{"pages":{"search":{"query":"IntegrationQA","originalQuery":"IntegrationQA","serpid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","parentReqid":"","serpItems":[{"id":"13688004221310299409-0-0","type":"videoSnippet","props":{"videoId":"13688004221310299409"},"curPage":0},{"id":"653746069556021879-0-1","type":"videoSnippet","props":{"videoId":"653746069556021879"},"curPage":0},{"id":"7573253840678327007-0-2","type":"videoSnippet","props":{"videoId":"7573253840678327007"},"curPage":0},{"id":"5056505286802753602-0-3","type":"videoSnippet","props":{"videoId":"5056505286802753602"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEludGVncmF0aW9uUUEK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","ui":"desktop","yuid":"7589481421769804707"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"6219237943625005307-0-5","type":"videoSnippet","props":{"videoId":"6219237943625005307"},"curPage":0},{"id":"2133449485074025330-0-6","type":"videoSnippet","props":{"videoId":"2133449485074025330"},"curPage":0},{"id":"6555569013186994854-0-7","type":"videoSnippet","props":{"videoId":"6555569013186994854"},"curPage":0},{"id":"9944278272323271848-0-8","type":"videoSnippet","props":{"videoId":"9944278272323271848"},"curPage":0},{"id":"8994418519190482302-0-9","type":"videoSnippet","props":{"videoId":"8994418519190482302"},"curPage":0},{"id":"2218900439898709782-0-10","type":"videoSnippet","props":{"videoId":"2218900439898709782"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEludGVncmF0aW9uUUEK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","ui":"desktop","yuid":"7589481421769804707"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"2195094660891030499-0-12","type":"videoSnippet","props":{"videoId":"2195094660891030499"},"curPage":0},{"id":"9158212606389473162-0-13","type":"videoSnippet","props":{"videoId":"9158212606389473162"},"curPage":0},{"id":"9276582131773512374-0-14","type":"videoSnippet","props":{"videoId":"9276582131773512374"},"curPage":0},{"id":"8731754000901063833-0-15","type":"videoSnippet","props":{"videoId":"8731754000901063833"},"curPage":0},{"id":"13755746793091418511-0-16","type":"videoSnippet","props":{"videoId":"13755746793091418511"},"curPage":0},{"id":"756976552772771892-0-17","type":"videoSnippet","props":{"videoId":"756976552772771892"},"curPage":0},{"id":"7243277837931315674-0-18","type":"videoSnippet","props":{"videoId":"7243277837931315674"},"curPage":0},{"id":"16460946238558981384-0-19","type":"videoSnippet","props":{"videoId":"16460946238558981384"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"correction":{"items":[{"kind":"misspell","url":"/video/search?text=%C4%B0ntegration","params":{"text":"İntegration"},"query":"\u0007(İ\u0007)ntegratio\u0007(n\u0007)","helpUrl":"https://yandex.com.tr/support/search/info/request-correction.xml","helpTarget":"_blank","helpAriaLabel":"Yazım hatası düzeltme servisi"}],"id":"735475533398"},"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEludGVncmF0aW9uUUEK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","ui":"desktop","yuid":"7589481421769804707"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DIntegrationQA"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9621035616819323837323","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1457147,0,61;1472324,0,81;1457622,0,51;1471438,0,2;1476203,0,7;1460955,0,9;1460710,0,51;1459297,0,20;1152685,0,3;1472010,0,62;1472031,0,8;1431636,0,26;15353,0,59;182558,0,73;127804,0,65;1475835,0,21;1470249,0,0;1470223,0,25;1373786,0,32;1469597,0,29;1466295,0,39;1476140,0,25;1478695,0,45;1464404,0,2;1215676,0,73;1439206,0,72;1470513,0,33;1477469,0,68;124071,0,45;88928,0,93;1404017,0,10;1473797,0,57;1478800,0,16;124079,0,46;151171,0,98;126344,0,2;1281084,0,72;287509,0,62;1447467,0,32;1231501,0,5;1473596,0,65;1468028,0,48;1478788,0,0;1296808,0,46;912281,0,32"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DIntegrationQA","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=IntegrationQA","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=IntegrationQA","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"IntegrationQA: Yandex'te 3 bin video bulundu","description":"Результаты поиска по запросу \"IntegrationQA\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"IntegrationQA — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y8350a8fd54b5f58e74bef513c1edf494","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457147,1472324,1457622,1471438,1476203,1460955,1460710,1459297,1152685,1472010,1472031,1431636,15353,182558,127804,1475835,1470249,1470223,1373786,1469597,1466295,1476140,1478695,1464404,1215676,1439206,1470513,1477469,124071,88928,1404017,1473797,1478800,124079,151171,126344,1281084,287509,1447467,1231501,1473596,1468028,1478788,1296808,912281","queryText":"IntegrationQA","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7589481421769804707","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1478181,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769804735","tz":"America/Louisville","to_iso":"2026-01-30T15:25:35-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457147,1472324,1457622,1471438,1476203,1460955,1460710,1459297,1152685,1472010,1472031,1431636,15353,182558,127804,1475835,1470249,1470223,1373786,1469597,1466295,1476140,1478695,1464404,1215676,1439206,1470513,1477469,124071,88928,1404017,1473797,1478800,124079,151171,126344,1281084,287509,1447467,1231501,1473596,1468028,1478788,1296808,912281","queryText":"IntegrationQA","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7589481421769804707","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9621035616819323837323","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":142,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7589481421769804707","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1759.0__78afb7e0ef66aeda09c521d3b89f7cdbe661a72a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"13688004221310299409":{"videoId":"13688004221310299409","docid":"12-4-9-ZD36AE47EFBE3C3E5","description":"[03] ❓ Integration of (x + 1)(x + 3) & x √(x^2 - 1) | Integral Calculus 👋 Hello guys! From this video onwards, we are going to solve some examples related to the integration. Examples discussed...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2852162/a580ab7e8bd7b57f022884c84040f4ef/564x318_1"},"target":"_self","position":"0","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhwKY4WjPVcc","linkTemplate":"/video/preview/13688004221310299409?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration of (x + 1)(x + 3) & x (x^2 - 1) | Integral Calculus","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hwKY4WjPVcc\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFgoUMTM2ODgwMDQyMjEzMTAyOTk0MDlaFDEzNjg4MDA0MjIxMzEwMjk5NDA5aq0NEgEwGAAiQxovAAooaGhmaGZwYnB5c2Zra3JoaFVDQnhKQjU4TThMQV92UmVsc2ZFNi1sQRICABAqEMIPDxoPPxOEAoIEJAGABCsqiwEQARp4gfEFAwH7BQD4_v0A-gT_Afr99vP5_f0A9QUC_wcB_wDy9wnzBwAAAPoPA_4GAAAA_QIB9wL-AAAK8wH6AwAAAAjp9_z9AAAACw3wAv8AAAD2__QCA_8AAP0J9wL_AAAA9wIG9v__AAD7-wIDAAAAAPX7B_z_AAAAIAAtEgbgOzgTQAlITlACKnMQABpgFhoAMRP5ycwTNOIG2QgMEfDh-b0KBv_o3wAhF-nKHCjszvgi_xLh8Pa7AAAA8_0SK9AAGVf9Dc0aDCDzKarOKgx__QMD5fL22wTHQvAP_uwD9N4DAMQw6gn-1vxMGh8xIAAtvGM8OzgTQAlIb1ACKq8GEAwaoAYAADxCAAAcwgAA6EEAAEjCAACAwAAAyEEAAKhCAACAPwAAkMEAAMBAAABIQgAAMMIAAJjBAADYwQAA4EEAAHBBAAAgwgAAGMIAALBBAACowQAAQEEAAADBAAAkwgAA4MAAAJjCAACAwQAAmMEAAMDAAAAsQgAABMIAACjCAABAwQAAdMIAAAAAAABcwgAAgD8AAIC_AAAIQgAAAEEAAPhBAABAQQAA-EEAAOBCAACgQAAANEIAAL7CAAA0QgAAMEIAAHxCAACEQgAAMMEAANDBAADgwQAAYEEAAMhBAACKQgAAjsIAAKDAAABAQQAAaEIAACBBAAB4wgAAQEAAAJjCAAAcwgAApsIAAOBAAACYwQAAsEEAAEDBAAC6QgAAhEIAAAzCAAC6QgAASMIAAKjBAABUwgAA0EEAAMDAAACAwAAAgMIAAGhCAAAAAAAAgD8AAEBAAAAcQgAAyEEAAOhBAAAAAAAAwMAAAEBAAADQQgAATMIAACjCAAA8QgAATMIAAKDAAAAYQgAAgkIAALBBAACowQAA6EEAAJBBAABwQQAAtMIAAIhBAAA4QgAAWEIAAEDBAAA8QgAAikIAAABBAAAAwgAA2EEAANBBAAAQQgAA6MEAAGTCAADYQQAAQMAAACxCAACOwgAAEMEAACTCAABQwQAAwEAAAGzCAADAwAAAfMIAAEBBAAAUwgAAQMEAACjCAABoQgAAWMIAAKpCAAAAQAAAgL8AAFDBAAC0wgAA-EEAAAhCAAAgQQAALMIAAFxCAADQQQAAyMEAADRCAAAswgAAsEEAAATCAAAkQgAA6EEAAPjBAABIQgAA8MEAAABBAAA4wgAAQEAAAIBAAABwwQAA8EEAADhCAADAwAAA8EEAAEBAAACgQQAAwEEAADBCAACYQQAA4MEAAEBCAAAAQAAAuMEAAGzCAABwQQAAAMEAAEzCAAAAQQAAkEEAADTCAACgwAAAcMEAABDCAACAQAAAmsIAABzCAAC4wQAAQMEAAMBBAACQQQAABMIAAAjCAABwQgAA4EAAABBCAACgwAAAuEEAADjCAAAAwiAAOBNACUh1UAEqjwIQABqAAgAAgr4AAFy-AACAuwAAPL4AAOC8AABEPgAAsj4AADm_AAA0PgAAoDwAABA9AAAMvgAAHD4AAKA8AACWvgAAEL0AAPY-AADgPAAAgDsAAA0_AAB_PwAAQLwAADQ-AADgvAAA4LwAANI-AACYPQAAJL4AAIA7AACAOwAAdD4AAEA8AAC4PQAAML0AAOA8AAAEvgAAmL0AACy-AAAsvgAAdL4AADw-AAC4PQAA-j4AALi9AACIPQAAVD4AAOi9AABMvgAA3r4AAKi9AACovQAA-D0AAOI-AACePgAA2L0AAOC8AABjPwAAML0AADS-AADYvQAAED0AAMg9AAC4vQAAGb8gADgTQAlIfFABKo8CEAEagAIAAIA7AACgPAAAJL4AAEe_AADWvgAAiD0AAE0_AABAvAAAPD4AAAw-AABEPgAAoDwAAEA8AACIvQAAgDsAAMg9AAB8vgAAlj4AAHy-AACSPgAAhj4AAJi9AABUvgAA-D0AAAS-AADgPAAATL4AAOg9AAB8vgAAir4AAOA8AAAEPgAAlr4AAJq-AABMvgAAUD0AAM4-AADIPQAAqr4AAIK-AACAOwAARD4AAAw-AADgPAAALz8AAAS-AAB_vwAAhj4AANo-AACOvgAA2D0AAKI-AADIPQAA6D0AABS-AACaPgAABL4AADS-AACKPgAAQDwAAHw-AAAUvgAA2L0AAAw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=hwKY4WjPVcc","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13688004221310299409"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"653746069556021879":{"videoId":"653746069556021879","docid":"12-7-17-Z213448511B15735B","description":"This video is dedicated to walking you through the first step of the integration manual which will walk you through the setup and requirements. o Step 1 - Setup and activate the integration method...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3443305/57d2782b27d654e47861375fed227b3b/564x318_1"},"target":"_self","position":"1","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DK1e8R_GJXGA","linkTemplate":"/video/preview/653746069556021879?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integrations: Step 1 - Drupal plugin | Setup and activate the integration method","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=K1e8R_GJXGA\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFAoSNjUzNzQ2MDY5NTU2MDIxODc5WhI2NTM3NDYwNjk1NTYwMjE4Nzlqrg0SATAYACJEGjEACipoaHF6dnByZWxnZXpsYmViaGhVQ25kWlFXZ1ltWWFJaUtSQ0NQd1JMUlESAgASKg_CDw8aDz8TV4IEJAGABCsqiwEQARp4gQIPB_7-AgD2CP0E-AX_AQz--wj3__8A3AEN_gX6AwDz7f_1Af8AAP0C-wYBAAAA__L_-Pj9AQAJ9QEEBAAAABb5-wD_AAAA_REBD_4BAADt8gT0AgAAAA7-_vj_AAAA8AgCBv4AAAAUAggBAAAAAAn-BAYAAAAAIAAtaFfWOzgTQAlITlACKnMQABpgHxoAGRbzzbsBH8wB6_MKB_fY--fd6wD-EwA2HwDX-g_wyhUQACDgBArCAAAA8g7HQfUA8FIG3Ofs_WQDBNj3CT9_Ag7r8eoE3d78DvoZ9A38_Rj6ANcmDQQg0wsbDTsQIAAt-95MOzgTQAlIb1ACKq8GEAwaoAYAAGBBAADgwAAAMEIAABDCAAC4QQAA4MAAABxCAABAQgAAhsIAAAzCAABUQgAA8MEAAFDCAACEwgAAvkIAANjBAADgwQAACMIAAIDBAAAgwgAAGEIAACjCAAAgQQAAwEEAAEBBAAA8wgAATMIAADDCAABIQgAAiEEAADBCAACsQgAAhMIAADBBAABYwgAAaMIAAOBAAADKQgAAIMEAAHBBAABwwQAAMEIAAHRCAACyQgAAIEEAAFTCAACAQAAAoEAAAHRCAABEwgAAksIAAARCAADgwQAAwMEAAIBBAADoQQAAzMIAAOBAAACAPwAAIMEAAHDBAADgQAAAiEEAAKTCAADAwAAAgEAAANjBAADgwAAAUMIAAFBBAABEQgAAnkIAAPjBAADIQQAAgMAAAODAAACIwQAAkMIAAMDAAAAowgAAcMIAADDBAACIwQAAAEAAAHDBAAAEQgAAmEIAAPhBAAAkQgAAoMEAAPjBAACUQgAAQMAAAEjCAAA0QgAA3sIAAJBBAABQQgAAoMEAAKDBAACAvwAA-EEAALBBAAA0wgAA2MEAAHDBAAAEQgAAyEEAAKBAAAAAAAAANEIAAFTCAABAwQAA4MEAAARCAACgQQAAAMEAAATCAACoQQAAuMEAABDBAAB4wgAAAMIAABjCAACwQQAA2EEAAMBAAAC4wQAAMMEAAPjBAACYQQAAkEEAAIbCAACIQgAAEEIAAPjBAADAQAAAoEIAAPjBAADQwQAAsMEAAI5CAACwwQAAoEAAAFhCAABcQgAAkEEAAHBBAACQwQAAYMEAAIpCAABAwQAA4EAAAMjBAADAQAAAmMEAAKDBAADowQAAiMEAADxCAABwQQAAoEEAAIDCAACowQAAEMIAACRCAAA0QgAAtkIAAMBBAAAkQgAAAEEAAMhBAACSwgAAYMIAANBBAADowQAAmEEAAJjCAACAQQAAREIAANDBAACAvwAAPMIAAMDAAACgQQAAQEAAACzCAACsQgAAIEEAAKjBAAA8wgAAoEAAAIhBAADoQQAA-MEAANjBAADAQQAAHMIAAFjCAABkwiAAOBNACUh1UAEqjwIQABqAAgAALL4AAOi9AAC4PQAAQLwAAEC8AAAcPgAAMD0AAAG_AABsvgAADD4AAIi9AACIPQAA2D0AALq-AACKvgAA2D0AAJg9AABAvAAA6D0AAGM_AAB_PwAAqD0AANi9AAC4PQAAjr4AABQ-AADIPQAA4DwAAOi9AACoPQAAUD0AABw-AACYvQAA3j4AABA9AAAMvgAAHD4AAIK-AACgvAAAUL0AACS-AABUvgAAFD4AACy-AABMPgAABD4AAIC7AACavgAA2L0AANq-AAAcPgAATD4AAEQ-AAD6PgAAVL4AAAS-AAA_PwAAUL0AAEA8AACqPgAAgLsAAGQ-AAAcvgAAVL4gADgTQAlIfFABKo8CEAEagAIAAIK-AACYPQAAFL4AAEe_AACKvgAARL4AADA9AAA0vgAA-D0AACQ-AACGvgAAED0AAEC8AABQvQAAyD0AABC9AABMvgAAJz8AAKA8AADePgAAgDsAAKK-AADgvAAAmL0AACS-AADoPQAAmL0AAEA8AACIPQAAcD0AAJi9AADYPQAAgLsAAJ6-AABAvAAAbD4AAEQ-AABsPgAAiL0AADy-AADIPQAA-D0AALi9AADgPAAAZD4AAIA7AAB_vwAAFL4AAIA7AAC4vQAAZD4AAES-AACgPAAAfD4AAIi9AAAUPgAAML0AAPi9AADgvAAAQDwAAFw-AACoPQAAoLwAADy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=K1e8R_GJXGA","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["653746069556021879"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7573253840678327007":{"videoId":"7573253840678327007","docid":"12-2-3-Z43DB61771BFA50BA","description":"https://drive.google.com/file/d/1h_OE... Request me new videos: https://forms.gle/4rbzs4ANeWhZK2sE7 Integration Playlist: • Integration (Anti-Derivatives) Introductio... Differentiation Playlist...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4576047/04a3ab4f0e25d934406448071cf557bf/564x318_1"},"target":"_self","position":"2","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpJKTfY2QPEY","linkTemplate":"/video/preview/7573253840678327007?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration of (2x +3)^1/2 | Integral Calculus","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pJKTfY2QPEY\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTNzU3MzI1Mzg0MDY3ODMyNzAwN1oTNzU3MzI1Mzg0MDY3ODMyNzAwN2qsDRIBMBgAIkIaLwAKKGhoZmhmcGJweXNma2tyaGhVQ0J4SkI1OE04TEFfdlJlbHNmRTYtbEESAgAQKg_CDw8aDz8TUYIEJAGABCsqiwEQARp4gfwCCfv9BAADA_3--wP_AQAD__j4_v4A9QYC_wcC_wDy9wnzBwAAAP0Y_AUDAAAA-AX6_vT_AQAS9QEAAwAAAAf08_X_AAAABgv6_f4BAAD1-_78AwAAAAsE-QUAAAAA9P4EAQEAAAAE-wQDAAAAAPv4CQEAAAAAIAAttHTcOzgTQAlITlACKnMQABpgExkAMh8I6MMAJN0D4fwbC-7NAsHqHf_w8AASEAPDCiXTzOgQ_xfl_vS6AAAA6gIYNNsA_VoB_LX8Dhz8J7fWKhZ_Ax8R58kM0QXAHfQS5eQNFdsTAMoa6__y3fxLDTYYIAAtJ6k9OzgTQAlIb1ACKq8GEAwaoAYAAJhBAABwQQAAOEIAAFjCAAAAwAAAQEEAAM5CAAAAwQAAgMEAAOjBAAAAwAAAcEEAAPDBAAA4wgAAQEAAAGDBAABAwAAAAMAAAMDAAAAwwQAADMIAAJjCAAAAQAAAkEIAADTCAAD4wQAAPMIAALBBAAAIQgAA4EEAAEzCAADYwQAAAMIAAFBBAACwwQAAQMIAAMBBAADYQQAAQEAAAJhBAACQQQAA0EEAAKJCAAAgwQAAZEIAAEBBAACAvwAAJMIAAM5CAAD4QQAA8EEAAGDBAABAwAAAGEIAAGBBAAAgQQAAlsIAABxCAACAwQAAiEIAALhBAAD4wQAALMIAACDCAADwwQAAqMIAACDCAACewgAAwMEAAJjBAAB0QgAApkIAADDBAAC2QgAAAAAAANjCAACUwgAAkEEAAKBAAAAEQgAAksIAAIBCAAAgQQAAoMEAADBCAABIQgAAgL8AAIC_AABMQgAAoEEAAABBAACAPwAAmMEAAHDCAABwQgAACMIAAGDBAABoQgAAFEIAAPBBAABwwgAAuEEAAIDAAAAAwgAAmsIAABDBAAC4QQAAsEEAAKDBAABkQgAAMEIAADBCAABIwgAAuEEAALjBAABcQgAAAAAAABDCAACAQQAAiMEAAADAAACYwQAAwEAAAADBAACIQQAAyEEAAIDCAAAQQQAAmsIAAODBAACAvwAAEMIAAOjBAACSQgAAKMIAAKDAAABQQQAAJMIAAEDAAACEwgAALEIAAMBBAADwQQAAKMIAAAxCAAD4QQAAgMEAAEBAAAAQwgAAAAAAAKjBAACAQAAAcEEAAABAAABAwAAAAMAAADTCAACAwAAAUMIAAIhBAACSwgAAMEIAABhCAAA8QgAAgMAAAIxCAAAgQgAA6EEAAFhCAAA0wgAAIMEAAJjBAADgQQAA-EEAALjBAACAQAAAAMIAAHDBAAAIwgAArEIAAEjCAAA8wgAAEMEAAAzCAAAEQgAAnMIAABTCAAC4QgAA4EAAALBBAAAAwQAAgMEAACzCAABEQgAAsMEAAPBBAABgwQAA0EEAAIrCAABkwiAAOBNACUh1UAEqjwIQABqAAgAAbL4AACS-AAAcvgAAXL4AALg9AAAUPgAAZD4AADW_AACoPQAAiD0AAGS-AAAMvgAALD4AAHA9AAAQvQAAqD0AANo-AABwPQAAQLwAAD0_AABnPwAA6L0AAOg9AACAuwAAZL4AAFQ-AADgvAAARL4AABA9AAA0PgAAXD4AAES-AADIPQAAML0AANi9AABMvgAAor4AAEC8AAAkvgAAlr4AAEQ-AACAuwAAAT8AAFS-AAD4vQAA4DwAAOC8AAD2vgAArr4AAI6-AAC4vQAAFD4AAOo-AACCPgAAjr4AAIA7AAB_PwAAML0AAOA8AAB0PgAAcD0AALg9AAC4vQAABb8gADgTQAlIfFABKo8CEAEagAIAADS-AADgPAAANL4AAHG_AAB0vgAAiL0AANI-AAB8vgAA2D0AABC9AAA0PgAAcL0AAHA9AABwvQAAbD4AAFA9AACIvQAAxj4AAHC9AACGPgAAuD0AAKA8AADgPAAAUL0AAGS-AACYPQAATL4AAOA8AAAUvgAALL4AAMg9AAAsPgAA2L0AAIa-AAAwvQAAFD4AADw-AACKPgAAdL4AAL6-AAAQPQAAHD4AABC9AADYPQAAlj4AAHA9AAB_vwAAcD0AAKY-AAAEvgAAnj4AAKC8AAAwPQAAnj4AACy-AACGPgAAoLwAAPi9AACKPgAAJL4AAIY-AAAUvgAAyL0AAFA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=pJKTfY2QPEY","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7573253840678327007"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5056505286802753602":{"videoId":"5056505286802753602","docid":"12-3-12-Z12761A360FE6251D","description":"Integration by Partial Fractions: Integral of 1/(x^2(x^2 + 25)) dx #calculus #integral #integrals #integration #partialfractions #integrationbypartialfraction #integrationbypartialfractions...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/763269/20cca6a56d87d4660cc15a44187ef1c7/564x318_1"},"target":"_self","position":"3","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeBXV2JYyJhM","linkTemplate":"/video/preview/5056505286802753602?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration by Partial Fractions: Integral of 1/(x^2(x^2 + 25)) dx","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eBXV2JYyJhM\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTNTA1NjUwNTI4NjgwMjc1MzYwMloTNTA1NjUwNTI4NjgwMjc1MzYwMmqvDRIBMBgAIkUaMQAKKmhoY2tuaG9janVtcmd4d2NoaFVDVk82b1ZvcS1jM2l2a05RWV9FZXNWZxICABIqEMIPDxoPPxOmAoIEJAGABCsqiwEQARp4gfEFAwH7BQD9AgUC-gX-AQYC8_b3__8A-f3-AwUC_wDq9Pz9_P8AAAQRAf7_AAAA_QYB-_r-AAAPAfj8BAAAAAjp9_z9AAAACw3wAv8AAADu_gD2AgAAAAEB9gMAAAAA9f4EAQEAAAAEAQP8AAAAAAAAAgYAAAAAIAAtEgbgOzgTQAlITlACKnMQABpgFxMAJhED3t0CHur89vMA_vT2-dz7CADe4AAgEgatGB7rvAX-_xXU5wHBAAAAARISIOUA-lInAsYdCSgJLcDxHRV_3QkZ7dkE7PrXN-wU9_HvA-gbAM8gzwb84gRF_zcgIAAtsW1NOzgTQAlIb1ACKq8GEAwaoAYAAFBBAABQwgAAuEIAAHDCAAAYQgAA0MEAAKRCAACAQQAA8MEAAHBBAAAAQAAAyMEAAIBBAAAMQgAAwEAAAOhBAACwQQAAMMIAAGxCAADwwQAAKMIAABBCAAAcwgAAYEEAAADCAABQwgAAQMAAANjBAACkQgAAuMEAAEDCAADgwAAAgsIAACDCAABcwgAAaEIAAABCAACiQgAAOMIAAEBBAABQwQAA2EEAAMBBAABQwgAAeEIAALTCAAAwQQAAOEIAAChCAACAwQAAYMEAAJDBAADoQQAA2EEAAOBBAAAQQgAAqMIAAKDAAADAwAAA6EEAAExCAABcwgAADMIAAHDCAACgwAAAtsIAAEjCAACIwgAAIEEAACjCAAAgQgAAgEEAAKzCAAAkQgAAUMIAAIC_AABAQAAA6MEAAIBAAABQwQAA4MEAAIBCAAAAAAAA4EAAAKDAAADgwAAA8EEAAIBAAAAsQgAA4MEAAMjBAAAsQgAA0MEAANhBAABUQgAAIMIAABDBAAAAQAAAUEEAAIZCAAAswgAAPMIAAABBAADAQAAACMIAADDBAACAQQAAwEAAAEBAAACMQgAAGEIAAIxCAABQwQAAqEEAABjCAADcQgAAqEEAAADBAACUwgAAqMEAAFTCAAC8wgAAqMEAAABCAADgQAAAQMIAAHDBAAC4wQAAHMIAAOBBAABgwgAAQMEAAOBAAAAsQgAAYMIAAK5CAACQQQAAJEIAAAjCAAAcwgAAYEEAAADBAAAwQQAAMMIAAHRCAAAIQgAAUEEAAMhBAACgQAAAEMIAAPjBAAAAQQAAaEIAAFhCAAAkQgAAyMEAABDCAABQwgAAAMIAAIBBAAAgwgAAQEIAAODAAACAwgAAwMAAAIRCAABwwQAAmEIAACxCAACgQAAAgL8AAMBBAADIQQAAVMIAAAjCAAC4QQAAXMIAAJDBAAAAQgAA4EAAAAzCAAA4wgAA8MEAALjBAAAsQgAAcMEAADjCAACIwgAAgMAAAAhCAABAQQAAiMEAAEBBAADowQAAAMAAAPhBAAAAwAAAAMIAAKBBAACAwCAAOBNACUh1UAEqjwIQABqAAgAAcL0AAIK-AABEvgAA-L0AALi9AAB8PgAAHD4AAEe_AAAwPQAABD4AAM4-AAAUvgAAED0AAJ4-AAB8vgAAiL0AAHw-AACIPQAAyD0AABs_AAB_PwAAEL0AAOA8AADYvQAAHL4AAOY-AAAkvgAAML0AAHw-AAAEPgAAXD4AACQ-AAAUvgAA-D0AACQ-AACoPQAAyD0AAKi9AACevgAAVL4AANg9AADYPQAAZD4AALg9AACgvAAAED0AAAS-AAB8vgAAlr4AAKK-AABwPQAAuD0AAA8_AAAFPwAAPL4AAHA9AAA3PwAAiD0AAFC9AAAQPQAAuD0AAPi9AABAPAAA9r4gADgTQAlIfFABKo8CEAEagAIAABA9AACgPAAALL4AAFW_AAC2vgAAgLsAAP4-AACgvAAAJD4AAGw-AACGPgAAuD0AAOC8AACgvAAAoDwAAFA9AACYvQAArj4AALi9AAC-PgAAuD0AAJi9AACovQAA6L0AABS-AAAUPgAAcL0AAHA9AABkvgAAoDwAAKA8AAAEPgAAgr4AAFS-AAA8vgAAmD0AAHA9AACuPgAAXL4AAHS-AABEPgAAFD4AALg9AADYPQAAxj4AAOA8AAB_vwAAJD4AALI-AAAUvgAA2D0AADQ-AADYPQAAyD0AAKi9AABcPgAAiL0AAJK-AAAkPgAARL4AACQ-AAAMvgAANL4AAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=eBXV2JYyJhM","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5056505286802753602"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6219237943625005307":{"videoId":"6219237943625005307","docid":"12-8-11-ZC702A718A126B193","description":"Integration by Partial Fractions: Integral of 1/((x - 2)(x - 4)) dx #calculus #integral #integrals #integration #partialfractions #integrationbypartialfraction #integrationbypartialfraction...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1775382/63cd82c4a4b00bb2df9f4a7655e7723c/564x318_1"},"target":"_self","position":"5","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dw8i-mDll_IA","linkTemplate":"/video/preview/6219237943625005307?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration by Partial Fractions: Integral of 1/((x - 2)(x - 4)) dx","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=w8i-mDll_IA\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTNjIxOTIzNzk0MzYyNTAwNTMwN1oTNjIxOTIzNzk0MzYyNTAwNTMwN2quDRIBMBgAIkQaMQAKKmhoY2tuaG9janVtcmd4d2NoaFVDVk82b1ZvcS1jM2l2a05RWV9FZXNWZxICABIqD8IPDxoPPxNaggQkAYAEKyqLARABGniB-gcABvoGAP0CBQL6Bf4B_gv48_j-_gDzAQYJAwL_AOv5BAT8_wAAChMBCf4AAAD9BQH7-v4AAA8B-PwEAAAACOn3_P0AAAALDfAC_wAAAO_-9fkCAAAABQr8Af8AAADx_An8_gAAAAP7BfcAAAAAAvgFBgAAAAAgAC0r9eM7OBNACUhOUAIqcxAAGmANFQAnDf7a3Aoc6PXs-wsE9fb25v4XAOfpABURBbIYG_C8DQL_CtbpBsQAAAAHEgkZ3wD6TyH6yAwIIwQlufMbEH_XDxTs4gLr9Nk09xT34_AG8BcAyyfTAgLkD0IHMBwgAC16eFU7OBNACUhvUAIqrwYQDBqgBgAAkEEAAKjBAAD4QgAApMIAALhBAABQwQAAokIAAKBBAAAgwgAAQMEAAFBBAACAPwAAwEAAAKBBAACIwQAAEEIAAExCAABIwgAAnEIAAFDBAADYwQAAkEEAAFjCAAAAAAAAYMIAAFTCAAAQQQAA4EAAAKRCAABwwQAAUMIAAIA_AACwwgAAAMEAAHDCAABEQgAAgEEAABxCAACQwQAAmEEAAKDBAAA4QgAAgD8AAOjBAAC4QQAAXMIAAIhBAABsQgAAcEEAAIDBAAAAwQAAOMIAAIDAAACAQQAACEIAACxCAAAkwgAAgD8AADBBAACQQQAAAEEAAGjCAAAgwgAAAMIAAKBAAADGwgAAKMIAANDBAADwwQAAFMIAADhCAACYQQAATMIAAIBCAACswgAAQEEAAMBAAAAQwQAAgD8AAAjCAADIwQAAiEIAAAAAAABwQQAAUMEAAMBBAADwQQAAMMEAAIhBAAAAwQAAAMEAAOBBAACwwQAAmEEAAJpCAABUwgAABMIAAEDAAACIwQAAvkIAAEzCAACUwgAAQEAAAIA_AABowgAAAAAAAMhBAADAQQAADEIAAJ5CAAAkQgAAFEIAAADBAAAQwQAAuMEAANRCAABAQQAAKMIAAIDCAAAowgAAHMIAAI7CAABQwQAAqEEAAEDCAADYwQAA4EAAACDCAABAwQAAkEEAAADCAAAMwgAAyEEAAJ5CAAAQwgAA2EIAACBBAACCQgAAXMIAAODBAAAgQQAAoEEAAMDAAAAowgAA0EEAAExCAABgQQAACEIAAKBAAADIwQAAwMEAABBBAACwQQAAWEIAAAxCAAAQQQAAaMIAAATCAACQwQAA4MEAACjCAAAUQgAAAMEAAJDBAACwQQAAWEIAAMDBAAAsQgAAQEIAAEDAAAAMwgAA-EEAANBBAABkwgAAPMIAACRCAAAwwgAAcMEAABBBAACoQQAAjMIAAKjBAAAUwgAAWMIAAJhBAACAQQAAaMIAAITCAAAQQQAADEIAABhCAAAgwQAAAMEAAIDAAAAQwQAAWEIAAAAAAABwwQAAKEIAAIDAIAA4E0AJSHVQASqPAhAAGoACAADYvQAAHL4AADC9AAAwvQAADL4AAEQ-AADYPQAAO78AADC9AACAuwAAkj4AAAy-AACIPQAAHD4AALK-AAAwvQAAij4AAFA9AACIPQAABz8AAH8_AABwvQAAUL0AAES-AAC4vQAAoj4AAHC9AABEvgAABD4AABQ-AABMPgAAdD4AACy-AAD4PQAABD4AAPg9AABEPgAAFL4AADS-AACGvgAAMD0AAJg9AAAUPgAA6D0AALg9AACIPQAAqL0AAHy-AACevgAAlr4AALg9AACYPQAAvj4AAM4-AAC4vQAAoDwAAB0_AACgvAAAcL0AALg9AADgPAAAqL0AAEC8AAD2viAAOBNACUh8UAEqjwIQARqAAgAAUL0AAIg9AAAUvgAAT78AAHS-AABAPAAAxj4AALi9AAD4PQAAlj4AABw-AACoPQAAUL0AAEA8AABwPQAAQLwAAGy-AADmPgAAcL0AALY-AAAUPgAATL4AAHA9AACIvQAABL4AAAQ-AADYvQAAyD0AACS-AACAOwAAgDsAAOg9AAB0vgAABL4AAOi9AACAOwAATD4AAIo-AABsvgAAbL4AACQ-AABEPgAADD4AAIg9AADGPgAA4DwAAH-_AAAEPgAAvj4AAKi9AACAuwAAyD0AACw-AABkPgAAyL0AAEw-AADgvAAAlr4AAAQ-AADovQAAZD4AAHC9AAAEvgAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=w8i-mDll_IA","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6219237943625005307"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2133449485074025330":{"videoId":"2133449485074025330","docid":"12-11-4-Z1629B112B25C2A54","description":"Integration by Partial Fractions: Integral of 1/((x + 2)(x^2 + 4x + 3)) dx #calculus #integral #integrals #integration #partialfractions #integrationbypartialfraction...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3924252/09065dee4fcd33bbfc8d76930e3dc0b3/564x318_1"},"target":"_self","position":"6","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dp3PfeQG4Mmo","linkTemplate":"/video/preview/2133449485074025330?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration by Partial Fractions: Integral of 1/((x + 2)(x^2 + 4x + 3)) dx","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=p3PfeQG4Mmo\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTMjEzMzQ0OTQ4NTA3NDAyNTMzMFoTMjEzMzQ0OTQ4NTA3NDAyNTMzMGqvDRIBMBgAIkUaMQAKKmhoY2tuaG9janVtcmd4d2NoaFVDVk82b1ZvcS1jM2l2a05RWV9FZXNWZxICABIqEMIPDxoPPxP6AYIEJAGABCsqiwEQARp4gfwJAP37BQD9AgUC-gX-AQUC8_b3__8A8wEGCQMC_wDr7goABP8AAAUM_wUDAAAA_QUB-_r-AAAPAfj8BAAAAAjp9_z9AAAACw3wAv8AAADv_vT5AgAAAAEB9gMAAAAA9wML_AEAAAAEAQP8AAAAAAAAAgYAAAAAIAAtowvhOzgTQAlITlACKnMQABpgFxUALg4F3NoIGeL99foCBuvz-Nv3BgDm6AAvFfuxIhfzwgMA_w_Q6ATBAAAA_QYRJO0A-1IrAMccCCT9M7_2GBV_4A0W8d796_nVPuoSCeXyAuIaAMwl3gD43gRHCS8gIAAtK9ZMOzgTQAlIb1ACKq8GEAwaoAYAAPhBAAC4wQAAqkIAAGTCAACwQQAA-MEAAKpCAACgQQAAHMIAAJhBAACIQQAAHMIAADDBAAAMQgAA4EAAABBCAAAQQgAAUMIAAIxCAAD4wQAACMIAAABCAAA8wgAA4EAAAETCAAB4wgAAAMEAAAjCAACaQgAAwMEAADDCAACAQAAAksIAAADCAAB4wgAAQEIAAOhBAAB0QgAALMIAAHBBAAAQwQAA6EEAACxCAAA4wgAAgkIAALrCAACAvwAADEIAABBCAADgQAAAgMAAAKDAAADoQQAAHEIAAAxCAAAQQgAAvsIAAMDAAACgwAAA4EEAAFhCAABMwgAABMIAAFjCAAAwQQAAoMIAAHzCAACMwgAAcEEAABDCAAAkQgAAMEIAAHjCAADYQQAAiMIAADDBAADgQAAAuMEAAABCAAAgwQAAcMEAAI5CAACAPwAAMEEAACDBAAAAAAAAIEEAAIC_AABIQgAAEMIAAIA_AABcQgAACMIAAIhBAABwQgAANMIAAEDBAAAAwAAAgEAAAExCAAA8wgAACMIAAHBBAACAQQAAKMIAAIDAAACAQAAAAMEAADBBAACSQgAAwEEAAIZCAABAwQAA4EAAAADCAADiQgAAYEEAANDBAACuwgAAcMEAAEjCAACewgAA0MEAAOBBAABAQQAAiMEAAEBBAABAwAAAEMIAAARCAACOwgAAMMEAAIBAAAAoQgAANMIAALhCAACQQQAAHEIAAKjBAAAQwgAAQMAAAODAAAAQQQAALMIAAEhCAADQQQAA4EAAACxCAABQQQAA6MEAANDBAACQQQAAQEIAAFxCAABkQgAAqMEAADTCAACCwgAAYMEAAEDAAABUwgAATEIAAODAAAB0wgAAgMAAAGBCAADAwQAAZEIAAFRCAAAAwQAAwEAAAABCAAAAwAAAUMIAAPDBAADgQQAA4MEAACDCAADQQQAAuMEAAETCAABcwgAAEMIAAADBAABgQgAAyMEAAGzCAACIwgAAEMEAAMBBAACAPwAAIMEAABBBAAAgwQAAAEEAAARCAAAAwQAAoMEAAABBAABAQSAAOBNACUh1UAEqjwIQABqAAgAABL4AADS-AADgvAAAqL0AAFC9AAA0PgAAED0AAEG_AABQvQAAmD0AAII-AAAMvgAAyD0AAIo-AACCvgAA4LwAAII-AACoPQAA4DwAAP4-AAB_PwAAmL0AAFC9AADYvQAA-L0AAKY-AAAMvgAAbL4AAIo-AADoPQAAHD4AAGw-AAD4vQAAUD0AAKg9AABQPQAAqD0AAAy-AABMvgAAir4AADQ-AADoPQAABD4AAJg9AACYvQAAQLwAAPi9AABMvgAAfL4AAJ6-AADoPQAAmD0AAPY-AADyPgAAgr4AAFA9AAAtPwAAuD0AADC9AADoPQAAQDwAABS-AABAPAAA7r4gADgTQAlIfFABKo8CEAEagAIAAOi9AAAwPQAAuL0AAFu_AACKvgAA2L0AAJI-AACYvQAAJD4AADw-AACGPgAABD4AAHC9AABQvQAAMD0AAKg9AAAkvgAA6j4AAKC8AACOPgAAFD4AAIi9AABAPAAABL4AAGS-AABcPgAADL4AANg9AABkvgAA4LwAABA9AAAkPgAALL4AAES-AAC4vQAADD4AABA9AACaPgAAZL4AAIq-AAA8PgAAyD0AAKC8AAAQPQAAtj4AAEC8AAB_vwAA2D0AANI-AAB8vgAA2D0AAIg9AABwPQAATD4AAOC8AABcPgAAML0AAIa-AAAUPgAARL4AAOg9AACOvgAALL4AANg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=p3PfeQG4Mmo","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2133449485074025330"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6555569013186994854":{"videoId":"6555569013186994854","docid":"12-7-0-ZBA7362E1F7381558","description":"Integration by Partial Fractions: Integral of 3/((x + 1)(x^2 + x)) dx #calculus #integral #integrals #integration #partialfractions #integrationbypartialfraction #integrationbypartialfraction...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/922271/4e2cbce420d53f9fdf2a1a6d324119a4/564x318_1"},"target":"_self","position":"7","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dh4UHGN29-5k","linkTemplate":"/video/preview/6555569013186994854?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration by Partial Fractions: Integral of 3/((x + 1)(x^2 + x)) dx","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=h4UHGN29-5k\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTNjU1NTU2OTAxMzE4Njk5NDg1NFoTNjU1NTU2OTAxMzE4Njk5NDg1NGqvDRIBMBgAIkUaMQAKKmhoY2tuaG9janVtcmd4d2NoaFVDVk82b1ZvcS1jM2l2a05RWV9FZXNWZxICABIqEMIPDxoPPxPQAYIEJAGABCsqiwEQARp4gfEFAwH7BQD9AgUC-gX-AQYC8_b3__8A9v8JAAYC_wDq9Pz9_P8AAAUM_wUDAAAA_QYB-_r-AAAPAfj8BAAAAAL19QD5AAAACw3wAv8AAAD2__QCA_8AAAAE-_4AAAAA9wML_AEAAAAEAQP8AAAAAAP5_gMAAAAAIAAtEgbgOzgTQAlITlACKnMQABpgERYAMwwBz9sCIekA5_wBAvH3--D_CQDi2wAkEPauGh_vvQ8I_wnW6QrAAAAAAxAJIdoA_VIo_c4cBRwBNL3sIgt_3ggP79kF8fbYOfUPAebxAd8QAMUq0wT83v5L_y4hIAAtyi9KOzgTQAlIb1ACKq8GEAwaoAYAACxCAACAwAAA6kIAAJDCAAAwwQAAQMAAAJJCAACwQQAALMIAAEDBAABgQQAA4MAAAFDBAACgQQAAQMEAAOhBAABMQgAAhsIAAMxCAAAowgAAXMIAACBBAAA4wgAAwEEAAGzCAABcwgAAkMEAACBBAAAwQgAAyMEAAGjCAABgQQAAosIAAMDBAABQwgAAaEIAAABBAAB0QgAAsMEAABBBAADYwQAAkEEAAKBBAADowQAA6EEAACzCAADgQQAAFEIAALBBAAAgwQAAiMEAALDBAACAQAAA6EEAABxCAAAMQgAATMIAAEDBAAAgQQAABEIAAChCAAB0wgAAFMIAAPjBAABgQQAAxMIAAFzCAAAgwgAACMIAAAjCAAAsQgAAGEIAAFDCAAA4QgAAssIAAEBAAAAwQQAA0MEAAARCAACIwQAAwMAAAJBCAADAwAAAQMEAAEDBAAAIQgAA2EEAAGDBAAAMQgAAMMEAABjCAAAMQgAA2MEAAABBAACEQgAAYMIAALDBAAC4QQAAYMEAAJJCAAA8wgAASMIAACDBAADAQAAAZMIAAKBAAAAAQQAAYEEAANhBAACWQgAAoEEAACRCAACYwQAAgEAAAKDBAADqQgAAAMAAAEjCAAA0wgAAsMEAACjCAACiwgAAwMAAACRCAAAwwgAAEMIAAEBBAADAwQAAAMIAAMBAAABkwgAAgMIAAOBBAABEQgAARMIAALJCAACAQAAAXEIAAIjBAAAQwgAAEEEAAIBBAAAgQQAAcMIAAChCAAA8QgAAAEAAAHBCAABgwQAAYMEAAIDBAACAPwAAkEEAAExCAACgQQAAQEEAAIDCAABUwgAAUMEAAJjBAAAgwgAAGEIAAMjBAACwwQAAQEAAABRCAABkwgAAVEIAAERCAACYwQAAgMEAAKBBAABAQQAAaMIAAAjCAAAUQgAA0MEAALDBAABwQQAAuEEAALDCAADgwQAAqMEAACDCAAAwQQAAAAAAAIzCAACAwgAAQMEAABRCAACwQQAAAMEAAEBBAACgwAAAIMEAAExCAAAAwAAAgD8AACRCAAAAQSAAOBNACUh1UAEqjwIQABqAAgAAdL4AACS-AABwPQAAQDwAAOC8AABkPgAAcD0AAC-_AABwvQAAyD0AADw-AAAEvgAAyD0AACw-AABkvgAAQLwAAFw-AAAwPQAAcD0AALI-AAB_PwAAQLwAAOA8AADYvQAA2L0AAKo-AABQvQAAXL4AACQ-AAAQPQAAFD4AAAQ-AADYvQAA2D0AADA9AACgPAAA4DwAACy-AAA8vgAAfL4AAAQ-AABwPQAALD4AABA9AACAOwAAoLwAADC9AAA0vgAApr4AAK6-AACYPQAAUD0AANY-AACqPgAAZL4AAIC7AAAdPwAAiD0AAPi9AADIPQAA2D0AANi9AACAuwAAA78gADgTQAlIfFABKo8CEAEagAIAAEC8AABAPAAAmL0AAEu_AACWvgAAED0AAPo-AAAQPQAA-D0AAIo-AABcPgAAiD0AADC9AAAwvQAAiD0AALg9AADIvQAA0j4AALi9AACKPgAAHD4AAOC8AABQvQAA4DwAAEy-AABEPgAAuL0AAJg9AABcvgAAEL0AAKC8AAAkPgAArr4AAJa-AAB8vgAAPD4AAEw-AABUPgAAhr4AAKK-AABAvAAAdD4AAKg9AADYPQAAET8AAIg9AAB_vwAAuD0AAM4-AACCvgAAQLwAAEQ-AAA8PgAADD4AAMi9AABsPgAAoLwAAJq-AABcPgAA-L0AAFw-AAAsvgAAHL4AAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=h4UHGN29-5k","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6555569013186994854"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9944278272323271848":{"videoId":"9944278272323271848","docid":"12-3-2-ZAD33E145640C6EAB","description":"Integration Example - 27 (Applied mathematics) 🎓 Subscribe & Stay Tuned: 👍 Like, Share, and Comment: 🔗 Connect with us: Integration Playlist: • Mastering Integration Techniques | St... Python...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/877971/51b3115c73012fb5a301c1e66f7c4c09/564x318_1"},"target":"_self","position":"8","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNFA67zmJB8Q","linkTemplate":"/video/preview/9944278272323271848?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration Example - 27 (Applied mathematics)","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NFA67zmJB8Q\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTOTk0NDI3ODI3MjMyMzI3MTg0OFoTOTk0NDI3ODI3MjMyMzI3MTg0OGquDRIBMBgAIkQaMQAKKmhoZ2FhanRia2RybGxycmRoaFVDU2FRaHFKdV9JWWpBS2EtbUo0NWlEZxICABIqD8IPDxoPPxNfggQkAYAEKyqLARABGniB-wQBAv4DAPv-DQT7Bv0CEwn8_PUCAgDz_QH19gEAAPP6BwEEAAAA-gf6EAIAAAAI9vf-9_4AAAQE-AcEAAAAGQL9APgAAAANGPsC_gEAAPf7FAECAAAAEQkIAf8AAAD7BAT9AAAAAAQIBAQAAAAACAn7AwAAAAAgAC2ddds7OBNACUhOUAIqcxAAGmD-EwAaKAXZsxMh6-zo-OcBEvvW7u0QAOcGAA_Z9L8lD9_N9Bf_AcT_678AAAAB_QwXNQDVUwH9xCkf-DnV7fAODn8VJSnyFwPhxxAm5Pv3IPTg2QUACPvoHBUS6UQPJiwgAC30J0k7OBNACUhvUAIqrwYQDBqgBgAAREIAAKBAAACkQgAAIMEAAEDCAACgQQAAGEIAAPBBAACAwQAAAMEAAFDBAADYwQAAIMEAACDBAACAPwAAgMAAAHhCAAAkwgAAAEIAAFzCAACEwgAAGMIAAMbCAAB4QgAAYMIAAJDBAAAQwQAAAMIAAExCAAAgQgAAIMIAACBBAAAYwgAAmEEAAKDCAAC4QQAAEEIAAHxCAADgwAAAeEIAAATCAAAAwQAAwEAAAEBAAADAQQAAQEEAAFDBAAAQwQAA2EEAAIDAAAC4wQAAyMEAACjCAACgQAAALEIAACBCAAAkwgAAQMEAAFhCAAAgQQAA-EEAAKDBAABQwgAApsIAAOBAAACSwgAAwMAAALzCAADQwQAAUMEAAHBCAACIQQAAQEAAACzCAACAvwAAyMEAALrCAABAQAAAoEEAAChCAADwwQAAeEIAAAzCAADQwQAAQEEAAFRCAADQwQAAaMIAADxCAACAPwAAEEEAADRCAABAwQAANMIAAHBBAAAcwgAAQMAAAKjBAACYwQAAeEIAACDCAABkQgAAKEIAAIDBAAAgwgAAkEEAACTCAAAYQgAAAEEAANBBAAC8QgAAYEEAAIjBAACgwQAA4MEAAIxCAAAAwAAAksIAAABBAACQwgAAmMEAAEDBAAAAQAAAaMIAAMDBAAAYwgAA6MEAAEBAAABkwgAAgL8AAMBAAACEwgAAQEEAAAhCAADAwQAAsEEAACRCAABoQgAAAEAAAILCAAAMQgAAQEAAAIBCAAAowgAAqEEAAAxCAABAwQAAAMIAAIA_AAA4QgAAYMEAAMDBAABIQgAA-EEAAKDBAAAkwgAA9sIAACTCAAAwwgAAFMIAAKhBAABgQQAA4EAAAMBAAADgQAAAgEAAAMjBAABUQgAAgkIAABzCAABowgAAAMAAAABBAACgwAAAUEEAAIDAAACAwAAAIEEAAOBBAAAQQQAAuMIAALjCAACgQQAAYMEAABxCAAB8wgAATMIAABxCAACowQAAyMEAAKJCAACIwQAAQMAAACDBAADQwQAAgD8AAHzCAAAAQQAAcEIAALDBIAA4E0AJSHVQASqPAhAAGoACAAAQPQAAzr4AACQ-AADgPAAARL4AAFQ-AAAMvgAAeb8AAHS-AAC4PQAAmD0AAIq-AACIPQAAsj4AAN6-AAAEvgAADT8AABA9AAB0PgAAYT8AAHc_AAAwvQAAij4AAIA7AACIPQAAZL4AAIY-AADCvgAAoLwAAJI-AACaPgAAJL4AAGQ-AACuPgAAfD4AAI4-AABsPgAArr4AANa-AADCvgAA4DwAAKg9AAAUPgAAML0AAES-AAA8PgAAFD4AAB2_AACyvgAAKb8AAHy-AAAQPQAAjj4AAKo-AABUvgAAEL0AAH8_AACSPgAAuL0AAJo-AACavgAA8j4AAKC8AAC-viAAOBNACUh8UAEqjwIQARqAAgAAPL4AAKC8AABkvgAAKb8AACS-AACgvAAApj4AAKA8AAAUPgAAED0AAOC8AABQvQAAMD0AAOA8AABQPQAAEL0AAPi9AADqPgAAgr4AANY-AACAuwAADL4AAOC8AAA8vgAA4DwAAOi9AABQvQAAQLwAAKA8AAAwPQAAUD0AAOg9AAAkvgAABL4AAOg9AAC4vQAAVD4AAII-AAAUvgAA-D0AAJ4-AAAUvgAAUD0AABA9AABAvAAAqL0AAH-_AAAcPgAAoLwAAOC8AAAUPgAA4LwAAKC8AADoPQAATD4AABQ-AACYvQAA2L0AAIC7AABQPQAAUD0AAAy-AACovQAAUD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=NFA67zmJB8Q","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9944278272323271848"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8994418519190482302":{"videoId":"8994418519190482302","docid":"12-4-6-ZE581D351FF266275","description":"Integration Example - 30 (Applied mathematics) 🎓 Subscribe & Stay Tuned: 👍 Like, Share, and Comment: 🔗 Connect with us: Integration Playlist: • Mastering Integration Techniques | St... Python...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4076116/a4cc58f49d41cfe0802e6ab7db7ce251/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/n5gPnAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpSHa9cDeDZs","linkTemplate":"/video/preview/8994418519190482302?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration Example - 30 (Applied mathematics)","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pSHa9cDeDZs\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTODk5NDQxODUxOTE5MDQ4MjMwMloTODk5NDQxODUxOTE5MDQ4MjMwMmq1DxIBMBgAIkQaMQAKKmhoZ2FhanRia2RybGxycmRoaFVDU2FRaHFKdV9JWWpBS2EtbUo0NWlEZxICABIqD8IPDxoPPxNPggQkAYAEKyqLARABGniB-wAB-v8CAPgHBQgABv0CFQL88vUCAgDz_QH19QEAAPP6CAIEAAAA_QL7BgEAAAD_8v_4-P0BAAQE9wcEAAAAGQL9APcAAAAGGgUG_gEAAPf7FQECAAAAEgoIAf8AAAD7BAT9AAAAAAYNCwkAAAAABwsC_AAAAAAgAC1ZJtc7OBNACUhOUAIqhAIQABrwAXn-BP26-tz_x8bK_sYz2QGBRAT_7xbBAMsdGQDk384B-svfAeEZ4wAJJhkB6mrqAnUB-wAVsvP_Q7ks_-_u_QHK7PUBI9TRAD36IAH-7tj-0RAO_dW8-AEfycQEBmnT_BgOBwAR8wH99DzkA0PGMwIG9iQCHBEwBf_D5gXoGAIG9Pa0_e8c-QkJ7wj5qysgBBjtPAE-OCn-DD7e_-jiAfsK6h_zJv63-iy06wQa3C38xB329fsk-PRPEgP0tPr7EN4hLf3SzQAA-AcM_xX6Af_fNeYKKgziCiLvEwX60u8b5gTt7wITAPYAxvjlBhLzAyAALT7Y4To4E0AJSGFQAipzEAAaYBX2ABosHNPNBBTk8MsV5vHm8bX58xX_0fcAAd_i1iIa5MryEP_8wfjptwAAABTuDhYXANVg5ALvK_35MdDT3yAYfwkoQ8_9EhLBAjwC3eU0DuP5LAAH7coqMA7pQQouLiAALRjfNjs4E0AJSG9QAiqvBhAMGqAGAACoQQAAIMEAAMJCAADQwQAADMIAANBBAAB8QgAAIEIAAMDBAADwwQAAgD8AAMBAAADAwQAAYMEAAHDBAACgwAAAkEIAAGDBAADIQQAAPMIAAGDBAAAUwgAAlMIAAGBCAACKwgAAoEEAAIjBAACQwQAAOEIAAJBBAAAgwgAAVEIAAJjBAADAQQAAhsIAAOhBAAAAQgAAkEIAAGDBAACGQgAAUMIAAADBAADIQQAAcEEAAKBAAAAAQgAA4MAAAEDAAABYQgAAAEAAACTCAAAgwQAAZMIAANBBAACwQQAAEEEAACzCAADIwQAANEIAABBBAABgQgAAoEEAAKbCAACAwgAAkEEAAJDCAABQwQAAuMIAAAjCAACgQAAAjkIAAABBAAAAQAAA2MEAAEDBAAA4wgAAmMIAANjBAAAEQgAA0EEAAJDBAACWQgAAnsIAAJDBAAAEQgAAXEIAAKjBAACywgAAFEIAAKBAAAAgQQAAREIAADDCAACwwQAAAEAAAJLCAAAAQQAAsMEAAKDAAABYQgAAIMEAAPhBAAA8QgAAMMIAAJTCAAAEQgAAgMAAABxCAACQQQAAHEIAAMRCAACAQQAAoMEAAPjBAABAQAAAhEIAALhBAAAkwgAAwEAAAHzCAACgQAAAgMAAAJhBAACewgAAYMEAADzCAACiwgAAgD8AAKTCAABAwAAACEIAAPDBAABgwQAA-EEAANDBAAAUQgAAUEEAAOhBAABQwQAAlMIAADRCAAAcQgAAcEEAAMDAAAAAwAAAcEEAAEDAAAA8wgAA4MAAAEBCAADIQQAAOMIAAGxCAAAQQQAA-MEAAOjBAADgwgAAEMIAACzCAAAQwQAAQMAAAKBAAABQQQAAwEAAAJDBAABAQQAAAAAAAFBCAACOQgAAgMEAABDCAAAQwQAAYEEAAKBBAADQQQAA4EAAAADCAAAgQQAAgEAAACBCAAC8wgAALMIAAOhBAAAgwQAAmEEAAFjCAABIwgAAAEIAAJDBAAAAwgAAhkIAAKjBAAAAwgAAgEEAAIA_AACgQAAA0MEAAADBAAAcQgAAgD8gADgTQAlIdVABKo8CEAAagAIAAFA9AACovQAAmL0AABQ-AABEvgAAND4AAIi9AABPvwAAgr4AAOA8AADgPAAALL4AAL6-AAD6PgAA-r4AACy-AAAvPwAAUL0AAHQ-AAB1PwAAOz8AAJK-AAB8PgAAML0AAHC9AABMvgAAUD0AANi9AACovQAATD4AAFw-AACIPQAAnj4AAOI-AADgPAAAFL4AAHw-AAABvwAA7r4AAOi9AACgPAAAqD0AAOg9AAAQvQAAir4AABA9AABAPAAAK78AANa-AAADvwAAQDwAAOA8AAC4PQAA4j4AAFC9AAAQvQAAfz8AAJ4-AAD4vQAAbD4AAGy-AACCPgAAmL0AAGS-IAA4E0AJSHxQASqPAhABGoACAAAsvgAAoLwAAGS-AAAtvwAAHL4AAIg9AACyPgAA4DwAAEQ-AABQvQAAuL0AAIi9AABAvAAAED0AAKg9AABAvAAAuL0AAN4-AACavgAA0j4AADC9AAA8vgAAQLwAABy-AABAvAAAJL4AANi9AAAwvQAAgDsAAKA8AABQPQAAHD4AADy-AADIvQAADD4AAIi9AACKPgAAfD4AACy-AACIPQAAmj4AAKi9AABQPQAAUD0AAIA7AADgvAAAf78AADQ-AACoPQAA4LwAADw-AABwvQAAML0AABQ-AABEPgAALD4AADC9AAAkvgAAED0AAMg9AACoPQAAHL4AAAy-AACIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=pSHa9cDeDZs","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":608,"cheight":1080,"cratio":0.56296,"dups":["8994418519190482302"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"730742640"},"2218900439898709782":{"videoId":"2218900439898709782","docid":"12-0-6-Z439F20AAFD682982","description":"Integration Example - 5 (Applied mathematics) 🎓 Subscribe & Stay Tuned: 👍 Like, Share, and Comment: 🔗 Connect with us: Integration Playlist: • Mastering Integration Techniques | Study2S...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/751119/dd20abd2e0fbaa5012d5ba9d0939b598/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/E9yRpwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3alaLaDS0U0","linkTemplate":"/video/preview/2218900439898709782?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration Example - 5 (Applied mathematics)","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3alaLaDS0U0\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTMjIxODkwMDQzOTg5ODcwOTc4MloTMjIxODkwMDQzOTg5ODcwOTc4MmquDRIBMBgAIkQaMQAKKmhoZ2FhanRia2RybGxycmRoaFVDU2FRaHFKdV9JWWpBS2EtbUo0NWlEZxICABIqD8IPDxoPPxNKggQkAYAEKyqLARABGniB9voC_gEAAPgHBQkAB_0CFwYFAvUCAgDy_QH19QEAAPj1BQAMAAAA-gj6EQIAAAD_8v_49_0BAPkF-AYDAAAAGgL9APcAAAAOGfoC_gEAAO76DvkCAAAAEgoIAf8AAAD2BP4A__8AAPwICAUAAAAAEwsA-wAAAAAgAC2tPtE7OBNACUhOUAIqcxAAGmD9EgAeJA3mwwgc9ubf-vAA__va-_cDAOcBAAvl7tkZEdrX9BP_BMgB6cgAAAD29gELHwDkRP_3xSYs7h7U_e8HAH8aKRXzEwPqxRYk7_3_Bgjk5QAAAPnzHBYR3zQMFjIgAC1ET2c7OBNACUhvUAIqrwYQDBqgBgAAwEEAAAAAAAB4QgAAgL8AAETCAAAUQgAA-EEAALhBAAC4wQAAXMIAABDBAADAwAAAoMEAAKjBAAAAAAAA4EAAAIBCAABQwQAA4EEAACTCAABQwgAAEMIAACDCAAAgQgAAqMIAAGDBAACAwQAAgD8AAChCAABIQgAAfMIAADBBAAAYwgAA0EEAAADCAABgQQAAKEIAAIZCAAAsQgAAdEIAAOjBAAAwQgAAwEAAAIjBAACAwAAAuEEAAMBAAABAwQAAPEIAAADBAAAEwgAAhMIAANjBAACQQQAAJEIAAIBAAAAYwgAAsMEAALhBAAAoQgAAsEEAAKDBAACCwgAAiMIAAADAAACSwgAA0MEAAMLCAAAowgAAoEEAAFBBAADAQAAAYEEAAIDAAADIwQAAJMIAAJzCAABAwQAAbEIAAODAAAAkwgAAYEIAAIjBAAAowgAALEIAACBCAAAAQgAAdMIAACRCAABwwQAAAEEAAIhBAADAwAAAbMIAAEBBAADSwgAAwMAAAJhBAAC4QQAAgEIAAGzCAAAAQQAABEIAAHjCAACCwgAA2EEAAODBAACUQgAA0EEAAGBCAABkQgAA4EEAANjBAADAwQAA4EEAAPhBAACYQQAARMIAALhBAAB8wgAARMIAAKDBAAAgQQAAWMIAAMjBAAAswgAAuMIAAKDBAACSwgAAgD8AALhBAADgwQAAQEEAACBCAAD4wQAACEIAAERCAAAMQgAAoEAAABjCAACeQgAAQMEAAADAAACYQQAAWEIAACxCAADAwAAAMMEAAIBAAAB8QgAAoMAAAAjCAAAgQgAA4MAAAIDBAABIwgAA6sIAANDBAAAgwgAAMMEAAFDBAADYQQAAMEIAAODAAAAQQQAAyEEAAEBAAABoQgAAxEIAAFDCAABgwgAAqEEAAADBAAAAQgAAyEEAALjBAAA0wgAAyEEAAADAAAB8QgAAGMIAAKDCAAAAQAAAoMAAABBBAABgwgAA4MEAAFhCAACIwQAAHMIAAGBCAABAwQAA6MEAACBBAACYwQAAIMEAALjBAAAgQQAAJEIAAFDBIAA4E0AJSHVQASqPAhAAGoACAADgvAAAor4AAAQ-AAAMvgAA-D0AAKI-AAAwvQAAQ78AAMK-AABAPAAAJL4AAFy-AAD4vQAAyD0AAAu_AADIvQAAqj4AADC9AAAUPgAAYT8AAGM_AAAMvgAARD4AAEA8AAAsvgAAor4AAM4-AAB8vgAAUL0AANo-AAB0PgAAHD4AALg9AAAEPgAAbD4AABS-AABsPgAA0r4AAL6-AAAkvgAAXL4AAKa-AABkPgAA2L0AAO6-AADYPQAAmD0AAA-_AAANvwAABb8AAHC9AACIvQAAgLsAAPo-AAAEvgAA2L0AAH8_AACiPgAAoDwAAIg9AAA8vgAABD4AALi9AAC-viAAOBNACUh8UAEqjwIQARqAAgAAFL4AAIC7AAA0vgAAI78AAES-AACgvAAAmj4AABA9AABEPgAAHL4AAAS-AADYvQAAgLsAAKC8AAAQPQAAQDwAABC9AADuPgAAjr4AAM4-AACAOwAABL4AAKi9AABMvgAAML0AAIi9AACovQAAML0AAOA8AACYPQAAiD0AACw-AAA0vgAA6L0AANg9AADgPAAAdD4AACw-AAAsvgAAcD0AAJY-AADIvQAA4DwAAKg9AAC4vQAAgLsAAH-_AAAwPQAAqL0AAOC8AAAkPgAAED0AADC9AAD4PQAAdD4AABQ-AABwvQAAyL0AAIC7AACoPQAAcD0AABy-AACYvQAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=3alaLaDS0U0","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":608,"cheight":1080,"cratio":0.56296,"dups":["2218900439898709782"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3216022817"},"2195094660891030499":{"videoId":"2195094660891030499","docid":"12-11-13-Z650171E22F6B26B4","description":"Integration by Substitution: Integral of (3x^2 - 1)/(x(x^2 - 1)) dx #calculus #integral #integrals #integration #integrationbysubstitution...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2946484/47d0f4f59c3b06c651e2dfa4e355c314/564x318_1"},"target":"_self","position":"12","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhmaHWYHOl9U","linkTemplate":"/video/preview/2195094660891030499?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration by Substitution: Integral of (3x^2 - 1)/(x(x^2 - 1)) dx","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hmaHWYHOl9U\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTMjE5NTA5NDY2MDg5MTAzMDQ5OVoTMjE5NTA5NDY2MDg5MTAzMDQ5OWquDRIBMBgAIkQaMQAKKmhoY2tuaG9janVtcmd4d2NoaFVDVk82b1ZvcS1jM2l2a05RWV9FZXNWZxICABIqD8IPDxoPPxMqggQkAYAEKyqLARABGniB_AkA_fsFAP0CBQL6Bf4B_QH1Bvj9_QDtDv39-_8AAOfx-wgC_wAABQz_BQMAAAD2AQP89P8BAAb--PYDAAAAAvX1APkAAAAODf0DEf4BAe7-APYCAAAAAgrxCAAAAADx_An8_gAAAAT7BAMAAAAAAAACBgAAAAAgAC2jC-E7OBNACUhOUAIqcxAAGmAJEgAfCgDf0wYn5Qb1-v4IAu783Pv6AOXyABwQBs4bGebDAvz_KtbuA8kAAAD4EhA0_wADRRT70Rb_HvEz0-sjEH8EAwj06PHm9ugv7RQQ9__46x8A9R74AffaBUkSJysgAC3BRGY7OBNACUhvUAIqrwYQDBqgBgAAIEEAAHjCAACiQgAAQMIAAGRCAAAEwgAAjkIAAIhBAADQwQAAqEEAAJDBAADQwQAAoEEAANhBAAAAQAAAoEEAAOBBAAAQwgAAEEIAAATCAAAUwgAAYEEAADDCAACAwAAADMIAADjCAAAQwQAAEMEAAMZCAACQwQAAMMIAAKDAAACGwgAAsMEAAIDCAABAQgAATEIAALhCAAAgwgAA6EEAAIjBAADAQAAAAEEAACTCAABwQgAAosIAADDBAABYQgAAGEIAAODAAAAQwQAAUMEAAGBBAACYQQAAiEEAAARCAADcwgAAwEAAAMBAAAAAQgAAKEIAAFTCAAAgwgAApsIAAJjBAAC-wgAA8MEAAJbCAABwQQAARMIAAMhBAAAAQAAA2sIAABBCAABEwgAAAMAAAFDBAACgwQAAEMEAAMDBAAAEwgAAgkIAAADBAABAwAAAAMEAAODAAAAAQgAAMEEAAOhBAAAAwAAAiMEAAGBCAAAUwgAA6EEAAIRCAADwwQAA0MEAAMDAAACoQQAAWEIAACTCAAAUwgAA0EEAAKBAAAAEwgAAgL8AAKhBAADgQAAAIEEAAIRCAADoQQAAbEIAAJDBAABQQQAAbMIAAL5CAACoQQAAIMEAALDCAADwwQAAcMIAAKjCAABAwAAA6EEAAAAAAABcwgAAgMEAAIDBAACIwQAAUEEAAETCAAAAQAAAAAAAAFBCAAAAwgAAwEIAAIBBAAAgQgAAEMIAADjCAABAwAAAAAAAANhBAAAUwgAAIEIAAARCAACAQAAAAEAAAABBAAAEwgAAgMEAAIDAAABEQgAAAEIAADhCAACgwQAAAMIAAEzCAABcwgAAgMAAADTCAAA4QgAA2MEAAIjCAADgwAAAVEIAAIDBAACmQgAALEIAAIC_AADgQAAAAEEAAIA_AABAwgAADMIAADBBAAB4wgAA4MAAAFBCAACQQQAAoMEAAEzCAAAIwgAAMMIAABBCAACAPwAAOMIAAIrCAAAAQAAAEEIAAFBBAADAwQAAUEEAALDBAABAwAAAGEIAAIjBAAAAwgAAUEEAAAAAIAA4E0AJSHVQASqPAhAAGoACAABQvQAAtr4AACy-AAAwvQAAiL0AACQ-AAAMPgAAa78AAIA7AAAMPgAAND4AACS-AADIvQAAfD4AAKa-AACIvQAA1j4AAOg9AAAwPQAAWT8AAH8_AABQvQAAFL4AADC9AACmvgAAhj4AALg9AACOvgAAcD0AAKA8AABEPgAAFD4AALi9AAAkPgAAVD4AANg9AABAPAAAyL0AAHC9AAAcvgAAHD4AAKC8AABUPgAA-D0AAJa-AAC4vQAAdL4AAGS-AAC6vgAAtr4AABC9AACGPgAA2j4AACk_AABsvgAA4LwAAHc_AAAQPQAAFL4AAEC8AABQPQAA2D0AAIC7AADyviAAOBNACUh8UAEqjwIQARqAAgAAHL4AABA9AABcvgAAWb8AAI6-AACIvQAAmj4AAIi9AABsPgAARD4AAHC9AAAcPgAAgLsAAFC9AACAOwAAUD0AAKK-AADWPgAAyL0AAJ4-AABQPQAAjr4AABC9AACAOwAADL4AAHQ-AAAEvgAAiD0AAHS-AACovQAAoLwAAHA9AAC4PQAA2L0AAOi9AACAuwAAjj4AAGw-AAAcvgAARL4AACw-AADIPQAA2D0AAIA7AADGPgAAir4AAH-_AAAEPgAARD4AAIi9AAA8PgAAgLsAAJY-AADoPQAAJL4AADw-AADYvQAAjr4AAAw-AADovQAAZD4AAEA8AACivgAAqD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=hmaHWYHOl9U","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2195094660891030499"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9158212606389473162":{"videoId":"9158212606389473162","docid":"12-8-2-ZA2AC85D3F5E6F518","description":"Integration by Partial Fractions: Integral of (4x^2 - 21x)/((x - 3)^2*(2x + 3)) dx #calculus #integral #integrals #integration #partialfractions #integrationbypartialfraction...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3912787/59b175b952311253cf0ea2078fedc3b6/564x318_1"},"target":"_self","position":"13","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJ483nIvnnn8","linkTemplate":"/video/preview/9158212606389473162?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration by Partial Fractions: Integral of (4x^2 - 21x)/((x - 3)^2*(2x + 3)) dx","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=J483nIvnnn8\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTOTE1ODIxMjYwNjM4OTQ3MzE2MloTOTE1ODIxMjYwNjM4OTQ3MzE2MmqvDRIBMBgAIkUaMQAKKmhoY2tuaG9janVtcmd4d2NoaFVDVk82b1ZvcS1jM2l2a05RWV9FZXNWZxICABIqEMIPDxoPPxPZA4IEJAGABCsqiwEQARp4gfcE-v76BgD9AgUC-gX-AQoL9vj2AAAA-f3-AwUC_wDq-QMGCP8AAP8SBwoFAAAA-AX6_vX_AQAQ_P75AwAAAA317gH-AAAADgz9AxD-AQH5Afr5AwAAAAEB9gMAAAAA9f4EAQEAAAALAQb5AAAAAPv6AQMAAAAAIAAtWlTkOzgTQAlITlACKnMQABpgER0AJhQQ5-YAEez58foEAO_z_d33-gD55AAaCvbJFwzz1gP__wbl9AXTAAAAAgoHG_QA7zkm_tQWBxb5H8r1FhR_7RAK9eAG7fbmJfcPA-_tAugVANsZ7_8G7P0rBCARIAAtne-EOzgTQAlIb1ACKq8GEAwaoAYAAExCAADIwQAA5EIAAFDCAABAQAAAEMEAAIhCAAAoQgAAGMIAAFDBAACAvwAAMMEAACxCAAAQQgAAXMIAAEBCAAAsQgAAiMIAAIJCAADQwQAAgL8AABhCAABQwgAAqEEAAAzCAACEwgAAbMIAAEDAAABYQgAATMIAADTCAABwwQAAfMIAAATCAADAwQAAaEIAABBBAAD4QQAAkMEAAFBBAAB4wgAAEEEAAABCAAA8wgAA6EEAADTCAACoQQAA4MAAADBBAACgwQAALMIAAJjBAAC4QQAANEIAAABCAABIQgAAiMIAAJDBAACYQQAA4EEAAIxCAABwwgAAeMIAABDCAABQQQAAtMIAAATCAAAowgAAAMEAAMjBAABgQQAAwMEAAI7CAAAEQgAAgMIAAMhBAACAQQAAgMEAAMBAAADQwQAA4EAAACBCAAA4wgAARMIAAAzCAAAgQQAAYEEAAADAAABEQgAAAMAAAIC_AABgQgAAoMAAAIBAAABkQgAA6MEAAAjCAADoQQAA2MEAAIRCAAAgwgAAHMIAAIC_AAAYQgAAmMEAAKDBAABwQQAAwEAAAJhBAACEQgAAGEIAAFRCAAC4wQAAyEEAAKzCAADOQgAAcMEAAGDBAABcwgAAyMEAABzCAACIwgAAAEAAADBCAAAgwQAADMIAAMhBAACgQQAAUMIAAIBAAACCwgAASMIAALBBAAAwQgAAbMIAALBCAACgQQAAiEEAALDBAAAIwgAAgEAAAKBAAABAwAAAhsIAAAxCAAA4QgAAkEEAAAhCAACAwQAA6MEAAFzCAACAwQAAAEIAADRCAAAgQgAAAAAAAEjCAAAgwgAAqMEAAKDAAABowgAAEEIAABDCAADgwQAAgEAAAFxCAABwwgAACEIAAIDAAABQwQAAuMEAAIA_AACoQQAAmMIAAMDBAABMQgAAIMIAAPjBAABcQgAAQEEAACzCAACYwQAAoMAAAK7CAACgQQAAgMAAADDCAABAwgAAqMEAAEhCAADgQQAAmEEAAKhBAACoQQAAgD8AAI5CAABgwQAAoMEAAHBBAACIwSAAOBNACUh1UAEqjwIQABqAAgAARL4AAPi9AAA0PgAAUD0AAIg9AAA0PgAAcL0AADm_AACgvAAA2D0AABA9AACOvgAARD4AAHw-AAAcvgAAgLsAAIo-AABwPQAAgLsAAPo-AAB_PwAA6L0AAMi9AAA0vgAAoLwAACw-AAC4vQAARL4AAIY-AACIPQAAyD0AANg9AACYvQAAPD4AAMi9AAAsvgAA-L0AAKi9AABEvgAAgr4AAFA9AAB8PgAAyD0AAAS-AAC4vQAAbL4AAIA7AAA0vgAAXL4AADy-AADIPQAAUD0AANo-AACePgAAhr4AAKC8AAA_PwAAFD4AADC9AAAsPgAA4LwAAGS-AACgvAAAgr4gADgTQAlIfFABKo8CEAEagAIAAEy-AACovQAA6L0AAH2_AAB8vgAAML0AAIY-AAAQvQAAED0AADw-AACqPgAARD4AAAS-AABAPAAA4DwAAAQ-AAAsvgAACz8AAKC8AACKPgAAqD0AAEC8AACIPQAAJL4AAKq-AABMPgAABL4AALg9AAB8vgAAqL0AAMg9AAAcPgAAuL0AAJK-AACAuwAAPD4AALi9AACmPgAARL4AAJa-AAB8PgAAUD0AANi9AABwvQAAfD4AAOA8AAB_vwAAgDsAAAM_AACivgAAPD4AAIg9AAD4PQAAlj4AAEA8AABUPgAAoLwAAOi9AABcPgAAnr4AACQ-AACevgAAVL4AAAQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=J483nIvnnn8","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9158212606389473162"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9276582131773512374":{"videoId":"9276582131773512374","docid":"12-2-2-Z26D43BCF7119C5CA","description":"What’s the best way to test integrations with a database? When do you use unit tests and when do you use integration tests? Check out this short to learn more! 👷 Join the FREE Code Diagnosis...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4539095/ce5ee2ea0a0699f3389d606969d32899/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Zn8RGgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DaY71bo8kPFg","linkTemplate":"/video/preview/9276582131773512374?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Best Practices For Integration Testing And Unit Testing","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=aY71bo8kPFg\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTOTI3NjU4MjEzMTc3MzUxMjM3NFoTOTI3NjU4MjEzMTc3MzUxMjM3NGqHFxIBMBgAIkQaMQAKKmhoYWhtdnpva2RmaGFqZmNoaFVDVmhRMk5uWTVSc2t0NlVqQ1VrSl9EQRICABIqD8IPDxoPPxMtggQkAYAEKyqLARABGniBAQP9AvsFAPj9CP77A_8BDAX_AvcAAAD1BQL_BwH_APTyBwkAAAAA_w0ACPsAAAD3Awf8_P8AABQI_f8EAAAABvr-__oAAAD4BvoA_wEAAPH8_AMDAAAAFQT-BQAAAAD4CQAI_AAAABH__gUAAAAA_Pr6AAAAAAAgAC13W-M7OBNACUhOUAIqhAIQABrwAXoN-QGB8yX6SA0JAPcXDgGF4v3_XQvOADX58v_LAST_CegGABIPCADW9_cA_uEW_7nPCQAL6_8A-wHc___q7ABDFe0BEfoNACHd8wHj5e7-8t8FANUUFAEhBgL_GQzn_hbY9P8l9Q8B_fnW_RD2CAALF_gK__kO_SbxAgYoEA7-E_T3_Pop-AHlLP75RSYW_fYFAAMU8wUE9j0ZARUT7gME9O8BHfz7CQQaKgLqCwsIBvzxAfUFDwT0_94HCCIh-cr0E_Yy--f__tzrAwga-gftzv37GBT1_dvTDAIBI_X6Fdr79Bf37_AJAxUQCu739iAALUF9IDs4E0AJSGFQAirPBxAAGsAHYoQAv_1zB73CMAE8aXD7PVPnUT3dWku7HVbYPS-Xo73dX_28H4E_vE0s1TyNUte7NE0ovlkuwDv0CY88g1C2PhrytLyvVUw8ResSPbALtzt0cHo9R48Pvm2kkTxoOMo8I2XwPMzU_zwrvVu8EJJlvfc1Fz2gIXc8Kg2pOxxubblFJiU9XRcePrAx1Lz9qjc8BI4EvpUR8rxtrMS8t59nPEUxlLyQAQ-8k9STvdUqlTw84Z27EKtkvEP5p7w1zeC6SwDePbiWAzwMELu8uIOFO21F0TxmW7w8-q1nPXe4gryL49s8Fc7qO-Hxzb3T5YM6zAFMu8LPiTzvswS8Dwq6va9eJb2U0vm7FlYFvf1UcLyK-zQ8SuGLPFga2D0gOHi8K2W-vElY5bwWRZc7jclnvU_i2Dw56o08uLc2PGSR5jxNagi9Uxp2PRillbqahWo7zokNvqSlor0_Uw67Ktw3vdv24jz7Z7y8fJ10vTbCDD2ifdc5gubTvSGTDryPJYM6TFqHPdEF9b1VPU-8t3MKvJeGKz2qYT871eSOvC5SbT1W9pe7J7ZnPYjO27tKiKi8KZWwPAo1pzjpP9K7b7swPZ5KIb2jJsw5pf9APNnqsr1Tkje6BscdvP3mtL1fx6g6IgTguw4jjjz9d1A6fw4YvaBnmDymrE87RaUMPXDubz3N_mU7efSFvZ-wBL2BAWc784DoOzp8Tb0AQKm7FuuaPRGr_71s1wG6L_C2vYJHir1gKEe4uj-YPX75yTyCEby5znemPSoO1jzOViq5Ld5ZvORysr0RsBA54eSYPXt5Ljvhu2Y5hjj2PVdKJT1qYjS5O3QVvRo30DwEHy24Icr3PcqpDT7EVJ86zEw_vQpoorz5kXW5AvSLvUU1kL07hjE4R_govJBe3jxuXZa45la9PWXI8T1vK2o3gzevvej20rzpx423ztv9PI1T_jyWiIU5BaR9PJqEgT2wtak4cCfPulJ9p7ywK5K30dMXvP7mbjtOjf04OAEfvA6DeTzgwUS4P8qjvJ34hbzIbpC4Uu-5PdLToT1RasG3TMZRvSxS17z3DyK3XkIqvF9_0j0xLxQ48JUPPUqWqD1_ONE4SCaRPShLmD2LJR03F9MRPUbZgb07_hM4pbdkPOMRZr3kNaI4UsYpvZFfhD0cCQE2bO5oPCkgkryHGKo3BxSguskgtz3C15q3-rYgPuxL9j1uUxy5iITPPWuySz2Jt4U4J8t_PMLWkTzt8O64ZAeRO5ez7bwxH3U3qm15vBskrr19DVS4IAA4E0AJSG1QASpzEAAaYAr-ABLqFPLfCijm5vXqBvvpBBAZ8xUA1AMA-A332_UWBcwPDv8w5QgBywAAAAYTCjEMABFC_tDvAPYD_f7IFQwNfwj7CuP6FeHm-yji5uL-9O0XNQDq-e4eGfH1NR_8HCAALQnBdDs4E0AJSG9QAiqvBhAMGqAGAADAQAAAMMIAADxCAACAQAAAPMIAAADAAACIQQAAaMIAALbCAAAYQgAAgEAAACRCAABAwgAAHMIAANhBAAA0QgAABMIAAKBAAAAQwQAA1MIAABDBAABQQQAAYMEAAARCAACIQQAA0EEAAKDBAAB8wgAAikIAAKRCAADAQQAA-EEAAIC_AACOQgAAHMIAACBBAACgQAAAJEIAAEBCAAD4wQAAgMEAADBBAACYwQAAJEIAAODAAAAAQgAAAAAAAKLCAABIQgAAIEIAAMjBAABgQQAAQMAAAABBAACYwgAAqsIAAIhBAACYwQAAgD8AAARCAADgwAAAkMEAAMjBAACAPwAAEEEAAIhBAAAkQgAADMIAAODAAABwQgAABEIAADDBAABgwgAAnkIAABDBAACSwgAAKMIAAARCAAAMQgAAQMIAAAzCAACgwAAA8MEAAIDAAACYQgAAgEIAAEDCAAAcQgAAYEIAAKBAAAAAAAAAJEIAAGBCAACQQQAAAMEAAJjBAAAgQgAA4EEAAADAAACAvwAABMIAACxCAABIQgAAwMEAAKjBAADAwAAAAEEAAMBAAADYwQAAXEIAAJhBAABgQQAAwEAAAMjBAADoQgAAsEIAAJDBAAC4wQAA8EEAAEDCAACEwgAAuMEAADDBAABowgAAcEEAAHRCAABYwgAA8MEAAADBAADQwQAAYMEAAI7CAACAPwAAfEIAAMhBAAAUwgAAIMEAAODBAACQwQAABMIAAJBBAACIQQAAIMEAANhBAACAPwAAuEEAAEDBAAAoQgAAAMAAACBBAAAMQgAAHEIAAABBAACAQAAAwMAAAADCAAAAQgAAAEAAAHBBAACQwQAAlsIAAPDBAAD4wQAAYEEAAARCAACYwgAAAEEAALDBAAAQQgAAosIAAGTCAABAQQAALEIAAIzCAACIQQAAiEEAADhCAADowQAAykIAAGxCAADgQAAAoMEAAKLCAACAQAAAoEAAAGBCAAA8wgAAvEIAALhBAAAAwAAAaMIAAEhCAABAQAAAPEIAAADBAAAwwgAACMIAAGzCAAA4wgAAsMEgADgTQAlIdVABKo8CEAAagAIAAHS-AACePgAAcD0AAEQ-AACoPQAAbL4AACS-AAALvwAAhj4AAGS-AAC4PQAAXL4AAKo-AACGPgAA2D0AALY-AACePgAAoLwAAMi9AAB_PwAATT8AAIC7AACAOwAApr4AAGS-AACCPgAA6D0AAPi9AACGvgAAXD4AAKI-AACIvQAAiD0AAIo-AAB8PgAAXL4AALi9AAAMvgAAPL4AAIi9AABwPQAA2L0AAJo-AACYPQAAoDwAAO4-AACSPgAAzr4AAIg9AACSvgAA6L0AABy-AAA8PgAAyj4AAEw-AAAUPgAAdT8AADy-AABEPgAArj4AAI6-AACuPgAAJL4AAJq-IAA4E0AJSHxQASqPAhABGoACAADYvQAAML0AAKa-AAAlvwAAPL4AAKA8AABUPgAAZL4AAIC7AAB0PgAANL4AADA9AADgPAAA6L0AAJg9AAAQvQAAnr4AACk_AABwvQAA7j4AAFw-AABcvgAA4DwAABA9AAD4vQAAuL0AAES-AACgPAAABL4AABC9AABwPQAAgDsAABQ-AAAsvgAADD4AAOC8AAAMPgAAUD0AADS-AACYPQAAbD4AADQ-AAAEPgAABL4AAGQ-AABAvAAAf78AAMi9AAD4PQAAur4AANg9AADYvQAAJD4AAPg9AABwPQAALD4AAJi9AAAMvgAAUL0AALg9AACIPQAAjj4AAAy-AADIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=aY71bo8kPFg","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1080,"cheight":1920,"cratio":0.5625,"dups":["9276582131773512374"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3025213577"},"8731754000901063833":{"videoId":"8731754000901063833","docid":"12-10-5-Z62CD977645D12760","description":"2 important substitutions while performing integration.#mathematics#integration#integrated#integralcalculus#integrals#integrationbysubstitution#integrationcl...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3404146/bdedd487c9592f2d50bc54c3036daab3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZLM1pQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dv16u1P8PvNU","linkTemplate":"/video/preview/8731754000901063833?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Learn Integration|Integration by using suitable substitutions","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=v16u1P8PvNU\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTODczMTc1NDAwMDkwMTA2MzgzM1oTODczMTc1NDAwMDkwMTA2MzgzM2q1DxIBMBgAIkQaMQAKKmhoZGd3YmNydWlhZGdmZmNoaFVDWmw5c0U5TnZyMkVLVmJqLWxhbnFadxICABIqD8IPDxoPPxM6ggQkAYAEKyqLARABGniBBQoBAPwEAPj-_QD6BP8B_QH0Bvj9_QDuBwYAAf8AAPn7_wUFAAAA_QL8BQEAAAD2-f__9P8BAA0A_QP7AAAAFfn8AP8AAAABEAAE_gEAAO7-APYCAAAACw72BP8AAAD2BwgD__8AAPoCAwcAAAAAC_7-AQAAAAAgAC3FJN87OBNACUhOUAIqhAIQABrwAX_l6v-m-wH9CgbpANcmDQKyBSL_ICIHALsUKQHOxboCKvfsAc8nygAS5fwBNV3b_yQL9v810CcARb_h_8Ly7gHUAvwBZvf3ACYg-AG-FNr_tNET_-TGFAH4DdkALgHpAuol9QD3GQf719rtBRe0IAAU7wL_6QoKB-68Cf_i-QL6763QANsPDAQb1vf_5QksAc_aCQIWUwX9BDj-BBm_4f4m8h_8ESzsBQTqDgXh-_sLzQT8-gD4E_UBJ_7w-PAo9QYwJu_T2-P55g4EAgof4Q4A5QX50wvmBAsJAxDz2hET6sYVBjwT-wDa7hUL-vb37SAALVZo_jo4E0AJSGFQAipzEAAaYAX0ABETDfvD3BPhGM7oHfvx7dIT5jv_3wkAESkJ1gYf2MEE8f8RB-AOvAAAAO0TCRgFAP5c_M7NA-sZ8fGw8kYRf-4aH9HE_wDN5hAY_PoMG-EPSAAAHcUL-N_0UfAfCyAALQcuQDs4E0AJSG9QAiqvBhAMGqAGAADYQQAAQEEAAHBCAACCwgAAJMIAAIhCAAAAQgAA4EAAAEDCAAAcwgAADEIAAEBAAABAQAAA6MEAACBBAABgQQAAIEEAAPjBAAAwQQAAkMEAANhBAABAQQAAKMIAANBCAAA4wgAAUMIAACjCAAAkwgAAKEIAAEBBAAAAwgAAQEAAAPjBAADgQAAAyMEAAABCAACgwAAA3kIAAOjBAABAQgAAwEEAABDBAAD4QQAAiEEAAIhBAACoQQAAoEEAAPBBAACaQgAAeEIAADTCAABkwgAAnMIAAMBBAAAAQAAAMEEAAITCAAAAAAAAgD8AAIDAAAA8QgAAYMEAAAjCAABMwgAAQEAAAIrCAAAEwgAAgL8AAEjCAABwwQAAjEIAAFBCAABQwQAAhkIAAEDAAAAkQgAAhMIAANDBAAAoQgAA6EEAAABBAAA4QgAAiMEAALBBAAAUwgAApkIAAJBBAACKwgAAgL8AAADBAAAkQgAASEIAAHjCAAAswgAASMIAAFTCAACwwQAAAAAAAERCAAAgQQAAfMIAAOBBAACcQgAA4MEAAEDCAACwwQAA8EEAAKxCAABAQAAAJEIAAGRCAACaQgAAiMIAAMBAAADYQQAAIEEAAKDBAAAQQQAAKEIAABjCAAA0QgAAcMEAAMBAAAAEwgAAsMEAAKDAAAC6wgAAgL8AAKLCAABAQAAAQEIAAITCAAAgQQAAuMEAAFDCAAA8QgAAwEAAAPhBAABwwQAAiMIAALjBAABAQgAAqMEAAOjBAADIQQAA8EEAAABAAACgwQAAIMEAAIBBAAAAwQAAmEEAALpCAABQQQAAyEEAAOjBAACOwgAAuMEAAEDCAAAAQQAAMMEAAEBBAABoQgAA-EEAANjBAABAQQAA4MAAAOBBAAAQQQAAQEAAAHzCAADgQQAAyMEAAIDBAADowQAAEEIAAADBAAAQwQAAYEEAAEBBAACKwgAApMIAABBBAAAgwQAAikIAALTCAAAIwgAA-EEAALjBAACQwQAAwEAAAFDBAAAgQQAAgD8AAIBBAACIQQAAAMIAAABAAACCQgAA0MEgADgTQAlIdVABKo8CEAAagAIAAI6-AADgPAAAEL0AABw-AABUPgAAcD0AAGw-AAA9vwAAqL0AALg9AACoPQAA2D0AAKC8AADmPgAAXL4AAOA8AAAMPgAA2D0AAAS-AABXPwAAez8AAIq-AAA0vgAAQLwAAAu_AACWPgAA2D0AAHy-AAAUPgAAdD4AACQ-AAAwvQAAiL0AAHw-AABMPgAABD4AACQ-AADCvgAADL4AABC9AACoPQAAFD4AAKC8AACgvAAAgDsAACw-AABAvAAAur4AAHy-AAALvwAAML0AADQ-AADqPgAArj4AAHy-AABAvAAAfz8AABC9AADIPQAABD4AAO6-AACAOwAAHL4AAHy-IAA4E0AJSHxQASqPAhABGoACAADIvQAA4DwAAOa-AABLvwAAqr4AAKA8AADOPgAAmL0AAGQ-AADovQAANL4AAOC8AADovQAAFL4AAAQ-AABQPQAAXL4AAMY-AABsvgAAjj4AAKA8AABUvgAAUD0AAKA8AABkvgAAgj4AAMq-AABAvAAADL4AAIa-AABwPQAAuD0AAIC7AABcvgAAUL0AAAw-AADCPgAAXD4AANi9AACKvgAAqj4AAFQ-AADgPAAAmD0AAKI-AADgvAAAf78AALi9AABcPgAAmL0AALI-AAD4vQAAFD4AAGQ-AACgvAAAXD4AAMi9AACevgAAgDsAABC9AAB0PgAA-D0AAJa-AAAwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=v16u1P8PvNU","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":632,"cheight":1440,"cratio":0.43888,"dups":["8731754000901063833"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3845657867"},"13755746793091418511":{"videoId":"13755746793091418511","docid":"56-10-0-Z524EEF92D8128BEF","description":"Why do we always add \" +C\" when solving indefinite integrals? 🤔 In this video, we break down the concept of the Constant of Integration in simple terms. We'll explore why differentiation...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-video_thumb_fresh/1510382/a547637066407d30ace7bde7b3e726290126_rt/564x318_1"},"target":"_self","position":"16","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtWBm_5dvnus","linkTemplate":"/video/preview/13755746793091418511?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is +C in Calculus? Constant of Integration Explained","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tWBm_5dvnus\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFgoUMTM3NTU3NDY3OTMwOTE0MTg1MTFaFDEzNzU1NzQ2NzkzMDkxNDE4NTExaq8NEgEwGAAiRRoxAAoqaGhyeWR4bnlnYW5lbWFlY2hoVUNGTWRFcjFIM2hoQ0lkb0t3c0s4MFR3EgIAEioQwg8PGg8_E84BggQkAYAEKyqLARABGniBBA0A_QL-APr9DgT6B_0CEgMG-gf__wDqBRL6Bf8BAOsP-fQA_wAA8AEA-_8AAADx-Pb8-QAAAAn1AQQEAAAAF-_29v0AAAAMDu4C_wEAAPX_8wID_wAAFwX-BgAAAAD5-QD0AAAAAP4K-AsAAAAAB_4G__v0_gAgAC1tDM47OBNACUhOUAIqcxAAGmAVFgAkFvXxxPoo3Qvr4fsK9Oj72en9APf8AAMgCeoLHtPB5Af_OuoC9MQAAAAA9B4s1gAKUOf4z-wLIQHwzc0ULH8FBREJ_yPk89HxAAng6A0MDCkA7BzoCioE8mPuBxEgAC1641M7OBNACUhvUAIqrwYQDBqgBgAA8EEAAJjBAAAAQQAAmMEAAKDAAADAQAAAHEIAAPhBAAAEwgAAYMEAADhCAAAMwgAAgsIAAEDCAAAQQgAAAEAAABTCAACOwgAAoMAAACBBAAAMQgAAHMIAAODBAAAMQgAAAEAAAAxCAABkwgAAkEEAAOBBAABIQgAAYMIAAAxCAAAQwgAAJMIAAFDBAABQQQAAQEAAAKZCAACQwQAAQEAAAABCAAAkQgAArEIAAMhBAAC4QQAAqsIAABDBAAAUwgAAyEIAANBBAAAQQgAAoMAAAADCAACQwQAAnkIAAMBBAAD4wQAAgMAAAABBAAAoQgAAXEIAAGDCAAAwwQAAKMIAAEDBAAAQwQAAAAAAAKTCAACAQAAAAMIAACxCAADIQgAAUMEAAGRCAADQwQAARMIAADzCAABAQgAA0MEAABTCAACMwgAAgMAAAGxCAABkQgAAPMIAACBBAABcQgAA4EAAAPhBAAAMwgAAwMEAACRCAACMQgAAcMIAADBBAAAAwAAAYMEAAPhBAADgQQAAVEIAAAAAAACeQgAAQMEAADTCAACIwgAA4MAAAFxCAAAYQgAAEEIAAJxCAACIQgAAKMIAACDBAABAwAAAkEEAAJjCAACowQAAlMIAAAxCAADQQQAAgMAAAMTCAABEwgAAFMIAACxCAAAgQgAA8MEAAHBBAACKwgAAcMEAAJBBAACYQQAA4MAAADhCAACYwQAAQEIAAEDAAACwQQAAEMEAAFzCAAAEwgAAVEIAADDBAAAAwQAA4EEAAIBCAAAowgAAkEIAAJjBAACowQAA4MAAACzCAACAvwAAmMEAAEBAAABcwgAAwEEAALTCAACAwAAAgkIAANDBAACQQQAAcMEAAMDBAADIwQAAfMIAADBCAAAwQgAAHMIAAKBAAAAUwgAAAEIAAEDAAAAUwgAAAEEAAIA_AACAvwAAqMEAAExCAABQQgAAjsIAAABBAAAAwAAAuMEAABxCAACQwgAAIMIAAAxCAADYwQAAgEEAAJDBAABkwgAAUEIAAEhCAABAQQAA4MAAANjBAAD4QQAAKMIAAPDBIAA4E0AJSHVQASqPAhAAGoACAABsvgAAdL4AAIi9AABEPgAABL4AAIo-AAAkPgAAI78AAMg9AADYPQAAir4AAJi9AABwPQAAwj4AAI6-AAAUvgAAJD4AABA9AABAvAAANz8AAFs_AAAsvgAADD4AAIA7AACSvgAAvj4AAPg9AACOvgAAlj4AAGw-AAAcPgAAJL4AAHC9AAAkPgAAcL0AANi9AAAcPgAAhr4AABS-AADIvQAAML0AAHC9AACCPgAAML0AABA9AAA8PgAAiD0AAJ6-AACWvgAAVL4AAMi9AACgPAAARD4AAAw-AACYPQAAUD0AAH8_AABAPAAAMD0AAII-AACevgAAoDwAABC9AACmviAAOBNACUh8UAEqjwIQARqAAgAAFL4AAPg9AADyvgAAf78AABO_AAD4vQAALT8AADC9AADCPgAAJD4AACw-AACIvQAA2L0AAEy-AABEPgAAiD0AABQ-AAA8PgAAgDsAAM4-AABMvgAAgj4AALi9AAAMPgAAmr4AAP4-AAAsvgAAqD0AAK6-AACyvgAA4LwAADw-AAAEvgAAmr4AAHy-AADIPQAAHT8AAHw-AABEvgAAur4AAHC9AACmPgAAtr4AAKo-AAD-PgAAiD0AAH-_AAAsvgAAuL0AAHA9AABsPgAATD4AABw-AAB0PgAAJL4AAIY-AACYvQAAnr4AAMY-AAC6vgAAuj4AAFw-AABsvgAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=tWBm_5dvnus","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13755746793091418511"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"756976552772771892":{"videoId":"756976552772771892","docid":"12-8-12-Z2C330E93849C5B70","description":"#integration Basic integration example 1...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4109179/382a536a1dfe69f817d3217fb8c125d4/564x318_1"},"target":"_self","position":"17","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCatvmV2Yzlo","linkTemplate":"/video/preview/756976552772771892?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Basic Integration Example - Calculus","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CatvmV2Yzlo\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFAoSNzU2OTc2NTUyNzcyNzcxODkyWhI3NTY5NzY1NTI3NzI3NzE4OTJqrg0SATAYACJEGjEACipoaHV2end1a2l0ZnFseXdiaGhVQ1R6SHR0eWJRaWVRWFJZMzRHS0U3RlESAgASKg_CDw8aDz8TNYIEJAGABCsqiwEQARp4gfz_CAEAAQD_AfkH-Af9AgYC8vX2__4A6gUR-gX_AQDw__zrBAAAAP4LBwMAAAAA8voF-_sAAAAN-wb7BAAAAB798_r8AAAACgb3Cf4BAADuAQb_AwAAAAkFBAEAAAAA9gT-AP__AAD__AMKAAAAAAv1BQ0AAAAAIAAtSsTUOzgTQAlITlACKnMQABpgJB8AQTXm0KcUPdr-2xYK7u_a-MXdIf_nCQAf-vniFD3VptIb_xnD5P-sAAAA3v0EVe0AF3DQBcTqE-8OBMvCJS9_-iUsAuQO8OXYSAz0xcwRJdcnALwJ0REO5wVl3SEHIAAtUBkfOzgTQAlIb1ACKq8GEAwaoAYAAEhCAAAQwgAA2EIAAMTCAACQwQAAEEIAAFhCAAAwQQAAZMIAAOjBAADgQQAAUMEAAEDBAAAAwgAAQEAAAPBBAACAQgAAAMIAAJhBAAAEwgAAEMEAAIA_AABswgAASEIAALLCAABQwQAAoMEAAIDBAAAwQgAAoMAAAADCAADwQQAARMIAACBCAADiwgAAQEEAAMDAAACIQgAAMEEAACBCAAAAQAAAMMEAAGBBAACYQQAA4EEAABDBAADYQQAAuEEAACxCAACAPwAAWMIAACTCAADAwQAAUEEAAIhBAAAAQgAAaMIAAGBBAABsQgAAoEAAABRCAACEwgAAFMIAAFjCAACwQQAA7MIAAFBBAACIwQAAJMIAAETCAACKQgAAJEIAABTCAACEQgAA-MEAAEDAAAAYwgAAwMEAALBBAAAUQgAAEEEAAJJCAAAowgAAgEAAABjCAACQQgAAgEAAABDCAACwQQAAMEEAAEBBAABUQgAAUMIAAATCAAAwQQAAAMIAALhBAACIwQAAAAAAAFxCAADAwgAAgEAAADRCAAD4wQAACMIAAOBAAACQwQAAQEIAAKjBAADoQQAAgEIAAABBAADQwQAA0MEAABBBAAAoQgAAYEEAAAzCAACAQQAADMIAADDBAADgwAAAgEEAAKBBAACwwQAAqMEAADDBAADgQQAAKMIAAAxCAAAAwAAAmMIAAGBBAABwQQAAQEAAAHxCAABQQQAAYEIAAMBAAAAswgAAAAAAAHBCAADwQQAASMIAAOBAAACaQgAAIEEAAGDBAADgQQAAgMAAAIBBAAAAwQAA6EEAAKhBAADAQQAAoEAAALLCAACgwQAAdMIAACjCAABkwgAAcEEAAMBBAAAgQQAAoMEAAKBAAABQwgAAukIAABBCAABAwAAAQMEAAADAAACAvwAARMIAAFDCAACgQQAAcMEAAATCAACAvwAAqEIAAK7CAACAwgAAqMEAABDBAAAMQgAAJMIAAHjCAACQwQAAQMAAALhBAAA8QgAAgMEAABxCAACgQAAAAMEAAGRCAABgwQAADMIAABBCAADQwSAAOBNACUh1UAEqjwIQABqAAgAArr4AAHC9AAAQPQAABD4AACQ-AABQvQAAjj4AADu_AAD4vQAA2D0AAHy-AABQPQAANL4AAII-AACKvgAAXL4AAHQ-AAAQPQAAyL0AAG0_AAB_PwAAVL4AADC9AAAkPgAA4LwAANI-AADoPQAAVL4AAJg9AACuPgAAED0AAHC9AADovQAAjj4AAHC9AACAuwAAcD0AAM6-AABMvgAAqL0AACS-AAAwPQAAhj4AADC9AAAwvQAAqL0AAAS-AAC2vgAAsr4AAKA8AACovQAALD4AAGw-AACCPgAAmr4AAKi9AAB9PwAA4LwAAKi9AACyPgAAvr4AACw-AACgvAAAFL4gADgTQAlIfFABKo8CEAEagAIAAMi9AABAPAAAdL4AADm_AABUvgAAMD0AAJY-AADgvAAAgDsAAKg9AACIvQAABL4AALg9AABAPAAAyD0AAJi9AABQvQAAtj4AAEy-AACuPgAAFL4AAHA9AACAOwAA2L0AAEC8AAD4vQAAqL0AAFC9AADgPAAAiL0AAEC8AABUPgAAZL4AACS-AADovQAADL4AAKo-AABkPgAAJL4AAOi9AABAvAAAgDsAADy-AAAUPgAAqD0AAEC8AAB_vwAALD4AAAw-AAA0PgAAij4AABy-AACIvQAAij4AAOC8AAAMPgAA4DwAANi9AACIPQAAcD0AAFw-AAAQvQAAoLwAAPi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=CatvmV2Yzlo","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["756976552772771892"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7243277837931315674":{"videoId":"7243277837931315674","docid":"56-10-0-ZEDE4BC180E74CA9B","description":"Well come to my channel Calculus Solutions ❣️ Trust you're doing fine 💫 💫I love breaking down complex issues in simple words. Learning, Awareness & Education is the purpose of this channel.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-video_thumb_fresh/1453808/94125df38632711774d733c18cada8390127_rt/564x318_1"},"target":"_self","position":"18","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4TjF1E8yfmk","linkTemplate":"/video/preview/7243277837931315674?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"An Advanced Integration Techniques For Tricky Integral || MIT & Jee Advanced Aspirants","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4TjF1E8yfmk\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFQoTNzI0MzI3NzgzNzkzMTMxNTY3NFoTNzI0MzI3NzgzNzkzMTMxNTY3NGquDRIBMBgAIkQaMAAKKWhod2psYXZqbXplaWFjcmhoVUNHYkdYelZPOWdfZjRxY0hSNFlnWmF3EgIAESoQwg8PGg8_E9sEggQkAYAEKyqLARABGniBBgUK-v8CAPEC_P_6AgABAgwA__f__wDtBwcAAf8AAPn49wEDAAAABgz_BQMAAAD59gvz_P4AABEHAQz1AAAAD_r89fYAAAAGDPr9_gEAAPX_AP35AQAAABL0_f8AAADtAxAC_wAAAAbzCP4AAAAAEfX9_QABAAAgAC1WytY7OBNACUhOUAIqcxAAGmAkFQArHPTMrMUoz_X16QIV8-re__0U_9zsACkX5cr6HOKx8Af__K0M7bQAAAD1E_1D6gD8YDPn3voaECMVxf4sAH8NJgfjNxTkzv3-2g8ZI_EuEBwAzCwRFw2yG0ILPx0gAC2YlDA7OBNACUhvUAIqrwYQDBqgBgAABEIAAFzCAADUQgAAmMEAABBBAABEQgAASEIAANhBAAAswgAAIMEAABjCAACYwQAAgMAAAPjBAADYwQAAAMEAAEhCAAAQwQAAiEEAAFjCAAA8QgAAwMAAAFjCAABQQQAAjMIAAKBAAACswgAA4EEAAIRCAACYQQAAeMIAAIDBAADCwgAAgD8AAIbCAACGQgAAYEEAAEhCAAAwwQAAREIAACjCAACAPwAAoEAAAEDBAAB8QgAAQEEAAOBBAADIQQAAYEIAAKjBAADgwAAACMIAAABBAABQQQAAcMEAANhBAAAUwgAAoEAAABxCAACAQQAAoMAAAJrCAABYwgAATMIAAGDBAACowgAAIMEAACDCAAB8wgAAgEAAAEBBAACoQQAAlMIAABhCAACQwQAADMIAAAjCAAC4wQAAAMEAAPjBAADwwQAAiEIAABDCAAAAwAAAEMEAAKhBAAAMQgAAPMIAAABCAACgQAAA2EEAANhBAABIwgAA2MEAANhBAACEwgAAEEEAACBBAAAQQgAAqkIAAGjCAADYQQAABEIAAJBBAACqwgAAGMIAANjBAACcQgAAyEEAABBCAAAMQgAAHEIAAEDBAAAQwgAAEMEAACBBAAAEQgAAEMIAAIA_AAAUwgAAiMEAAHDCAABQQQAAwMAAAMDAAABwwQAALMIAAKBAAACSwgAAgD8AAMhBAAA0wgAAAEEAAExCAAAAwgAAPEIAAGRCAADQQQAAHMIAAHDCAAAowgAAeEIAAABCAABwwQAA4MEAAAxCAACAPwAAEMEAAEDAAACAwAAAgMAAAIjBAACaQgAAGMIAAMBBAABAwAAAnMIAABDCAACKwgAA4MAAABzCAABwQQAAYMEAAABBAAAQwgAASEIAAMDAAADOQgAApEIAAATCAAAQQQAAUMEAAKDAAACAwAAANMIAANjBAABIwgAAkEEAADDBAACYQgAAoMIAAGTCAABAwQAAFMIAADRCAACAPwAA0MEAAFDBAADgQAAAgEEAAARCAABcwgAA-EEAAATCAABAQAAApEIAAKBAAAAAwgAAcEEAAMjBIAA4E0AJSHVQASqPAhAAGoACAACuvgAANL4AAI4-AABQvQAAVD4AALo-AAB0PgAAO78AAOi9AAA8PgAALD4AAEA8AAAcPgAAtj4AAOC8AACAOwAABT8AAEC8AAB0PgAANT8AAH8_AABAPAAAND4AADw-AAC4vQAAyj4AANg9AAC6vgAA-D0AAM4-AADYPQAAuL0AAEC8AADgPAAAgDsAANg9AABwvQAAML0AAFy-AAA8vgAABL4AAIg9AABkPgAAmD0AACS-AABcPgAAoj4AAI6-AAAcvgAAur4AAPi9AACIPQAA5j4AAKo-AAA0vgAAgDsAAE8_AAAQPQAAiD0AAKY-AAA0vgAA-D0AAIC7AAD4vSAAOBNACUh8UAEqjwIQARqAAgAATL4AAOC8AABUvgAAe78AALa-AAAkvgAAiD0AAOi9AACgvAAAmD0AAIC7AAAMvgAANL4AAKi9AAAUPgAAUL0AAOi9AAANPwAA6D0AAL4-AAAwPQAAEL0AAMi9AAC4vQAA6L0AAJg9AABcvgAAgDsAAFA9AABAvAAAoDwAAKA8AABsPgAAZL4AAFQ-AACAuwAA-D0AANg9AAD4vQAA4LwAACQ-AABcPgAAZL4AAHA9AACovQAAyL0AAH-_AACIPQAAFD4AAOi9AAAsPgAAPL4AAIA7AAB8PgAAUD0AACQ-AADgvAAAQLwAADA9AACCvgAAHD4AACQ-AABAvAAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=4TjF1E8yfmk","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7243277837931315674"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"16460946238558981384":{"videoId":"16460946238558981384","docid":"12-11-10-Z0146D4BEFD24CC17","description":"for (2 - x) / (x(x + 1)) integration by partial fractions (2 - x) / (x(x + 1)) solve ∫ (2 - x) / (x(x + 1)) dx step by step integration of (2 - x) / (x(x + 1)) decompose (2 - x) / (x(x + 1)) for...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1550427/558dbf7c54b5a8500238a81fa561c803/564x318_1"},"target":"_self","position":"19","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DprFy6DW6XPg","linkTemplate":"/video/preview/16460946238558981384?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration of (2-x)/[x(x+1)] by partial fractions step by step","related_orig_text":"IntegrationQA","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"IntegrationQA\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=prFy6DW6XPg\",\"src\":\"serp\",\"rvb\":\"EqYDChQxMzY4ODAwNDIyMTMxMDI5OTQwOQoSNjUzNzQ2MDY5NTU2MDIxODc5ChM3NTczMjUzODQwNjc4MzI3MDA3ChM1MDU2NTA1Mjg2ODAyNzUzNjAyChM2MjE5MjM3OTQzNjI1MDA1MzA3ChMyMTMzNDQ5NDg1MDc0MDI1MzMwChM2NTU1NTY5MDEzMTg2OTk0ODU0ChM5OTQ0Mjc4MjcyMzIzMjcxODQ4ChM4OTk0NDE4NTE5MTkwNDgyMzAyChMyMjE4OTAwNDM5ODk4NzA5NzgyChMyMTk1MDk0NjYwODkxMDMwNDk5ChM5MTU4MjEyNjA2Mzg5NDczMTYyChM5Mjc2NTgyMTMxNzczNTEyMzc0ChM4NzMxNzU0MDAwOTAxMDYzODMzChQxMzc1NTc0Njc5MzA5MTQxODUxMQoSNzU2OTc2NTUyNzcyNzcxODkyChM3MjQzMjc3ODM3OTMxMzE1Njc0ChQxNjQ2MDk0NjIzODU1ODk4MTM4NAoTNjQyNTM0Mjg4MDk0MDkwNDMxNQoUMTgzNTI1MDE3NTE3ODY2MDgxOTUaFgoUMTY0NjA5NDYyMzg1NTg5ODEzODRaFDE2NDYwOTQ2MjM4NTU4OTgxMzg0aq8NEgEwGAAiRRoxAAoqaGhkZnN0b2x4bGFjeWxtZGhoVUNJWWZyYnVodThMSW1DRUN5OVZuSkxnEgIAEioQwg8PGg8_E6kBggQkAYAEKyqLARABGniB6gUC-v4CAAP-Cvr9A_8BFQL88vUCAgAC-voKBwX-AOz8A_oD_wAA_gsHAgAAAAD3_f71-v8AAA_9_gMEAAAAFvD39_0AAAAMAfkDCP8BAez09_8CAAAABQj0_QAAAADrCP4AAQAAAAQBA_wAAAAADfn3BQAAAAAgAC26iNU7OBNACUhOUAIqcxAAGmATGAA38_vHzBsb6_bt_Bj86fbu9QIFAN_6AA8j48ckF_jXDwz_FMPoEsEAAAAXIvEnFQD1VCP68CX-BQIVsuMQEn_hCxj9CATvAe9G8QQS4fvo7hYAqRLfEAHlCFf8LR8gAC1o0Uo7OBNACUhvUAIqrwYQDBqgBgAAkEEAAIDBAADMQgAAhMIAADBBAACQwQAAfEIAAPhBAAAQwgAAwMEAAHBBAACAvwAAcEEAAARCAACIwQAAwEEAAGhCAABgwgAAkEIAAADCAAAYwgAA4EEAABTCAAAAAAAAMMIAAILCAAAQwQAAoEEAAIpCAACAwQAAcMIAAEDBAACswgAAiMEAABDCAABEQgAAuEEAAHhCAAAgwQAAEEIAABTCAACoQQAAYMEAACDCAACYQQAAQMIAAOBBAABAQgAAgEAAAODAAAAgwQAAHMIAAMDAAABQQQAA8EEAAAhCAAA4wgAAgMAAAKBAAADgQQAAIEEAAETCAAAowgAAYMIAAEDBAADYwgAAyMEAAJDBAAAAwgAACMIAAHBBAABAwQAApMIAACRCAACiwgAAgEEAABDBAACAwQAAoMAAADTCAADAwQAAiEIAAIC_AACAvwAAIMEAAKhBAAAYQgAA4MAAALhBAABgQQAABMIAANhBAAAQwgAABEIAAIZCAABowgAAUMIAACBBAACIwQAAukIAANjBAACAwgAAIMEAAHBBAABMwgAAuEEAABBCAACYQQAA8EEAAJZCAACgQAAAEEIAADDBAADAQAAATMIAANBCAACAwAAAGMIAAGDCAAAowgAATMIAAIrCAACAPwAA0EEAAFDCAABkwgAAYMEAACzCAAAgwQAAMEEAABzCAAAkwgAAEEIAALxCAABEwgAA1kIAAIBBAABUQgAAWMIAAOjBAACgwAAAAMAAAEBAAAAcwgAAIEIAAFxCAADgQAAAGEIAAIA_AACYwQAAyMEAAKDAAABAQQAAIEIAAEBBAADoQQAAeMIAANjBAAAMwgAAoMAAADTCAADgQQAA8MEAAODBAACAQQAAKEIAACzCAABMQgAADEIAAJjBAABwwQAAcEEAACBBAABIwgAAIMIAAARCAACQwgAAMMEAAIBBAAAsQgAANMIAAHDBAADAwQAAjMIAAODAAACIQQAAWMIAAJDCAAAQQQAAKEIAAMBBAACgwAAAcEEAAODAAACIwQAATEIAAIhBAADIwQAAPEIAAAAAIAA4E0AJSHVQASqPAhAAGoACAADIvQAALL4AAIC7AAAEPgAAUD0AABQ-AAAcPgAAMb8AABS-AABsPgAAqL0AAPi9AABAPAAAQLwAAN6-AACAuwAAiD0AAFA9AABwvQAA8j4AAH8_AADYPQAAJL4AAIC7AAAsvgAAqj4AALg9AAB8vgAAPD4AAMi9AADIPQAA2D0AAKC8AAA0PgAAiD0AAEC8AAAkPgAAhr4AAMi9AAAcvgAA4DwAAKA8AACaPgAAgLsAAMg9AADgPAAA-L0AAHS-AABkvgAAkr4AAFw-AAD4PQAAuj4AAMo-AACovQAAHL4AAB8_AADYPQAAbL4AAHC9AABAPAAAcL0AABC9AACSviAAOBNACUh8UAEqjwIQARqAAgAABD4AAJg9AACKvgAAK78AAKa-AADoPQAACT8AAOg9AAAQPQAAvj4AAEQ-AADgvAAAuL0AAIK-AABsPgAAgLsAAIC7AADiPgAAfL4AALo-AABAPAAAgDsAAJg9AAC4PQAAML0AAHA9AACCvgAAcD0AADS-AABkvgAA4LwAADA9AAC6vgAAzr4AAKi9AAAUPgAATD4AAGQ-AACavgAALL4AALi9AACSPgAAML0AAFA9AAAXPwAA2D0AAH-_AACAuwAARD4AAGy-AACovQAAXD4AADQ-AADoPQAAuL0AABQ-AAAwvQAAbL4AALg9AACovQAAbD4AAJo-AABEPgAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=prFy6DW6XPg","parent-reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["16460946238558981384"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"13688004221310299409":{"videoId":"13688004221310299409","title":"\u0007[Integration\u0007] of (x + 1)(x + 3) & x (x^2 - 1) | Integral Calculus","cleanTitle":"Integration of (x + 1)(x + 3) & x (x^2 - 1) | Integral Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hwKY4WjPVcc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hwKY4WjPVcc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnhKQjU4TThMQV92UmVsc2ZFNi1sQQ==","name":"MuhammadA.","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MuhammadA.","origUrl":"http://www.youtube.com/@muhammada.10","a11yText":"MuhammadA.. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":260,"text":"4:20","a11yText":"Süre 4 dakika 20 saniye","shortText":"4 dk."},"date":"2 eyl 2024","modifyTime":1725257707000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hwKY4WjPVcc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hwKY4WjPVcc","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":260},"parentClipId":"13688004221310299409","href":"/preview/13688004221310299409?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/13688004221310299409?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"653746069556021879":{"videoId":"653746069556021879","title":"Integrations: Step 1 - Drupal plugin | Setup and activate the \u0007[integration\u0007] method","cleanTitle":"Integrations: Step 1 - Drupal plugin | Setup and activate the integration method","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=K1e8R_GJXGA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/K1e8R_GJXGA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbmRaUVdnWW1ZYUlpS1JDQ1B3UkxSUQ==","name":"PayTabs Global","isVerified":false,"subscribersCount":0,"url":"/video/search?text=PayTabs+Global","origUrl":"http://www.youtube.com/@PaytabsCoPaymentGateway","a11yText":"PayTabs Global. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":87,"text":"1:27","a11yText":"Süre 1 dakika 27 saniye","shortText":"1 dk."},"date":"13 kas 2023","modifyTime":1699833600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/K1e8R_GJXGA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=K1e8R_GJXGA","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":87},"parentClipId":"653746069556021879","href":"/preview/653746069556021879?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/653746069556021879?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7573253840678327007":{"videoId":"7573253840678327007","title":"\u0007[Integration\u0007] of (2x +3)^1/2 | Integral Calculus","cleanTitle":"Integration of (2x +3)^1/2 | Integral Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pJKTfY2QPEY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pJKTfY2QPEY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnhKQjU4TThMQV92UmVsc2ZFNi1sQQ==","name":"MuhammadA.","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MuhammadA.","origUrl":"http://www.youtube.com/@muhammada.10","a11yText":"MuhammadA.. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":81,"text":"1:21","a11yText":"Süre 1 dakika 21 saniye","shortText":"1 dk."},"date":"12 eyl 2024","modifyTime":1726138806000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pJKTfY2QPEY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pJKTfY2QPEY","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":81},"parentClipId":"7573253840678327007","href":"/preview/7573253840678327007?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/7573253840678327007?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5056505286802753602":{"videoId":"5056505286802753602","title":"\u0007[Integration\u0007] by Partial Fractions: Integral of 1/(x^2(x^2 + 25)) dx","cleanTitle":"Integration by Partial Fractions: Integral of 1/(x^2(x^2 + 25)) dx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eBXV2JYyJhM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eBXV2JYyJhM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVk82b1ZvcS1jM2l2a05RWV9FZXNWZw==","name":"Academic Videos (Solved Examples)","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Academic+Videos+%28Solved+Examples%29","origUrl":"http://www.youtube.com/@AcademicVideosSolvedExamples","a11yText":"Academic Videos (Solved Examples). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":294,"text":"4:54","a11yText":"Süre 4 dakika 54 saniye","shortText":"4 dk."},"date":"16 ara 2024","modifyTime":1734307200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eBXV2JYyJhM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eBXV2JYyJhM","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":294},"parentClipId":"5056505286802753602","href":"/preview/5056505286802753602?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/5056505286802753602?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6219237943625005307":{"videoId":"6219237943625005307","title":"\u0007[Integration\u0007] by Partial Fractions: Integral of 1/((x - 2)(x - 4)) dx","cleanTitle":"Integration by Partial Fractions: Integral of 1/((x - 2)(x - 4)) dx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=w8i-mDll_IA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/w8i-mDll_IA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVk82b1ZvcS1jM2l2a05RWV9FZXNWZw==","name":"Academic Videos (Solved Examples)","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Academic+Videos+%28Solved+Examples%29","origUrl":"http://www.youtube.com/@AcademicVideosSolvedExamples","a11yText":"Academic Videos (Solved Examples). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":90,"text":"1:30","a11yText":"Süre 1 dakika 30 saniye","shortText":"1 dk."},"date":"25 eki 2024","modifyTime":1729814400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/w8i-mDll_IA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=w8i-mDll_IA","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":90},"parentClipId":"6219237943625005307","href":"/preview/6219237943625005307?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/6219237943625005307?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2133449485074025330":{"videoId":"2133449485074025330","title":"\u0007[Integration\u0007] by Partial Fractions: Integral of 1/((x + 2)(x^2 + 4x + 3)) dx","cleanTitle":"Integration by Partial Fractions: Integral of 1/((x + 2)(x^2 + 4x + 3)) dx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=p3PfeQG4Mmo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/p3PfeQG4Mmo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVk82b1ZvcS1jM2l2a05RWV9FZXNWZw==","name":"Academic Videos (Solved Examples)","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Academic+Videos+%28Solved+Examples%29","origUrl":"http://www.youtube.com/@AcademicVideosSolvedExamples","a11yText":"Academic Videos (Solved Examples). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":250,"text":"4:10","a11yText":"Süre 4 dakika 10 saniye","shortText":"4 dk."},"date":"4 eki 2025","modifyTime":1759536000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/p3PfeQG4Mmo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=p3PfeQG4Mmo","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":250},"parentClipId":"2133449485074025330","href":"/preview/2133449485074025330?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/2133449485074025330?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6555569013186994854":{"videoId":"6555569013186994854","title":"\u0007[Integration\u0007] by Partial Fractions: Integral of 3/((x + 1)(x^2 + x)) dx","cleanTitle":"Integration by Partial Fractions: Integral of 3/((x + 1)(x^2 + x)) dx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=h4UHGN29-5k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/h4UHGN29-5k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVk82b1ZvcS1jM2l2a05RWV9FZXNWZw==","name":"Academic Videos (Solved Examples)","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Academic+Videos+%28Solved+Examples%29","origUrl":"http://www.youtube.com/@AcademicVideosSolvedExamples","a11yText":"Academic Videos (Solved Examples). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":208,"text":"3:28","a11yText":"Süre 3 dakika 28 saniye","shortText":"3 dk."},"date":"30 eki 2024","modifyTime":1730246400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/h4UHGN29-5k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=h4UHGN29-5k","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":208},"parentClipId":"6555569013186994854","href":"/preview/6555569013186994854?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/6555569013186994854?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9944278272323271848":{"videoId":"9944278272323271848","title":"\u0007[Integration\u0007] Example - 27 (Applied mathematics)","cleanTitle":"Integration Example - 27 (Applied mathematics)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NFA67zmJB8Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NFA67zmJB8Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU2FRaHFKdV9JWWpBS2EtbUo0NWlEZw==","name":"Study2Share","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Study2Share","origUrl":"http://www.youtube.com/@Study2Share","a11yText":"Study2Share. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":95,"text":"1:35","a11yText":"Süre 1 dakika 35 saniye","shortText":"1 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"23 nis 2018","modifyTime":1524441600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NFA67zmJB8Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NFA67zmJB8Q","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":95},"parentClipId":"9944278272323271848","href":"/preview/9944278272323271848?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/9944278272323271848?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8994418519190482302":{"videoId":"8994418519190482302","title":"\u0007[Integration\u0007] Example - 30 (Applied mathematics)","cleanTitle":"Integration Example - 30 (Applied mathematics)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pSHa9cDeDZs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pSHa9cDeDZs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU2FRaHFKdV9JWWpBS2EtbUo0NWlEZw==","name":"Study2Share","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Study2Share","origUrl":"http://www.youtube.com/@Study2Share","a11yText":"Study2Share. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":79,"text":"1:19","a11yText":"Süre 1 dakika 19 saniye","shortText":"1 dk."},"date":"23 nis 2018","modifyTime":1524441600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pSHa9cDeDZs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pSHa9cDeDZs","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":79},"parentClipId":"8994418519190482302","href":"/preview/8994418519190482302?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/8994418519190482302?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2218900439898709782":{"videoId":"2218900439898709782","title":"\u0007[Integration\u0007] Example - 5 (Applied mathematics)","cleanTitle":"Integration Example - 5 (Applied mathematics)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3alaLaDS0U0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3alaLaDS0U0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU2FRaHFKdV9JWWpBS2EtbUo0NWlEZw==","name":"Study2Share","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Study2Share","origUrl":"http://www.youtube.com/@Study2Share","a11yText":"Study2Share. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":74,"text":"1:14","a11yText":"Süre 1 dakika 14 saniye","shortText":"1 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"6 nis 2018","modifyTime":1522972800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3alaLaDS0U0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3alaLaDS0U0","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":74},"parentClipId":"2218900439898709782","href":"/preview/2218900439898709782?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/2218900439898709782?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2195094660891030499":{"videoId":"2195094660891030499","title":"\u0007[Integration\u0007] by Substitution: Integral of (3x^2 - 1)/(x(x^2 - 1)) dx","cleanTitle":"Integration by Substitution: Integral of (3x^2 - 1)/(x(x^2 - 1)) dx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hmaHWYHOl9U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hmaHWYHOl9U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVk82b1ZvcS1jM2l2a05RWV9FZXNWZw==","name":"Academic Videos (Solved Examples)","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Academic+Videos+%28Solved+Examples%29","origUrl":"http://www.youtube.com/@AcademicVideosSolvedExamples","a11yText":"Academic Videos (Solved Examples). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":42,"text":"00:42","a11yText":"Süre 42 saniye","shortText":""},"date":"28 haz 2025","modifyTime":1751068800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hmaHWYHOl9U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hmaHWYHOl9U","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":42},"parentClipId":"2195094660891030499","href":"/preview/2195094660891030499?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/2195094660891030499?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9158212606389473162":{"videoId":"9158212606389473162","title":"\u0007[Integration\u0007] by Partial Fractions: Integral of (4x^2 - 21x)/((x - 3)^2*(2x + 3)) dx","cleanTitle":"Integration by Partial Fractions: Integral of (4x^2 - 21x)/((x - 3)^2*(2x + 3)) dx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=J483nIvnnn8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/J483nIvnnn8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVk82b1ZvcS1jM2l2a05RWV9FZXNWZw==","name":"Academic Videos (Solved Examples)","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Academic+Videos+%28Solved+Examples%29","origUrl":"http://www.youtube.com/@AcademicVideosSolvedExamples","a11yText":"Academic Videos (Solved Examples). "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":473,"text":"7:53","a11yText":"Süre 7 dakika 53 saniye","shortText":"7 dk."},"date":"17 kas 2024","modifyTime":1731801600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/J483nIvnnn8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=J483nIvnnn8","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":473},"parentClipId":"9158212606389473162","href":"/preview/9158212606389473162?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/9158212606389473162?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9276582131773512374":{"videoId":"9276582131773512374","title":"Best Practices For \u0007[Integration\u0007] Testing And Unit Testing","cleanTitle":"Best Practices For Integration Testing And Unit Testing","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/aY71bo8kPFg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/aY71bo8kPFg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVmhRMk5uWTVSc2t0NlVqQ1VrSl9EQQ==","name":"ArjanCodes","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ArjanCodes","origUrl":"http://www.youtube.com/@ArjanCodes","a11yText":"ArjanCodes. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":45,"text":"00:45","a11yText":"Süre 45 saniye","shortText":""},"views":{"text":"32,5bin","a11yText":"32,5 bin izleme"},"date":"25 eki 2022","modifyTime":1666645575000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/aY71bo8kPFg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=aY71bo8kPFg","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":45},"parentClipId":"9276582131773512374","href":"/preview/9276582131773512374?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/9276582131773512374?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8731754000901063833":{"videoId":"8731754000901063833","title":"Learn \u0007[Integration\u0007]|\u0007[Integration\u0007] by using suitable substitutions","cleanTitle":"Learn Integration|Integration by using suitable substitutions","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/v16u1P8PvNU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/v16u1P8PvNU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWmw5c0U5TnZyMkVLVmJqLWxhbnFadw==","name":"Mathematics by Farah","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+by+Farah","origUrl":"http://www.youtube.com/@mathematicsbyfarah8192","a11yText":"Mathematics by Farah. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":58,"text":"00:58","a11yText":"Süre 58 saniye","shortText":""},"date":"29 oca 2021","modifyTime":1611878400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/v16u1P8PvNU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=v16u1P8PvNU","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":58},"parentClipId":"8731754000901063833","href":"/preview/8731754000901063833?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/8731754000901063833?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13755746793091418511":{"videoId":"13755746793091418511","title":"What is +C in Calculus? Constant of \u0007[Integration\u0007] Explained","cleanTitle":"What is +C in Calculus? Constant of Integration Explained","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tWBm_5dvnus","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tWBm_5dvnus?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRk1kRXIxSDNoaENJZG9Ld3NLODBUdw==","name":"CodeLucky","isVerified":false,"subscribersCount":0,"url":"/video/search?text=CodeLucky","origUrl":"http://www.youtube.com/@thecodelucky","a11yText":"CodeLucky. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":206,"text":"3:26","a11yText":"Süre 3 dakika 26 saniye","shortText":"3 dk."},"date":"25 oca 2026","modifyTime":1769369460000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tWBm_5dvnus?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tWBm_5dvnus","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":206},"parentClipId":"13755746793091418511","href":"/preview/13755746793091418511?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/13755746793091418511?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"756976552772771892":{"videoId":"756976552772771892","title":"Basic \u0007[Integration\u0007] Example - Calculus","cleanTitle":"Basic Integration Example - Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CatvmV2Yzlo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CatvmV2Yzlo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVHpIdHR5YlFpZVFYUlkzNEdLRTdGUQ==","name":"Math Turtle","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Turtle","origUrl":"http://www.youtube.com/@MathTurtle","a11yText":"Math Turtle. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":53,"text":"00:53","a11yText":"Süre 53 saniye","shortText":""},"date":"19 şub 2023","modifyTime":1676764800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CatvmV2Yzlo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CatvmV2Yzlo","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":53},"parentClipId":"756976552772771892","href":"/preview/756976552772771892?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/756976552772771892?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7243277837931315674":{"videoId":"7243277837931315674","title":"An Advanced \u0007[Integration\u0007] Techniques For Tricky Integral || MIT & Jee Advanced Aspirants","cleanTitle":"An Advanced Integration Techniques For Tricky Integral || MIT & Jee Advanced Aspirants","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4TjF1E8yfmk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4TjF1E8yfmk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR2JHWHpWTzlnX2Y0cWNIUjRZZ1phdw==","name":"Calculus Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Calculus+Solutions","origUrl":"http://www.youtube.com/@awais_ahmed-321","a11yText":"Calculus Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":603,"text":"10:03","a11yText":"Süre 10 dakika 3 saniye","shortText":"10 dk."},"date":"27 oca 2026","modifyTime":1769507559000,"freshBadge":"3 gün önce","isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4TjF1E8yfmk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4TjF1E8yfmk","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":603},"parentClipId":"7243277837931315674","href":"/preview/7243277837931315674?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/7243277837931315674?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16460946238558981384":{"videoId":"16460946238558981384","title":"\u0007[Integration\u0007] of (2-x)/[x(x+1)] by partial fractions step by step","cleanTitle":"Integration of (2-x)/[x(x+1)] by partial fractions step by step","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=prFy6DW6XPg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/prFy6DW6XPg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":169,"text":"2:49","a11yText":"Süre 2 dakika 49 saniye","shortText":"2 dk."},"date":"1 tem 2025","modifyTime":1751328000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/prFy6DW6XPg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=prFy6DW6XPg","reqid":"1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL","duration":169},"parentClipId":"16460946238558981384","href":"/preview/16460946238558981384?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","rawHref":"/video/preview/16460946238558981384?parent-reqid=1769804735179381-962103561681932383-balancer-l7leveler-kubr-yp-klg-323-BAL&text=IntegrationQA","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9621035616819323837323","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"IntegrationQA","queryUriEscaped":"IntegrationQA","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}