000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WorNP-NjxIw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WorNP-NjxIw","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":711},"parentClipId":"3595509060354667957","href":"/preview/3595509060354667957?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/3595509060354667957?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2239487872520730452":{"videoId":"2239487872520730452","title":"Comparison Test - Directly Compare with a P-Series | Series | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[Numbers\u0007...","cleanTitle":"Comparison Test - Directly Compare with a P-Series | Series | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ssffipfxtvQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ssffipfxtvQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":399,"text":"6:39","a11yText":"Süre 6 dakika 39 saniye","shortText":"6 dk."},"date":"6 nis 2020","modifyTime":1586131200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ssffipfxtvQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ssffipfxtvQ","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":399},"parentClipId":"2239487872520730452","href":"/preview/2239487872520730452?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/2239487872520730452?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12389424945089952042":{"videoId":"12389424945089952042","title":"Finding Limits using l'Hospital's Rule - x to the x and 0^0 | Limits | Calculus | \u0007[Glass\u0007...","cleanTitle":"Finding Limits using l'Hospital's Rule - x to the x and 0^0 | Limits | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DWt-XaAupmc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DWt-XaAupmc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":441,"text":"7:21","a11yText":"Süre 7 dakika 21 saniye","shortText":"7 dk."},"date":"26 mar 2020","modifyTime":1585180800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DWt-XaAupmc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DWt-XaAupmc","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":441},"parentClipId":"12389424945089952042","href":"/preview/12389424945089952042?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/12389424945089952042?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1881294460934729058":{"videoId":"1881294460934729058","title":"Limit Comparison Test for Series with Rational Terms | Series | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[Number...","cleanTitle":"Limit Comparison Test for Series with Rational Terms | Series | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=k153dS83cA4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/k153dS83cA4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":449,"text":"7:29","a11yText":"Süre 7 dakika 29 saniye","shortText":"7 dk."},"date":"17 mar 2020","modifyTime":1584403200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/k153dS83cA4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=k153dS83cA4","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":449},"parentClipId":"1881294460934729058","href":"/preview/1881294460934729058?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/1881294460934729058?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17863877664140562146":{"videoId":"17863877664140562146","title":"Integration of 1/(ax + b) - It's Natural Log! | Integration | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[Nu...","cleanTitle":"Integration of 1/(ax + b) - It's Natural Log! | Integration | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XeOHwLwEj6s","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XeOHwLwEj6s?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":664,"text":"11:04","a11yText":"Süre 11 dakika 4 saniye","shortText":"11 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"12 nis 2020","modifyTime":1586649600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XeOHwLwEj6s?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XeOHwLwEj6s","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":664},"parentClipId":"17863877664140562146","href":"/preview/17863877664140562146?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/17863877664140562146?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3411444587725932261":{"videoId":"3411444587725932261","title":"Optimization - Max Volume of Cylinder Inscribed in a Cone | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[Numbers\u0007]","cleanTitle":"Optimization - Max Volume of Cylinder Inscribed in a Cone | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eLHYtie3lvw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eLHYtie3lvw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1886,"text":"31:26","a11yText":"Süre 31 dakika 26 saniye","shortText":"31 dk."},"views":{"text":"7,9bin","a11yText":"7,9 bin izleme"},"date":"28 mar 2020","modifyTime":1585353600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eLHYtie3lvw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eLHYtie3lvw","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":1886},"parentClipId":"3411444587725932261","href":"/preview/3411444587725932261?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/3411444587725932261?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16092927216015431922":{"videoId":"16092927216015431922","title":"Finding Limits using L'Hospital - Natural Log and Square Root | Limits | Calculus | \u0007[Glass\u0007] \u0007...","cleanTitle":"Finding Limits using L'Hospital - Natural Log and Square Root | Limits | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3MrU3ZCXMm0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3MrU3ZCXMm0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":591,"text":"9:51","a11yText":"Süre 9 dakika 51 saniye","shortText":"9 dk."},"date":"17 mar 2020","modifyTime":1584403200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3MrU3ZCXMm0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3MrU3ZCXMm0","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":591},"parentClipId":"16092927216015431922","href":"/preview/16092927216015431922?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/16092927216015431922?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7759740822217721590":{"videoId":"7759740822217721590","title":"What Do the \u0007[Numbers\u0007] on \u0007[Glasses\u0007] Mean? | SportRx","cleanTitle":"What Do the Numbers on Glasses Mean? | SportRx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5ng3s_vAMDE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5ng3s_vAMDE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTzBxNlJuNWR1aUpVTWlJTmU1eWw4QQ==","name":"SportRx","isVerified":false,"subscribersCount":0,"url":"/video/search?text=SportRx","origUrl":"http://www.youtube.com/@sportrxeyewear","a11yText":"SportRx. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":503,"text":"8:23","a11yText":"Süre 8 dakika 23 saniye","shortText":"8 dk."},"views":{"text":"29,1bin","a11yText":"29,1 bin izleme"},"date":"26 ağu 2020","modifyTime":1598400000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5ng3s_vAMDE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5ng3s_vAMDE","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":503},"parentClipId":"7759740822217721590","href":"/preview/7759740822217721590?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/7759740822217721590?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3056054412035023964":{"videoId":"3056054412035023964","title":"How to Find the Exact Sum of a Series using Taylor Series | Series | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[N...","cleanTitle":"How to Find the Exact Sum of a Series using Taylor Series | Series | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0CSmsZIjgs4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0CSmsZIjgs4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":894,"text":"14:54","a11yText":"Süre 14 dakika 54 saniye","shortText":"14 dk."},"views":{"text":"19,4bin","a11yText":"19,4 bin izleme"},"date":"10 nis 2020","modifyTime":1586476800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0CSmsZIjgs4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0CSmsZIjgs4","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":894},"parentClipId":"3056054412035023964","href":"/preview/3056054412035023964?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/3056054412035023964?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9304383937284625226":{"videoId":"9304383937284625226","title":"Limit Comparison Test - Hard to use Direct Comparison | Series | Calculus | \u0007[Glass\u0007] \u0007[of\u0007] \u0007[Numbe...","cleanTitle":"Limit Comparison Test - Hard to use Direct Comparison | Series | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=P9V4k4B-kxs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/P9V4k4B-kxs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":531,"text":"8:51","a11yText":"Süre 8 dakika 51 saniye","shortText":"8 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"27 mar 2020","modifyTime":1585267200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/P9V4k4B-kxs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=P9V4k4B-kxs","reqid":"1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL","duration":531},"parentClipId":"9304383937284625226","href":"/preview/9304383937284625226?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","rawHref":"/video/preview/9304383937284625226?parent-reqid=1765285084051901-4113833111675961603-balancer-l7leveler-kubr-yp-sas-160-BAL&text=Glass+of+Numbers","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"1138331116759616037160","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Glass of Numbers","queryUriEscaped":"Glass%20of%20Numbers","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}