{"pages":{"search":{"query":"smooth integrals","originalQuery":"smooth integrals","serpid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","parentReqid":"","serpItems":[{"id":"6530897090056799167-0-0","type":"videoSnippet","props":{"videoId":"6530897090056799167"},"curPage":0},{"id":"5916975735418618219-0-1","type":"videoSnippet","props":{"videoId":"5916975735418618219"},"curPage":0},{"id":"4959902445381120245-0-2","type":"videoSnippet","props":{"videoId":"4959902445381120245"},"curPage":0},{"id":"7226833087246045236-0-3","type":"videoSnippet","props":{"videoId":"7226833087246045236"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dHNtb290aCBpbnRlZ3JhbHMK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","ui":"desktop","yuid":"3644853471769713979"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"8830734536610726753-0-5","type":"videoSnippet","props":{"videoId":"8830734536610726753"},"curPage":0},{"id":"7150906493252255897-0-6","type":"videoSnippet","props":{"videoId":"7150906493252255897"},"curPage":0},{"id":"5808067693608149714-0-7","type":"videoSnippet","props":{"videoId":"5808067693608149714"},"curPage":0},{"id":"11061252718576872234-0-8","type":"videoSnippet","props":{"videoId":"11061252718576872234"},"curPage":0},{"id":"18066711814081169576-0-9","type":"videoSnippet","props":{"videoId":"18066711814081169576"},"curPage":0},{"id":"15581635488392610392-0-10","type":"videoSnippet","props":{"videoId":"15581635488392610392"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dHNtb290aCBpbnRlZ3JhbHMK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","ui":"desktop","yuid":"3644853471769713979"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"9342979124051020161-0-12","type":"videoSnippet","props":{"videoId":"9342979124051020161"},"curPage":0},{"id":"3151091455907024359-0-13","type":"videoSnippet","props":{"videoId":"3151091455907024359"},"curPage":0},{"id":"10679359845643689770-0-14","type":"videoSnippet","props":{"videoId":"10679359845643689770"},"curPage":0},{"id":"11339382622870700790-0-15","type":"videoSnippet","props":{"videoId":"11339382622870700790"},"curPage":0},{"id":"8933047828036088445-0-16","type":"videoSnippet","props":{"videoId":"8933047828036088445"},"curPage":0},{"id":"17462774937159519067-0-17","type":"videoSnippet","props":{"videoId":"17462774937159519067"},"curPage":0},{"id":"4673848388761785998-0-18","type":"videoSnippet","props":{"videoId":"4673848388761785998"},"curPage":0},{"id":"4766110775508062957-0-19","type":"videoSnippet","props":{"videoId":"4766110775508062957"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dHNtb290aCBpbnRlZ3JhbHMK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","ui":"desktop","yuid":"3644853471769713979"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dsmooth%2Bintegrals"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"7349077243931442903794","expFlags":{"velocity_delay_drawer":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455698,0,10;1466867,0,3;1414492,0,40;1433081,0,81;124067,0,69;1476204,0,25;1471965,0,11;1460923,0,60;1470058,0,33;1460717,0,86;1459297,0,33;1472031,0,55;1471624,0,58;138060,0,20;1469885,0,22;1461715,0,86;1463533,0,25;1469608,0,16;1466296,0,85;1470853,0,43;1464403,0,97;1349071,0,92;1470513,0,37;124063,0,61;1404022,0,33;263461,0,22;255406,0,22;1473828,0,31;1477442,0,9;56261,0,88;151171,0,69;1281084,0,79;287509,0,68;1447467,0,78;1350564,0,41;1466397,0,26;1296808,0,73"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dsmooth%2Bintegrals","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=smooth+integrals","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=smooth+integrals","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"smooth integrals: 2 bin video Yandex'te bulundu","description":"\"smooth integrals\" sorgusu için arama sonuçları Yandex'te","shareTitle":"smooth integrals — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y0c0809ff8252706488658af3c75b35fe","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455698,1466867,1414492,1433081,124067,1476204,1471965,1460923,1470058,1460717,1459297,1472031,1471624,138060,1469885,1461715,1463533,1469608,1466296,1470853,1464403,1349071,1470513,124063,1404022,263461,255406,1473828,1477442,56261,151171,1281084,287509,1447467,1350564,1466397,1296808","queryText":"smooth integrals","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"3644853471769713979","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1099741,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1152703,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1281110,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1364920,1478181,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769714031","tz":"America/Louisville","to_iso":"2026-01-29T14:13:51-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455698,1466867,1414492,1433081,124067,1476204,1471965,1460923,1470058,1460717,1459297,1472031,1471624,138060,1469885,1461715,1463533,1469608,1466296,1470853,1464403,1349071,1470513,124063,1404022,263461,255406,1473828,1477442,56261,151171,1281084,287509,1447467,1350564,1466397,1296808","queryText":"smooth integrals","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"3644853471769713979","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"7349077243931442903794","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":158,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":false,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":false,"wildcard":true,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":false,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":false,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"userAvatarUrl":null,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"3644853471769713979","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1758.0__92da10e6e1e89374a81e86c5e5366c3357f68658","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"6530897090056799167":{"videoId":"6530897090056799167","docid":"34-0-7-Z2078DB610396F8AA","description":"Jesus Christ is NOT white. Jesus Christ Cannot be white, it is a matter of biblical evidence. Jesus said don't image worship. Jesus is God, Jesus is THE Messiah. And this integral is neat...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3172853/d0078ab7ce1f5191c3dec34f7ed39ecb/564x318_1"},"target":"_self","position":"0","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"The Smooth Integral:)","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=btGWpSpHBTw\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhUKEzY1MzA4OTcwOTAwNTY3OTkxNjdaEzY1MzA4OTcwOTAwNTY3OTkxNjdqrQ0SATAYACJDGi8ACihoaHRtenpsZ3lqa2luemhoVUNCcXoxMXZYNTNrTGNRMU04VG9LYnJBEgIAECoQwg8PGg8_E7gBggQkAYAEKyqLARABGniB8wkHCP8CAA8KBP_9BQAA6P35BPsAAAD-_QwCAAX-APfs_gYHAAAA8QYBAgkAAADsB_319QEAABP1AQADAAAADPH9__kAAAAED_sECgABAfkB-fgD_wAAAgYFEQAAAADt-AoFAAAAAAb5__0AAAAAEP0JBAAAAAAgAC3ZfdY7OBNACUhOUAIqcxAAGmAUEwADEAnw3foO8_70CQX3DPz6098OAA0QAOkFAugHEt68Ewz_BOL1484AAAD4BRkX-QDsQwX1zOkKNw_n1u8cD38YAf4G2wjg9Oft8ST04_wR_w0ACxHjA_joIT8OMiQgAC0bpnU7OBNACUhvUAIqrwYQDBqgBgAA4MEAAADCAADiQgAAXMIAACRCAACYwQAAuEIAAOhBAACSwgAAdMIAACBBAAAkwgAAAMEAAEDAAAAAQQAAcEEAAAhCAADwwQAAFEIAANBBAAAgwQAAuMEAAGDCAACAPwAA2MEAAABBAABQwgAAkMEAALhBAACAPwAATMIAAIDBAABgwQAAVEIAAIrCAAAAwgAAsEEAAIhBAABgQgAAYEEAAKhBAABAwQAA8EEAAJDBAAAUQgAAFMIAAMhBAAC4QQAAXEIAAERCAAA4wgAAkMEAAHDBAADoQQAAyEEAAGRCAACOwgAAyMEAABBBAADQQQAAREIAAHTCAAA0wgAAyMEAAPjBAADcwgAAMMEAAGDCAADYwQAAIMIAALpCAACwQQAALMIAAM5CAAAAwgAAisIAAIhBAABQwQAA0MEAAMBBAABwwQAAXEIAAFDBAACgQQAAgD8AAIhCAACQwQAA8EEAAKDAAAAAAAAA4EAAAAxCAADwwQAAIMEAAMBBAABQwgAAwMAAANjBAACwQQAAWEIAAKDBAAAsQgAADEIAACzCAACGwgAAoMAAAKhBAADIQQAAcMEAAIJCAABkQgAAqMEAAOBAAAAwwQAAEMEAADxCAAAAQQAA6MEAAEBAAADAwQAAMEEAAIrCAAAAQAAAMMIAAIhBAACQQQAAaMIAAARCAABMwgAAQMEAADhCAABAwAAAYMEAAOZCAACAwQAALEIAADjCAACAwAAAMMEAAKDCAAAQQQAAmEEAAKDAAABwwQAADEIAAPhBAAAwQQAA2MEAADBBAAAQwQAAcEEAAJDBAAAMQgAAuMEAAIBAAACIQQAA8MEAABzCAAB0wgAA4EEAAFTCAABAQAAA-EEAAEBBAAAsQgAAsEEAAMhBAADIQgAAeEIAAADBAACgwAAAgEIAAIjBAACwwQAAdMIAAADAAADAwQAAUMIAANDBAADYQgAAmMIAAGzCAADowQAAwMAAANBBAAAwwgAACMIAAMDAAADAwAAAEEIAAADCAAAQwQAACEIAACDBAAD4QQAAlkIAABhCAAAwQQAAbMIAAGTCIAA4E0AJSHVQASqPAhAAGoACAACovQAAbL4AAAQ-AACoPQAAmL0AAHQ-AAAEvgAA_r4AAJi9AABEPgAAoLwAAKg9AACgPAAAlj4AAOA8AACYvQAAtj4AAIC7AACgvAAA3j4AAHE_AABMvgAA-D0AADQ-AACOvgAAgLsAAIC7AACOvgAAuj4AAMI-AABQPQAAHD4AADC9AABEPgAA-L0AAIg9AABQPQAAXL4AADy-AABUvgAAqL0AAGS-AAAUPgAA4LwAAOC8AADoPQAAgDsAAOi9AADKvgAApr4AAHC9AAAEvgAAsj4AALg9AADOvgAAyD0AAH8_AADgvAAAuD0AAEQ-AAAsvgAAED0AABA9AACSviAAOBNACUh8UAEqjwIQARqAAgAAir4AAHA9AABAPAAAf78AAOA8AACovQAAij4AAKK-AAAkPgAAgDsAAIi9AAAUvgAAUD0AAJi9AAAwPQAAQDwAABC9AAD-PgAAoDwAABw-AADIPQAA4DwAAJg9AADgPAAAHL4AAHQ-AADovQAAgDsAADC9AABQPQAAcD0AAAQ-AABwPQAARL4AAJK-AACYPQAAXD4AADC9AADYvQAAhr4AABA9AAAMPgAA-D0AADQ-AADoPQAAQDwAAH-_AADgPAAAyD0AAIo-AAB0PgAAoDwAAKY-AAA0PgAAlr4AAAw-AACAuwAA-L0AAFQ-AACevgAAhj4AALi9AAB8vgAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=btGWpSpHBTw","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":480,"cheight":360,"cratio":1.33333,"dups":["6530897090056799167"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"5916975735418618219":{"videoId":"5916975735418618219","docid":"34-10-7-ZCAA4BD387E496588","description":"integral,calculus,math,what is calculus,integrals,calculus tutorial,maths,indefinite integral,what is an integral,calculus made easy,integration,understand c...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3445360/3c172eee3b59bec5ae0e699b4b98486e/564x318_1"},"target":"_self","position":"1","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"#integration #maths #calculus #education #calculushelp #smoothintegral","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=L53kYWzvl6k\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhUKEzU5MTY5NzU3MzU0MTg2MTgyMTlaEzU5MTY5NzU3MzU0MTg2MTgyMTlqrg0SATAYACJEGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKg_CDw8aDz8TEIIEJAGABCsqiwEQARp4gfsEAQL-AwAZ9_wF_Qj_AfgMAPr5_f0A_QwF-_oE_gD3-QD3AQAAAP8GAf8FAAAA8wP-AfoAAAAQ-_75AwAAABX5_AD_AAAADA3wAv8AAAADBQMADQH_AhX-BgMAAAAA-wEJAPv_AAD7_wT4AAAAAAb9DQEAAAAAIAAtnXXbOzgTQAlITlACKnMQABpg8BsAQCvhwa76RtHy1_Mk8Qrp3rHlJv_4Kv_iB_bK_1G4zewp__3cAt-nAAAA8ewbE84AzHjVzKLWFzQL49DTQC9_AgUY99ju0tagA-_91P8OBNENAL8h1R3v4AVM11IbIAAtJWYXOzgTQAlIb1ACKq8GEAwaoAYAAATCAADgwQAAGEIAAETCAABgQQAAiEIAACxCAAAQwQAATMIAABBBAABIQgAAJMIAANDBAAAswgAADEIAABRCAAAcQgAAVEIAAKDBAACwwQAAPEIAAABAAACAwAAACEIAANbCAAAgwgAAAMAAABjCAADAQgAAAMAAAFzCAAAAwAAAisIAAGhCAADgwQAAQMAAAODBAACqQgAAoMAAADxCAACgwAAAQMAAALxCAADIQQAAgEAAAJBBAADgQQAAFEIAAOBAAACAQQAAqEEAAGjCAACMwgAAEEIAABBCAAAkQgAASMIAAAjCAAAkQgAAQEEAACBCAACAwQAAyMEAAFTCAACAQAAAIMIAABxCAABkwgAANMIAANBBAAA0QgAAsEEAAMjBAADQQQAABMIAAOBAAACYwQAAAEAAADBBAACgQAAAcMEAAGhCAABwQQAAiEEAABzCAABEQgAAmMEAAPhBAACAPwAAoEEAAOBAAACYQgAA3MIAAJrCAADAwAAAiMEAAJhBAAAQwQAABEIAAIA_AAAYwgAAUMEAAIhCAAAAAAAAQMIAAABBAADgwAAATEIAADDBAABoQgAAlkIAAMBBAADYwQAAAMAAACxCAADQQQAAJMIAAFTCAABoQgAAaMIAAKJCAABwQQAA4MAAAAzCAAAAAAAAAEEAAJzCAAAQQQAAssIAACBCAAAAAAAAoMAAABDCAAAAwgAAgL8AAGBCAABgQgAAIEIAAMBAAABIwgAAoMAAAHhCAADgQAAAJMIAAJBBAAAAQgAA0MEAAABAAABMwgAA6EEAAEDAAAAAAAAAWEIAAKrCAAAcQgAAwMAAAJjCAAAcwgAAfMIAAABAAABswgAAiEEAAODBAADwQQAAQMIAAGDBAABAwAAAfEIAACBBAABAQgAAVMIAAIBAAABQwQAAQMAAAFzCAADgwAAAWMIAALjBAADIQQAAMEIAAETCAABcwgAAJMIAANhBAAAwQQAAhsIAAJLCAAAAQAAAHMIAAJjBAADoQQAAaMIAAIA_AABwwQAAFMIAANBBAACAPwAAgMAAAMBBAAAIwiAAOBNACUh1UAEqjwIQABqAAgAAsr4AACS-AAAEPgAAmL0AAKA8AABEPgAAXD4AAA-_AACYvQAA4LwAAIi9AABQPQAAuD0AAIo-AAC4vQAAQDwAAK4-AABQvQAAmL0AACE_AAB_PwAAFL4AAHA9AAAEPgAAXL4AADQ-AACYPQAADL4AAFQ-AACGPgAAyD0AAAy-AABkvgAAcL0AADA9AACovQAAEL0AAJi9AACgvAAA-L0AAKi9AAAwvQAAJD4AAEA8AABEvgAAgLsAAEw-AADOvgAApr4AAGy-AABcvgAA2D0AAJI-AADYPQAAdL4AAIA7AAA7PwAAMD0AAHA9AABcPgAAor4AAGw-AABAPAAAXL4gADgTQAlIfFABKo8CEAEagAIAANg9AABEPgAAZL4AAFe_AAC2vgAA4DwAAMo-AAAQvQAAcD0AAJg9AADgvAAAJL4AAKC8AAA0vgAARD4AAOC8AACYvQAAoj4AAES-AACaPgAAUL0AAFA9AADovQAAoLwAAKi9AAAwPQAAlr4AADA9AABMvgAANL4AAIC7AADIPQAAgDsAAJK-AAAsvgAAgLsAAGw-AABsPgAAPL4AAGy-AAAQPQAAXD4AANi9AADoPQAALD4AANi9AAB_vwAALD4AAIo-AACoPQAAPD4AAIC7AAAwvQAAhj4AAFC9AABEPgAAUL0AACS-AAAQPQAAiL0AAGQ-AAAkPgAADD4AAOC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=L53kYWzvl6k","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":405,"cheight":720,"cratio":0.5625,"dups":["5916975735418618219"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4959902445381120245":{"videoId":"4959902445381120245","docid":"34-0-5-ZC13F7E86235C1F43","description":"Perfect for students in Calculus 1 or anyone looking to master definite integrals with tricky expressions. 🎓 Subscribe to Smooth Integral for sharp, short, and smooth calculus lessons! examples...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4316373/de3733be65fca2183139fcd789523efa/564x318_1"},"target":"_self","position":"2","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"integral of (4x - 1) / (2x + x) from 1 to 4","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Rd_LXgH6kuQ\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhUKEzQ5NTk5MDI0NDUzODExMjAyNDVaEzQ5NTk5MDI0NDUzODExMjAyNDVqrw0SATAYACJFGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKhDCDw8aDz8TkwKCBCQBgAQrKosBEAEaeIH0DAbzBfoA7gkC-_oBAAEDFvn59f__AOsL_wYJ_wAA0Q0GBP_9_wABGw3-AgAAAAv8A_72_QEABfUN9QQAAAD76fn5_wEAAAcN-fz-AQAA7P4A9QIAAAANEPUF_wAAAOr8__0CAAAA_gMY-gAAAAD68fr4AAAAACAALRyPwTs4E0AJSE5QAipzEAAaYAcTAB4OGujcAxr2Au0EEgzt-Prh6w8A-esACf745wcI7tAIA_8Y6QP40wAAAAQLCBztAAQ4HPjJDP0S8iHD9w8Af_gS9fjl_evl6AXvGBTmDwX7EADmD-8DD98GHiAdGyAALTpEiDs4E0AJSG9QAiqvBhAMGqAGAABgQQAALMIAANZCAABgwgAAuEEAAEDBAACIQgAAFEIAANDBAAAAAAAAMMEAACDBAABQQQAAwEEAAPjBAABgQQAAkEIAANDBAAAYQgAAMMEAADBBAADAwAAAhMIAAAAAAABgwgAABMIAABjCAACAQQAAhkIAAFDBAAAkwgAA2MEAANTCAAAwwQAAjMIAANhBAAAwQQAAGEIAADDBAACAQAAARMIAAIBBAACAwAAAkMEAAHBCAABgwgAAEEIAABxCAACgwAAAAMAAANDBAABQwgAAwMEAAJhBAACAQAAAQEIAAEDCAAAAAAAASEIAABxCAABAQQAAvMIAAFDCAABQwgAAwEAAALLCAADAwQAAgMEAAODBAADgwQAAsEEAAJjBAACswgAASEIAAGjCAAAAQQAA4MEAAADBAADQwQAAXMIAAABAAAC4QgAA6MEAACDBAADgwQAAAEAAAIhBAAAUwgAAHEIAAHBBAADAwAAAqEEAACDCAACAQQAAYEIAABTCAAC4wQAAQEAAACDBAADsQgAABMIAAKjBAACAQQAAbEIAAL7CAAAAwAAAwEEAAPhBAAD4QQAAhkIAAKBBAAAEQgAAoMAAAIDAAAAIwgAArkIAADBCAAAowgAAdMIAANDBAABAwQAAaMIAAIDAAADQQQAADMIAAPDBAACAwAAA4MEAADDBAABgQQAAMMEAADTCAAAAQgAAmEIAAMDBAACgQgAAKEIAAHxCAACQwgAAJMIAAFDBAABgQQAAiEEAAGDCAABAQAAAOEIAAKDAAAAAwAAAgL8AAEDBAABIwgAAmEEAABBCAACQQQAAEEIAAABBAAB8wgAAoMEAAODBAAAUwgAAcMIAABBCAACowQAAiMEAAHBBAAA0QgAAcMEAAHBCAAA4QgAAAEEAAJDBAACoQQAAoMAAACDCAAB8wgAAAEEAACDCAAAgQQAAgEEAAFxCAABgwgAAyMEAANDBAACswgAACEIAAPhBAADowQAAXMIAAHBBAADIQQAATEIAAMjBAAAwQQAAQMEAADBBAACSQgAAAEEAABTCAACQQQAAsMEgADgTQAlIdVABKo8CEAAagAIAAMg9AABMvgAAqD0AAFC9AADgPAAAVD4AAOg9AAAFvwAA4LwAAIC7AADYvQAAoLwAALi9AABkPgAAVL4AADC9AACuPgAAUL0AAKK-AAD-PgAAfz8AAJg9AAAwPQAAuD0AAPi9AACYPQAAcD0AAOi9AABMPgAAxj4AAAQ-AACoPQAALL4AAKY-AAAUPgAALL4AAKI-AAB8vgAARL4AAJa-AACIPQAALL4AAJo-AABQvQAAyL0AAKA8AAA0vgAAgr4AAKK-AADSvgAABD4AALg9AACaPgAADD4AAKC8AACYvQAAcT8AAI6-AAD4PQAAyD0AACS-AAC4PQAAMD0AAJ6-IAA4E0AJSHxQASqPAhABGoACAAAcvgAA4LwAAI6-AABZvwAAiL0AAIi9AACKPgAAnr4AAKg9AAAUPgAAgLsAADQ-AACYvQAARL4AALg9AACAuwAAqr4AAPI-AABQvQAArj4AAIA7AACovQAAiL0AAIg9AAAEvgAAFD4AABy-AACIPQAAHL4AACy-AACgPAAA2D0AAOg9AABMvgAAyL0AAIC7AABkPgAAFD4AAGy-AAAkvgAA6D0AAOg9AABAvAAA4DwAAI4-AACCvgAAf78AABC9AACqPgAAML0AAAw-AAAkvgAAUD0AALg9AACIvQAALD4AAHC9AABMvgAAgLsAAIC7AAA0PgAAqD0AABS-AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Rd_LXgH6kuQ","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["4959902445381120245"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7226833087246045236":{"videoId":"7226833087246045236","docid":"34-3-6-Z91F1DCFA96480CF7","description":"• Integration by substitution • Integration by parts • Trigonometric Integrals • integral exponential functions • integration by partial fractions • definite integrals integral of sin x tan x / (1...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/881195/2b4c695e01102e2d0e36c3d040545857/564x318_1"},"target":"_self","position":"3","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"Easy Way to Master Integrals Without Calculus Stress","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jQ4JwtnLmxc\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhUKEzcyMjY4MzMwODcyNDYwNDUyMzZaEzcyMjY4MzMwODcyNDYwNDUyMzZqrw0SATAYACJFGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKhDCDw8aDz8T1QGCBCQBgAQrKosBEAEaeIEGDREFAv8A9fgGCQ8G_AEVCvv89QICAPAB9wIIAf8A_AX7-g4BAADuCQABAAAAAPQGAPj8AAAADfcE7wMAAAAX7_b2_QAAAAoH8_X_AQAAB_js-QL_AAAA9Q4G_wAAAPwDAREAAAAA-fb4-QAAAAAL9AUNAAAAACAALQTxzTs4E0AJSE5QAipzEAAaYAseACUF7cyzDSfg-tr2Cgf9_vXS2R3_E-MA6iXn7gwh9N0YBf__zAf4vwAAABURBh3xAO5VFO7a-QIi9Myz-gwzfxL7Ewwu7OfwyQ8OE_8LBgIaIQC-AAIOE9UhMv0rFSAALb-KTzs4E0AJSG9QAiqvBhAMGqAGAABwwQAAwEAAAOhBAAAYwgAA0EEAAFBBAACeQgAAsEEAAILCAAA4wgAAKMIAANDBAACwwQAAUMIAAGxCAADgwQAAoMEAAEjCAAA0QgAAEMIAAFjCAADAwQAAIMIAAJjBAACAwAAAIMEAAPDBAACgwAAAJEIAAIDBAACOwgAAQEAAAEjCAAAwwQAAPMIAADBBAADgwQAAtEIAAIBBAAAIQgAAcEEAABxCAABgQgAAQEEAAJhBAABAwAAACMIAADDBAACcQgAAOMIAALDBAACwwQAAAEAAAKDAAABgQQAAmMEAAIDCAACAwAAAIEEAAHhCAACgwQAAnMIAAAAAAABQwgAACMIAAKTCAADYwQAAUMEAAPDBAAAAAAAA-EEAAL5CAAB8wgAAzkIAAEDBAACOwgAAlsIAANhBAACIwQAADMIAALDBAADoQQAA4MAAAJDBAACAPwAAAMAAAIJCAABIQgAA2EEAAKDBAACKwgAAHEIAAPjBAAAEwgAACEIAADTCAACAvwAAGEIAAJBCAACAvwAAYMEAAABCAABAQAAARMIAAJrCAACAPwAA4MAAAGRCAACgwAAAEEIAAERCAAAAwQAAgEEAAHjCAACAvwAAGEIAADjCAACMwgAAMEEAAJbCAAA8wgAAYMIAAEDAAAAAQAAAFEIAAIDAAAAcwgAAHMIAAHzCAABAwgAAoMAAAKBBAACAwQAAqkIAAIA_AABwwQAAUEEAAHDBAADgwQAAwsIAAIDAAACIQgAALEIAACjCAABAQQAALEIAAKBAAABoQgAAQMAAADBCAAAQQQAAYEEAANhBAABcwgAAEMEAAJhBAADAQAAAisIAAIDCAACAPwAAiMEAAADBAACAQQAAAAAAAJDCAABAwAAAUEEAALBCAAAsQgAAwMAAAKDAAABAwQAA6MEAAMBAAAAQQQAAqEEAAMjBAADQwQAAMMEAAIRCAAAswgAAOMIAAIBAAAA4wgAAiEIAAAAAAABMwgAAwEEAACDCAAC4QQAAoMEAAFjCAACoQQAAAAAAAFTCAACGQgAAAMIAABBCAAB0wgAAJMIgADgTQAlIdVABKo8CEAAagAIAAAS-AAAUvgAAcD0AACS-AAAQvQAA-D0AACw-AAAdvwAAuD0AADA9AACYvQAAcD0AAAw-AACCPgAAiL0AAFC9AAB0PgAAoLwAABC9AAAJPwAAfz8AAES-AAAcPgAAmj4AAIi9AACWPgAAgLsAABS-AAAUPgAA6D0AAOC8AADovQAAML0AAIi9AACYPQAARL4AAKA8AACCvgAAqL0AADC9AACovQAAQDwAAOA8AAAQvQAAPL4AAKA8AABUPgAAjr4AAOK-AACavgAAyL0AAFw-AACuPgAABD4AAKq-AABAPAAATT8AALi9AABMPgAABD4AABy-AAAkPgAAqL0AALK-IAA4E0AJSHxQASqPAhABGoACAACAOwAAEL0AAAy-AABRvwAANL4AAEC8AACKPgAAuL0AADC9AAAsPgAA4DwAANi9AACYPQAAuL0AAFw-AACIvQAARL4AABU_AAA8vgAAXD4AADA9AAA8vgAAuD0AAKC8AABAPAAAuD0AALa-AACAOwAAiD0AAAy-AAC4vQAA6D0AABC9AADevgAAgLsAAJg9AABEPgAA6D0AAIi9AAB8vgAADD4AAMg9AACovQAAUL0AAFQ-AABQvQAAf78AABA9AABkPgAA2L0AALg9AADIvQAAMD0AAGw-AABMvgAADD4AABC9AAAMvgAAgDsAAIC7AACOPgAAoDwAABA9AACIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=jQ4JwtnLmxc","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["7226833087246045236"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8830734536610726753":{"videoId":"8830734536610726753","docid":"34-11-3-Z3698383410A91FA9","description":"f(x,y). Infinite Powers, How Calculus Reveals the Secrets of the Universe: https://amzn.to/37PBMjb. Multivariable Calculus, Lecture 26C Links and resources = 🔴...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/758443/77ac1eb2e7a2b45bd48e087ac7de9037/564x318_1"},"target":"_self","position":"5","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"How to Set Up a Line Integral Over a Piecewise Smooth Oriented Curve 𝓒 = 𝓒1 + 𝓒2","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=24Wk5qXIFlU\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhUKEzg4MzA3MzQ1MzY2MTA3MjY3NTNaEzg4MzA3MzQ1MzY2MTA3MjY3NTNqrg0SATAYACJEGjAACiloaGFiaHpxcW52cWZ4dndoaFVDekxJckNkdzh5QmNrbkVmNWt0NmpudxICABEqEMIPDxoPPxPQAoIEJAGABCsqiwEQARp4gQIFAv7_AgAM_QUD-gb-AQAD__j4_v4A_v0MAgAF_gD78__9AwAAAPUOAQoCAAAA9QED_PP_AQAWD_YHAwAAAAPy_vX5AAAABA_7BAoAAQHt8gT1AgAAAAMCCAcAAAAA7gQN9QAAAAAJAfv5AAAAAAL8BQAAAAAAIAAtMyDXOzgTQAlITlACKnMQABpgJg4AIBkR6uYJItv7Bv7__fQa6eLyCwAJ9wADChbkCwrEyRcH_y3XDObGAAAACPcMF_MA-lAPBLv7Gzv50sfvKhx_EAX67_YIz-PiAfk8DPnoEhMIANUO9QEG6BFGAB8oIAAtq6ZaOzgTQAlIb1ACKq8GEAwaoAYAAIhBAADAwAAAUEIAAMDBAABwwQAAAMAAADhCAAAgwQAAkMIAABDCAADYQQAAxkIAAHzCAADwwQAAmEEAAAjCAAAQwQAAIMEAADRCAACUwgAAdEIAAMDBAACIwQAAaEIAAOhBAACGQgAAAMIAAMDBAABwQgAAIEIAAPBBAABgQgAAOMIAAARCAACQQQAAuEEAAKDAAACkQgAAMEEAAEBBAACgQQAAgL8AAIBCAACAPwAAVEIAADjCAADgwAAAXMIAAARCAADgwAAAkMEAAIA_AABwwQAAAMEAAEDAAAAswgAAMEEAAMDAAADYQQAAHEIAAAxCAADgwQAATMIAAMDBAAC4wQAAcMEAACxCAACkwgAAgMEAAOjBAABAQgAAyEEAAMLCAAB8QgAAuEEAALbCAAAkwgAAIEEAABRCAAAIwgAA6MEAAFDBAACIQQAAEMIAAJhCAACAQAAA2MEAAIBAAAA4QgAAyEEAAOjBAAAsQgAAAEEAAKjBAACgwAAApsIAAFBBAAD4wQAAykIAACDBAACAwgAAwkIAAMBAAADoQQAAhMIAAGRCAACowQAAPEIAAGBBAABUQgAAUEEAAKDBAABMwgAAWMIAAEBCAACQQQAABMIAAGDBAAAwwQAAJMIAACxCAAAEwgAA4EAAAKzCAAA0QgAAiMEAAAAAAACawgAANMIAAEDAAAAgwQAAIMIAAJBBAABcQgAANEIAAKDBAACgQAAARMIAAAjCAACUwgAAVEIAAADAAABAwgAAgL8AAABAAACowQAAAEIAALBBAACAwAAAUMEAABRCAACgQQAAgD8AAI7CAAAgwQAAEMEAAJjCAAAswgAAmMEAAHBCAACgwQAAkEIAAFBBAAAkwgAA0EEAAIRCAACIQQAA4EAAAHhCAAA0wgAA-MEAANDBAAAQwQAAqMEAAPDBAAD4QQAAHMIAAIjBAACYQQAAcEIAAFzCAAAEwgAAhsIAAEDAAACUQgAAXMIAAADBAACgwQAAwMAAAIBBAAAgwQAADEIAAHBBAABAQQAA2EEAABRCAACYQQAA4MAAALDBAAAkwiAAOBNACUh1UAEqjwIQABqAAgAAqL0AAJi9AABEPgAAmD0AAHC9AAD4PQAAij4AABO_AAC4vQAA-D0AAHS-AACovQAAoLwAAMg9AADgPAAAPL4AAK4-AACAOwAAJD4AADM_AAB_PwAAuD0AABA9AACIPQAAVL4AAHC9AACSPgAADL4AAJg9AABsPgAAoDwAACQ-AAAQPQAAgDsAAFA9AADYvQAA6D0AAAw-AACAuwAANL4AAIi9AACAOwAAgj4AAAS-AAAwvQAATD4AAAw-AAB8vgAAmr4AAKK-AAAcPgAAmj4AAEw-AABQPQAA4LwAAHC9AABjPwAAlr4AACw-AACYPQAAgLsAAIi9AACAOwAAUD0gADgTQAlIfFABKo8CEAEagAIAAJq-AABEPgAAUL0AAEm_AABQPQAAgLsAANg9AABUvgAAEL0AABQ-AACIvQAANL4AAHS-AABcvgAAQLwAAEC8AACgPAAAHT8AABC9AACSPgAAgLsAAFC9AABAvAAAcL0AAIi9AABEPgAAXL4AAEA8AACAuwAAQDwAAFA9AAAEPgAAQLwAAAS-AAAwvQAAQDwAAEw-AACgvAAAPL4AACS-AABAPAAAMD0AAFC9AABAPAAAuL0AANg9AAB_vwAAqL0AAKC8AAA8PgAAXD4AAAy-AACIPQAAFD4AAFC9AAAQPQAAQDwAAEC8AABAPAAA4DwAAIg9AADYvQAAED0AAPg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=24Wk5qXIFlU","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["8830734536610726753"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7150906493252255897":{"videoId":"7150906493252255897","docid":"34-0-17-Z5FE35902399FEDAA","description":"the definite integral ∫₀^∞ 1 / (e^3x + 1) dx step by step. This improper integral involves exponential functions and requires substitution to simplify. We carefully analyze convergence and show...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/916043/1d030c83904394a3d7df6a438cb0b17f/564x318_1"},"target":"_self","position":"6","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"evaluate integral 1 / (e^3x + 1) from 0 to infinity","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=o5vHzJDJexQ\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhUKEzcxNTA5MDY0OTMyNTIyNTU4OTdaEzcxNTA5MDY0OTMyNTIyNTU4OTdqrw0SATAYACJFGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKhDCDw8aDz8T4gKCBCQBgAQrKosBEAEaeIH7BPsAAf8A-P79AfkE_wEMDfX39QAAAOz8AQUJAAAA4QEKAPr_AAACDgn3-QAAAAEIAv7x_gEAAwMEAvsAAAAO9OwB_gAAAP4G_gv_AQAA8Pv8AwMAAAAA__P6_wAAAOwCBwMDAP8A9gb-CgAAAAD78fzuAAAAACAALe3fzjs4E0AJSE5QAipzEAAaYAALAC8aFPLtAxLv_wECCA7g-P7i6xkA4ecA8Af00wEb7ckMBf806v8AywAAAAv1GRjPAAJDEgHH-wUr8By69QwMfwAO-vTUFOfX0gH9Hf0ABQrpCADkGN4TD-P1LRkBEyAALdXobjs4E0AJSG9QAiqvBhAMGqAGAABgQQAAuMEAAKRCAAB4wgAAOMIAACBBAACSQgAAgL8AAEzCAACCwgAAIEEAAKDBAACYQQAACMIAALDBAABgQQAAFEIAAKDAAAAIQgAACMIAAPDBAAA0QgAAYMEAABBCAAAwwgAALEIAAODBAACYQQAACEIAAODBAACkwgAAuEEAAFzCAACwQQAAAEEAADRCAACoQQAAnEIAAKDAAABQwQAAPMIAAHBBAACgQgAAgL8AANhBAADwwQAAxEIAAABAAACGQgAAyMEAAMhBAADgwQAAAMEAAFBBAAAMQgAAgEAAAJDBAAAAwgAAsEEAAAxCAABgQQAAlsIAAIjBAACSwgAA-MEAAJbCAAAwwgAAUMEAAIC_AADgwQAA4EEAANhBAABswgAAiEIAAAzCAABwwQAADMIAAABCAAAQQQAAAMEAAIjBAABsQgAAAMEAAABAAAAcQgAABEIAAAxCAAAEQgAAwEEAAKDBAACOwgAAgEIAAADAAACAQQAABEIAAATCAAAAQQAAnkIAAPBBAABoQgAADMIAAEDAAAAAAAAAgL8AACzCAABQwQAAIMEAAEBCAAAgwQAAsEEAAIpCAADgQAAAQMIAABBBAAAEwgAAJEIAALhBAABYwgAAKEIAAOjBAAAAwgAArMIAAKDBAADYQQAAMMEAAGTCAACYwgAAkEEAAITCAAAIwgAAwMEAAIDAAAAAwQAAfEIAAJrCAAAAQQAAcEEAAIjBAACAwAAAhsIAAJBBAADAQQAAuEEAAFDCAAA0QgAAmEEAALjBAACCQgAAUMIAAABCAACgwAAAUMEAAKBBAADYwQAAQEAAAEBAAADgwQAAJMIAAHzCAACKQgAA2MEAAMjBAACYQQAAEMIAALDBAAAAQgAALMIAAIhCAABgwQAAwEAAAKjBAAA0wgAAEMEAACjCAABQwgAABEIAACTCAAAUwgAAMEEAAMJCAACuwgAAUMEAAODAAACuwgAAEMEAAHzCAACgwAAAAEAAADzCAAA4QgAA8EEAAETCAABUQgAAwMEAACTCAACIQgAAUEEAAABCAADIwQAA8MEgADgTQAlIdVABKo8CEAAagAIAACS-AAAMvgAALD4AAJg9AAAcPgAAZD4AABw-AAAJvwAAHL4AAAQ-AABQvQAAmL0AAKC8AACoPQAAcL0AAAS-AAAEPgAAUD0AAEA8AAADPwAAfz8AADQ-AABAvAAAED0AAJg9AACIPQAABD4AAIg9AAAQPQAAyj4AAJg9AACAuwAANL4AAMY-AAAQPQAAgLsAAFw-AACOvgAAmr4AAK6-AADgPAAAdL4AAAw-AACgPAAA-D0AABA9AACYvQAAMD0AALK-AACCvgAAmD0AAOA8AAD4PQAALD4AALa-AACgPAAASz8AAFC9AABQPQAAXD4AABC9AAB8PgAAUD0AANK-IAA4E0AJSHxQASqPAhABGoACAAAEvgAAuD0AAKC8AAA3vwAA-D0AAIC7AAAUPgAABL4AAHA9AACePgAAQLwAAAw-AABAPAAAcL0AAOA8AABQvQAATL4AACU_AAD4vQAAwj4AADS-AACWvgAAEL0AAKg9AADgvAAA6L0AAOi9AABAvAAAFD4AAOA8AADIvQAA2D0AALi9AADgPAAAQLwAABC9AAB8PgAAEL0AAOi9AACovQAA-L0AAHC9AAAEvgAAEL0AAIg9AACgvAAAf78AALg9AAAwPQAAoLwAADC9AADgvAAALD4AAPg9AADCvgAABD4AADC9AACGvgAARD4AAAw-AACIPQAALL4AAMi9AAAQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=o5vHzJDJexQ","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["7150906493252255897"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5808067693608149714":{"videoId":"5808067693608149714","docid":"34-4-2-Z98849D174B5A058E","description":"• Integration by substitution • Integration by parts • Trigonometric Integrals • integral exponential functions • integration by partial fractions • definite integrals In this video, we will solve...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2435950/26c5ede77dc625e93e8b1309fabb492e/564x318_1"},"target":"_self","position":"7","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"Solving the Integral of (e^x - 1) ³ | Step by Step","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pLVOJHeO6ms\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhUKEzU4MDgwNjc2OTM2MDgxNDk3MTRaEzU4MDgwNjc2OTM2MDgxNDk3MTRqrw0SATAYACJFGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKhDCDw8aDz8TowGCBCQBgAQrKosBEAEaeIHtBPv3A_wAAwP8_vsE_wESAwf6CP__AO3vBfwHAAAA5_wRBQUAAADrC_YIBwAAAPb9_vT5_wAADvsH-wUAAAAJ5vb7_QAAABkK9Qn-AQAA9Abt-AIAAAD7BQcH_wAAAPH3AAgAAAAA_QT-_QEAAAAD-P4DAAAAACAALZzVxjs4E0AJSE5QAipzEAAaYBkZACMOBtDNDiDk2-MHFhL86PLc7Q7_7OYA-RHx0Rwi7NIJCP9CtfoKvQAAABL_7ij8AAVXEfvSIgzv-xa-2jAYf-n_Fv33-94A3ykEBhPsEPL6HQDAF-cTCLECUPELFSAALZGPSTs4E0AJSG9QAiqvBhAMGqAGAABwwQAAaMIAAOBAAAC4wQAAoMAAANhBAABEQgAAgEAAAITCAAAwQQAAQMAAAEDAAADowQAAiMIAABjCAACAvwAAgEEAAEDBAAAAQAAABMIAADzCAADAwAAAyMEAAJDBAACCwgAAGEIAAIrCAADQQQAAUEIAALhBAACSwgAAAMEAAEzCAADIQQAACMIAAKDBAACYQgAAKEIAAFDBAABEQgAAIEEAAMjBAAAkQgAADMIAAKBAAABQwQAAhkIAAKhBAACAPwAAbMIAAIA_AAAMwgAA8MEAAIDBAAAAQAAAAMAAAATCAACAvwAAJEIAAGBCAACwQQAAAAAAABDBAAAcwgAAmMIAAKjCAAD4QQAARMIAAJjBAAAYQgAAJEIAAERCAACQwgAATEIAAAAAAABYwgAA8MEAAIBCAAAQwQAA0EEAACTCAACMQgAAcMEAABjCAAAgQgAAkEEAAEDBAAAcQgAAsEEAACBBAAA4wgAAikIAAGDBAABgwQAAwEEAABDBAACAwQAAMEIAAChCAABIQgAAaMIAAABBAAD4wQAAJEIAAFDCAAAEwgAAdMIAAHxCAACgQQAAFEIAABBCAAAoQgAAAEAAAERCAADIQQAACEIAAJhBAAAwwgAAkEIAAOBBAADIwQAAYMEAANjBAACewgAAwMAAAEDBAACawgAA8EEAAKTCAADAwAAA4MEAALpCAAAAQQAAbEIAAHBBAACAwAAAUEEAAODBAACgQAAAbMIAAEDAAAAYQgAAJEIAAAAAAABIQgAAIEIAAIjBAADoQQAA4MEAAHBBAAAEQgAAEMIAANBBAACSwgAAcEEAAExCAADAwAAAgMEAAIjCAAAgwQAAVMIAAGDBAACAvwAAAEEAAODBAAC4QQAAcEEAAKZCAABYQgAABEIAAOBBAAAUwgAAGEIAACjCAACEwgAAyEEAAPDBAAC4wQAAmMEAAMpCAACawgAAwMAAAIBAAACQwQAAYEEAAKjBAAAswgAAZEIAAATCAAAgQQAAYEIAAMDAAABcQgAAMMIAAKTCAADOQgAAgD8AAFBBAAAwwQAAFMIgADgTQAlIdVABKo8CEAAagAIAABC9AAAQvQAALD4AAEC8AACgPAAAdD4AAIC7AAAPvwAAgDsAAMg9AAAQPQAAMD0AAOC8AACgPAAADL4AAKi9AAD4PQAAoDwAAOC8AADKPgAAfz8AALg9AAAwPQAAFD4AAFS-AAC4PQAAEL0AAKi9AABQvQAAVD4AAJg9AAAsPgAA6L0AAHQ-AADoPQAAqD0AABQ-AAAcvgAARL4AAKq-AABQPQAA2L0AAKA8AABQvQAAgDsAABC9AACYvQAAmL0AALq-AACivgAAED0AABw-AAB0PgAAPD4AAK6-AABwvQAAKT8AAKA8AAAQvQAATD4AAJi9AADYPQAAgDsAAKi9IAA4E0AJSHxQASqPAhABGoACAACovQAAUD0AAIC7AABPvwAAqL0AABS-AACePgAAcL0AABQ-AACaPgAAgDsAAKg9AAAMvgAAfL4AABA9AACgPAAABL4AABE_AAAwvQAAkj4AAEy-AAAUvgAAFL4AAAw-AABwvQAALD4AADS-AABwvQAAiD0AANi9AAA0vgAAqD0AABA9AADCvgAADL4AAKg9AABsPgAAgLsAADy-AAD4vQAAJL4AAGQ-AADovQAAmL0AAIY-AAAEvgAAf78AAEC8AAD4PQAAPL4AAJg9AABAvAAAZD4AAJi9AACovQAAUD0AAIC7AACavgAAEL0AABA9AAA0PgAAmL0AANi9AACYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=pLVOJHeO6ms","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["5808067693608149714"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11061252718576872234":{"videoId":"11061252718576872234","docid":"34-10-6-Z57DD63C1F294796F","description":"• Integration by substitution • Integration by parts • Trigonometric Integrals • integral exponential functions • integration by partial fractions • definite integrals Integral of x divided by...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2449321/f6ff78afca287ebf178196ef4f1d37e0/564x318_1"},"target":"_self","position":"8","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"Avoid Common Integration Mistakes with This Proven Strategy","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WFl-KWrYVPI\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhYKFDExMDYxMjUyNzE4NTc2ODcyMjM0WhQxMTA2MTI1MjcxODU3Njg3MjIzNGqvDRIBMBgAIkUaMQAKKmhoZGZzdG9seGxhY3lsbWRoaFVDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZxICABIqEMIPDxoPPxODBoIEJAGABCsqiwEQARp4gQAQ-vv9BAD2AQH5-wEAAQ39-QEJ_v8A5QYHAvf8AgDrAwYAAv8AAP0C-wUBAAAA9_3-9fr_AAARBgQEBAAAABAA8vf9AAAAAgv4Bv4BAAD2-gb5AgAAAA0IAQUAAAAA__kIBfz_AAADAPr_AAAAAAn1CAMAAAAAIAAtk3nbOzgTQAlITlACKnMQABpgHhwAKgXyxMgOKuTk4QcID_7o--rxGv_o_gD_I9u2EgXqqvMQ_wHjBQa5AAAAFN71MfkA71gg680s6Af57MTqDzd_z_oP6QH73wXsJgYH99cpChQYAOUIBAn4-gNnFPUnIAAtJNhFOzgTQAlIb1ACKq8GEAwaoAYAABDBAAC4wQAAlEIAAKTCAACAwQAAgEEAAO5CAAAgQQAAYMIAAPjBAABQwQAAgMAAANhBAABgwQAAsEEAAKjBAAAMQgAAgMEAAGBCAADgwQAAgMEAALjBAAA0wgAAiMEAABDCAACgwQAAMMEAABhCAADAQAAAoMAAAIzCAAAswgAAisIAAABAAAAkwgAAmEEAAETCAAA0QgAAgEAAAABCAADowQAABEIAAMhBAAAwwQAAHEIAAIjBAACoQQAA6EEAAFhCAABIwgAABMIAAADCAAAAQAAAcEEAAOBAAACwwQAAJMIAAIC_AABoQgAAjkIAAAAAAAC0wgAAuMEAAMjBAADYwQAAqMIAAAzCAAAAwAAA6MEAAABBAACAQAAAgkIAAEDCAADMQgAAwMEAAGjCAACawgAAMEIAAPjBAAAEwgAAAEAAAJ5CAACQwQAAQMIAAJjBAACQQQAA-EEAABBCAAAAQgAASEIAAJDCAAAQQQAAEMEAAMDAAAAkQgAAmMEAAIDBAAA4QgAAeEIAAIZCAACIwQAAgMAAAAjCAADAwAAAwsIAAFDBAADAQQAAQEIAAABCAAAQQgAApEIAAOBAAADAwAAAiMEAAADBAABkQgAAUMEAAJzCAABwQQAAksIAAIDAAAA8wgAAoEEAAIA_AAAgQQAANMIAAATCAACgwQAAXMIAAABAAACwwQAAYEEAANjBAACcQgAA8MEAAGDBAADAQQAAwEAAAPDBAACkwgAAAAAAAKpCAAAYQgAAPMIAAOBAAACSQgAAEEEAAFBCAAAwwQAAuEEAAGDBAACoQQAAwEEAABzCAABQQQAAgEAAAHTCAAAAwQAAEMIAALDBAADwwQAAmEEAAPhBAAAAAAAA4MEAAJhBAACgQAAAhkIAAHBCAABAwAAAGMIAAFDBAACgQAAAIMIAAJDBAADQQQAAGMIAAKDBAABcwgAAnEIAAHjCAADQwQAAgL8AAJDCAABEQgAAkMEAAKDAAACgQAAAHMIAAGxCAAC4QQAAXMIAAMDAAAAQQQAATMIAAExCAACowQAAQEEAAODAAAAMwiAAOBNACUh1UAEqjwIQABqAAgAAmL0AAEy-AADIPQAA6D0AADA9AAAEPgAAVD4AAAm_AACoPQAADD4AAHC9AADgvAAAbD4AAFC9AACovQAA6D0AAEw-AACIPQAAND4AADU_AAB_PwAAqD0AAPg9AADIPQAAgLsAAL4-AAAwPQAAiL0AAFC9AACuPgAAyD0AAFw-AACgvAAAgDsAAKC8AACYPQAAcD0AANi9AAB0vgAAQLwAAIA7AAAUvgAAML0AAFC9AAD4PQAAjj4AAPg9AAC6vgAArr4AACS-AAAMPgAAuD0AALo-AACiPgAAZL4AAKA8AABJPwAAXL4AAOA8AABkPgAAZL4AAHA9AAAMvgAAFb8gADgTQAlIfFABKo8CEAEagAIAAKi9AABwvQAAlr4AAEe_AAAkvgAABD4AAMY-AACAuwAAiD0AABQ-AACAuwAA6L0AAOC8AADIvQAAjj4AADC9AABEvgAADT8AADS-AACiPgAAqL0AAMi9AABAvAAAFD4AABC9AADYPQAAlr4AAIC7AACgvAAAgr4AABC9AACAuwAAmD0AADy-AAAkPgAA6L0AAIo-AAAsPgAARL4AAAy-AADIPQAAgj4AAJg9AACIvQAAJD4AACy-AAB_vwAAFD4AAHw-AACCvgAAEL0AAJi9AAAsPgAALD4AAIC7AAA8PgAA4LwAAHS-AADYPQAAQDwAAGw-AAAEPgAAuL0AAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=WFl-KWrYVPI","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["11061252718576872234"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18066711814081169576":{"videoId":"18066711814081169576","docid":"34-1-14-Z8F497BEA39E72944","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/226627/42be74c99519f1497746311d05820619/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3uAMAQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"InTegraL -Smooth Operator.mpg","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tTis1Yxd0W0\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhYKFDE4MDY2NzExODE0MDgxMTY5NTc2WhQxODA2NjcxMTgxNDA4MTE2OTU3NmqIFxIBMBgAIkUaMQAKKmhoenNhbW9hb3JrY3l5cWRoaFVDRExvWnZkMm1rZm1SQ25Mc21TS0pJZxICABIqEMIPDxoPPxOTAoIEJAGABCsqiwEQARp4gfcMB_z-AwD6CgD7_QMAAfAD_An5_v4AAwYD-QUE_gDm8PsJAv8AAO8ABAQAAAAA7Af99fUBAAAT9QEAAwAAAAL09QD5AAAABA77BAoAAQH1_wD9-QEAAPsMCAL_AAAA8f8ODv8AAAAEAQP8AAAAAA73BvsAAQAAIAAtxELYOzgTQAlITlACKoQCEAAa8AF_2uYA5RP9AT392wCDE_n-BA0Q_5z4HAAAJRAAEBnfANXq9QAT_Qr_ANsOAPQmJf-iBQT-5CYxAO4GHQAMJtL-MSAeAdMuBALWLjIA5LjXAP3g3f0RAuQA3OcM_-bw2P8W_-MA-gAA_eT69wfSGBMAPfoQAwUA4AHLABL9AhwPAhEYIAIS2RAE1x8b-vXhKgTNAQH9_Nw0AxX4CgToFwL7PPHnAzUKC_4C7fgAyuURBCobJ_8QP_oCBAcu_jks-gXlAxcA-v7uBPTi9v0JHfoI2fHvAu_l9Pku_w0KA_T9-0X-9grHF_H0E8b2AQ8W9PAgAC3agA87OBNACUhhUAIqzwcQABrAB8psmL4N9aA8rTmbPKEwGL74AbM9Nmg5vcxdW77j-ZG99hyiPOpCpL6gGcS8_NTCuocHIz1a2oS8HNmwvLYQFL5iVK08X92nvCtgnL27Hta8Tl5EvVsQRb029-M7ZeRJO0aO2zsQd3U97h17OxGDijxGcK286z3Pu3zf7rytrhm9Ze6QO1QAHD4zGnm7iWEHvU2foTvKuHO9GI4RPZSUBT3nON25GbsQPOS66b3rkHu9ac3qvBVdUj0cvOW8zxudvDHCmr1DmBE9Wi-hvAcLBz4HhiC83HksvCPzuD3zySo991whPRdj4D1N-PG5HS9Nuyvh5LzEkaw7ZjvVPA4jrj0YuQA8PxIgvbFj7Ty8pjG9bayjOikVQ7zfgMC9MSiTPFi7NzzUpO88IGqtuQVbmzxOtmE9SVjlPMQxwTw0DtU9KkBvPPM1ED33kNC9b08KPPkriT0MrR4-ZJZQupfK-LsG9ti9fZGSu-BOfbzxNIS9dxqfu1qcFDu3Bhu8uYY-PKd2Jj7M7wS-yH_gO7xcJL3P99O9-4r_O6fGwL2iKRi8gCctPDhJ87111RO88bz1u3vqojxB9pU8btGTPFxMGrxte7G8_RErvBH9aj5uKfE8gk_tOd6Fd70gJ8w9KAgXN2U3Ez0EAVK9T14_PHLsj7yJk0A9TbAsO5GgU7zfJq29Fu2euhKI1zx33mG9I0dfu8uAA7628re8AyzguV950L0TafY8k2jROhdV9bwDIy-8ZCnpu8DWsD3dOJO9-MVpuAl7Kb11yw6-k_iBufhS-D29yZo9F6uaOKkiprx1YkW8Q9HNuG9iCL0NLJG8fOdYOa26dbtyZmC8-raxuXxY-bzP99O9Mje0uWEM1TtzTDY9ue5muMy1KD3Jn7k9ZSKVuJtMZj00U1W9S6ELOH7UNb0v58g92Lt4uSJfOD3zZdg8IYIiuS27uzx7n689KEDauLNNIry1aOY8425pN4e2TT3SJ6g9Il_9OPB6G7tHF5C9GN-jOEPTmD3LYLE81H91N8ADyL0IrUe9bkTMtmGlQj3SAs-8PoCXtpRfR7oNZwY8HjFlN8l5er3igRY8Wc1lOOv9Fj7aaaU9ZOJVOT6XpL2gGBm9iDjothrerL3mIdO9aELKOMSpkL3vaZg93Pu5N5esijzNDHY9n8jVN6Hpdr0n5eS86ps8uOlMUjuijY29H-lcN3wpPD6XR029xTMWuORgW71hdFS9tAL8uCzd9rsRJEq9wWd2uMzlcD3QQge9gvZuN3rxTz3AlEE9OtiYNyAAOBNACUhtUAEqcxAAGmAIHABEBPP4zhEj8vwH6zPSNisAwd4y_-btAN_uCsUW5s7UrDUAA9Tz2a4AAADh_P7vwgDTX_309NwAf_ot-SBBAEoALgcO7CX0IekADxbDEgH2C-sADMnM_ODaCOMP-iQgAC3YUjU7OBNACUhvUAIqrwYQDBqgBgAA4EAAABBBAACwQgAAhEIAAAzCAAA4QgAAVMIAABDBAABAQQAAwMIAAHjCAAAQwQAAfMIAAIBAAADYQQAA6EEAAOBAAAAEQgAAJEIAAABAAAAUQgAAyMEAAEDCAAC4QQAAUMEAALhBAACAPwAAIMEAAOhBAABAQgAAkEEAABBBAAAwwQAAmMEAANjBAAAkQgAAIMEAAKRCAACIwQAAQMEAAIhBAACwwQAA6EEAAHhCAABAQAAA4EEAAEDBAADgwAAAgD8AABBBAADYQQAAQEIAAKBAAAAgwQAASMIAADBCAADAQAAAVEIAAKDBAABMQgAA4EAAAFBBAAAAQAAABMIAAOjBAADAQQAAmMEAAAzCAADawgAAKEIAABDBAAAwwQAAoMAAAIA_AAAQwgAA0EEAAHBBAAAowgAANMIAALDBAAB8QgAAwEAAAKhBAAAgwQAAgMIAAKRCAADgQAAAMMIAAIA_AABMQgAAQEEAAOhBAAAAwAAAbMIAADxCAACAwAAAIEEAACBCAABUQgAAoEEAAEDCAABIQgAAMEEAAOjBAABQwgAAOEIAADjCAACAvwAA4MIAAIA_AACgwQAA8MEAAAAAAADowQAAFEIAAADAAAA8wgAAgD8AANDBAACwwQAAqMIAAIBAAACYQQAAsMEAAEjCAABcQgAAREIAAARCAACUQgAAQMEAAMBAAABUwgAAoMAAAKhBAACAPwAAYMEAALhBAABwwQAAgMIAAFDBAAAAAAAAKEIAALBBAACeQgAAAAAAAERCAACSQgAAoEIAAIBAAAAgQgAAaEIAAEBAAAAQQQAA9MIAACxCAABgQQAAKMIAAGzCAABYQgAA-EEAAADBAADAwgAA1sIAAABAAAAQQgAAoMEAAIRCAAAMwgAADEIAAGBBAACgQAAAoEAAAFDBAACgQQAA0MEAABRCAACAwQAAUMEAAABCAAAQQgAAhkIAAJ7CAAAQQQAApsIAAAxCAAAIQgAArsIAABDBAAAkQgAA8EEAAPDBAACIwQAAAAAAACjCAACYwQAAAMEAADjCAAAAQQAAsEEAAFBCIAA4E0AJSHVQASqPAhAAGoACAADIvQAAoLwAAM4-AAA8PgAAUL0AABw-AAC6vgAA8r4AADy-AABEPgAAPL4AAIC7AAA8PgAABD4AAHC9AACgvAAAhj4AABA9AAA0PgAAuj4AAH8_AACovQAADD4AABQ-AAD4vQAAJL4AAIg9AAA0vgAAcD0AANo-AAAwvQAATD4AAIC7AABkPgAA-L0AANg9AAAEPgAAPL4AADC9AACOvgAAUL0AADC9AACoPQAA4LwAANi9AADYPQAAgLsAAHC9AACivgAATL4AAHQ-AABAPAAA-D0AAKC8AABMvgAAQLwAAFM_AADoPQAAMD0AACQ-AABcvgAAgDsAAIA7AAA0viAAOBNACUh8UAEqjwIQARqAAgAA4LwAABQ-AADYvQAATb8AAIi9AAAQPQAAbD4AAI6-AAAUPgAA2D0AAEy-AAAUvgAA6D0AACy-AABAPAAAML0AAGy-AAApPwAABL4AAEQ-AAAQPQAAur4AACw-AAAQPQAAyL0AAI4-AAB0vgAAMD0AAIg9AABAvAAAUL0AAIg9AACAuwAAXL4AAKq-AAC4PQAA-D0AALi9AAAwPQAARL4AAGw-AABwPQAADD4AAIg9AABQPQAAiD0AAH-_AAA8vgAAED0AAII-AAAMPgAAqL0AAFw-AADYPQAAdL4AAKg9AACYvQAAyL0AANi9AABwvQAAij4AAHA9AABMvgAAFL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=tTis1Yxd0W0","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["18066711814081169576"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3134971090"},"15581635488392610392":{"videoId":"15581635488392610392","docid":"34-0-8-Z7B448532E9DF0DEB","description":"In this video, we solve the integral ∫ 1 / (x² + 4x + 5) dx using the method of completing the square. wanting to master rational function integrals. integration integral resulting in arctan...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1220297/68f3764ccc5450e72fea154580216762/564x318_1"},"target":"_self","position":"10","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"Integration of 1/(x²+4x+5) Solved | Step-by-Step Using Completing Square","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jXn-vCgIc9A\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyWhQxNTU4MTYzNTQ4ODM5MjYxMDM5MmqvDRIBMBgAIkUaMQAKKmhoZGZzdG9seGxhY3lsbWRoaFVDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZxICABIqEMIPDxoPPxOIAYIEJAGABCsqiwEQARp4geoFAvr-AgD4_v0B-QT_AR0C-v8DAgMA9PD5_wUC_wD_Agb5_wEAAP0L_AUMAAAA_PwE-_z-AAAN-wb7BAAAABDuCPf7AAAADgz8A_4BAADr_PMJA_8AAAP6_QQAAAAA8v8IBfv_AAAN-AT6AAAAABH1_f0AAQAAIAAtuojVOzgTQAlITlACKnMQABpgIxsAHxES4skIKeTc4vgfCvDd6d_XDP_29AASE_LiCzDr2PMD_xa_AQ2_AAAACRr1LgEA9lUT3tEu_gLv3drxHjh_2wwRBv7m9AMJNP7_AO_-C_k0ANHsBP0F5flb8xcSIAAtkc5SOzgTQAlIb1ACKq8GEAwaoAYAANBBAAAAwgAAmEIAANjBAABAQAAAoMEAALZCAAAgQgAAhMIAAKzCAAAQQgAAQMAAACRCAADwwQAAAMEAACxCAAAAQQAAdMIAAIBCAACAQQAAcEEAAGDBAACAwgAAIEEAAGTCAACAQQAAgMEAADhCAAA8QgAAgMEAAFzCAABQwQAASMIAANhBAAAgwQAAhkIAADBBAABUQgAAmEEAAFBBAADAQAAATEIAAEBCAACIwQAANMIAABDCAADIQQAAAMIAAKhBAACowQAAuEEAAHjCAAAQwgAA2MEAANBBAAAEQgAAcMEAAAAAAABQQQAAPEIAAAxCAACWwgAAaMIAACDCAACAPwAAVMIAAEDBAAA0wgAAgEAAANjBAAAUQgAAxkIAABzCAACcQgAAWMIAABDCAACQwQAABEIAAIjBAAAAQQAAoMEAAIZCAADgQAAAcEIAAFDBAAAwQgAADEIAAHBBAACYQQAAbMIAAFDCAAAQQgAABEIAAIDBAAAgQQAAaMIAADzCAADgQQAAKEIAAKJCAACowQAA-EEAALDBAAAAAAAApsIAAMDBAACAwAAAVEIAACBBAABsQgAAOEIAAEBAAAC4wQAAMMEAAADAAAAgQgAAiMEAALrCAAD4QQAA6MEAAPjBAADcwgAAgEAAAOjBAAAIwgAAqMEAABDCAAAAwAAAkMIAAJjBAACgQQAAgEAAAADBAACOQgAA0MEAAExCAAAUQgAAgMAAAGDBAACawgAAgMAAAHhCAACgwQAAwMAAACRCAAAQQgAAMMEAABRCAACIwQAAAMAAAFDBAACwwQAAgEIAAKDAAACAQAAAqEEAAJjBAACmwgAAjMIAAGRCAACIwQAACMIAAEDAAAAAQAAAMMEAAOBAAACYwQAAAEAAAMBAAAAgQQAAAMEAAMDBAABwwQAALMIAADzCAADYQQAAAMIAAITCAACgQQAAIEIAALLCAABAwAAA4MAAAMDBAAAQQgAA-MEAAAjCAAAAwQAABMIAAIhBAACwQQAAiMIAAHxCAACoQQAAcEEAAOJCAABAQQAAkEEAALjBAADAwCAAOBNACUh1UAEqjwIQABqAAgAAgDsAAFA9AADoPQAAmL0AAAw-AAD4PQAAmD0AAC-_AADIvQAAmD0AAOC8AAAwPQAAuL0AAKA8AADCvgAAoLwAAOg9AACAuwAAiL0AAAM_AAB_PwAA4DwAAFA9AADoPQAA-L0AAAQ-AACYPQAAjr4AABQ-AACiPgAA6D0AAFw-AACYvQAAyD0AALg9AACAOwAAVD4AAIq-AAAcvgAAor4AAEC8AACovQAAuD0AADC9AAA8vgAAJD4AANg9AAA8vgAArr4AAJq-AAAkPgAAgDsAAII-AACKPgAAXL4AALi9AAA5PwAABL4AAFC9AAAwvQAABL4AACw-AABAPAAAlr4gADgTQAlIfFABKo8CEAEagAIAABS-AACoPQAAQDwAAE-_AAAcvgAAqr4AAJY-AADgvAAALD4AAJg9AACAuwAAUD0AAJi9AABkvgAAmD0AAEA8AAA8vgAAyj4AAAy-AAAMPgAAEL0AAIi9AACovQAA2L0AAOC8AADYPQAAlr4AAIi9AAC4vQAAUL0AAKi9AAAMPgAAuL0AAJq-AABAvAAAiD0AAKI-AACgvAAAir4AAMi9AAAQvQAADD4AABy-AAAEPgAAbD4AAIK-AAB_vwAA-D0AAPg9AAAcvgAATD4AAKA8AACYPQAAiD0AADA9AABwPQAAoLwAAJa-AACovQAAcL0AAHA9AAC4vQAAML0AAEC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=jXn-vCgIc9A","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["15581635488392610392"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9342979124051020161":{"videoId":"9342979124051020161","docid":"34-11-3-Z86E32EB355247B0D","description":"🔔 Subscribe for more calculus tutorials from Smooth Integral. Your go-to hub for Calculus Made Easy — from calculus basics to advanced topics. Whether you're looking for clear explanations...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/758402/b97ec7739c5c80564ff1e2c8d5228e2f/564x318_1"},"target":"_self","position":"12","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"Integration of (e^(4x) - 1) / (e^(4x) + 1) Using Substitution","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AeIwekJd63c\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhUKEzkzNDI5NzkxMjQwNTEwMjAxNjFaEzkzNDI5NzkxMjQwNTEwMjAxNjFqrw0SATAYACJFGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKhDCDw8aDz8TiQKCBCQBgAQrKosBEAEaeIEBA_0C-wUA-Ab1APoD_wETCfz99gICAO4GBgAB_wAA9P0KCPwAAAD-BgQKBAAAAPwCAwT2_gEABPkE_gIAAAAC9fUA-QAAAA0L_AP-AQAA9vz-7wEAAAAFCvwB_wAAAPUJ-v8CAAAABAURBgAAAAD8Afn8AAAAACAALXdb4zs4E0AJSE5QAipzEAAaYBQLACEmGvDZBTnyCuf0Dwn0BOPl5Q__6P4AFRb74gQY4bYLBf8t5f4LwAAAAAET_x7rAB9SEeW-CfD58xbR5jgLf_f49_Ll8OzI1xn7KhDrDwz8TgDxHOX8887vNB8zGCAALdC6Ujs4E0AJSG9QAiqvBhAMGqAGAADQwQAAsMEAAIJCAAAEwgAAkMEAAMBAAAB0QgAAaEIAAILCAAD4wQAAoEAAACxCAADwQQAAAMIAAOjBAAAQQgAAMEEAALDBAAAIQgAA0EEAAEzCAAAAQAAAfMIAAGBBAABgwgAA8EEAAPjBAABoQgAA6EEAALBBAAB0wgAAPMIAAHjCAAAQQgAAuMEAAEBBAAAUQgAAkEIAAEDBAAAYQgAAwEAAAIA_AAAoQgAAiMEAAFDBAABIwgAAiEIAAABBAACYQQAAKMIAAMhBAADIwQAAVMIAAIjBAACAvwAAiEEAAEDAAABAQAAAgL8AAIhCAACIQQAAOMIAAODBAADwwQAAjMIAAILCAADAwQAACMIAALjBAABgQQAABEIAAJpCAAAMwgAAxkIAAHzCAAAowgAAJMIAAKBBAADQwQAAgEAAABzCAACaQgAAUMEAAAAAAAAoQgAAwEEAAABBAACgQAAAHEIAADBBAAB0wgAAgEIAAKBBAAAAAAAAQEIAACjCAAAQwQAAeEIAAIZCAACcQgAAQMEAALBBAAA4wgAAQEEAAIzCAAAUwgAAgMEAAFhCAAAQQQAAuEEAAEhCAADIQQAAkMEAALBBAACAvwAAaEIAAKBAAACowgAAaEIAACBBAAA0wgAAlMIAABBBAAA8wgAA-MEAADDBAACQwgAAFMIAAKjCAABIwgAAmMEAADBCAABQwQAAqEIAABTCAABwQQAACEIAAMDAAAAEwgAAYMIAAMDAAADYQQAA0EEAAAzCAABsQgAAMEIAAEBAAADQQQAALMIAAEDAAAAAwAAAcMEAACRCAAAkwgAAmMEAAIhBAABwwQAAXMIAAKbCAABsQgAAAMAAAEDBAACYQQAAoEAAADDBAAA0QgAAoEEAAHxCAABMQgAAqEEAAJjBAACowQAAIEEAALjBAACcwgAAgD8AAKjBAABkwgAAAMEAAHhCAACwwgAAQEAAAKBAAAAYwgAACEIAAMjBAADgwQAAyEEAANDBAADoQQAAlkIAAPjBAAAcQgAAoMEAAKDBAACWQgAAiEEAALhBAADAwQAAUMEgADgTQAlIdVABKo8CEAAagAIAAAy-AADIPQAAiD0AAEA8AACAuwAAND4AANg9AAANvwAAyL0AAIg9AADgPAAAoDwAAJi9AAA0PgAAgr4AAAy-AAAEPgAAML0AANi9AAALPwAAfz8AAKi9AACIvQAAJD4AAAS-AACgPAAAgLsAAHC9AABwPQAAwj4AALg9AAA8PgAAdL4AACw-AAC4PQAANL4AAII-AACKvgAAJL4AAIa-AADIPQAAuL0AAKg9AAD4vQAAQLwAAOg9AABAPAAAZL4AAPK-AAD6vgAAgLsAAOg9AABsPgAADD4AAAy-AADgvAAAQT8AAHA9AADIPQAAqj4AAMi9AABcPgAAmL0AABS-IAA4E0AJSHxQASqPAhABGoACAAB8vgAAuD0AAJa-AABXvwAAmL0AALi9AAA0PgAAnr4AAIg9AACKPgAAcL0AALg9AABAvAAAZL4AALi9AACAOwAAmr4AAP4-AAAEvgAAoj4AADA9AAAUvgAA4DwAAAw-AAC4vQAA2D0AAJq-AACoPQAAqL0AAFS-AABAPAAAyD0AAAQ-AABsvgAAFL4AAAy-AABkPgAA4DwAAAy-AADIvQAA4DwAAJg9AABwvQAAHL4AAI4-AABcvgAAf78AALg9AABUPgAAoDwAAJI-AABEvgAAyD0AAEw-AAA8vgAA2D0AAOi9AADIvQAAcL0AAOA8AAC4PQAAQDwAAKC8AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=AeIwekJd63c","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["9342979124051020161"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3151091455907024359":{"videoId":"3151091455907024359","docid":"34-7-1-ZF9D2EAAB5815AF98","description":"In Lecture 06 (Part I) of the Complex Analysis series, Dubey Sir explores the Smooth Curve, Addition of two Curves and Properties of Real Integration. This lecture breaks down key concepts...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3836416/e1e0caab7df7ce2a4b50940aff40d6fe/564x318_1"},"target":"_self","position":"13","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"Smooth Curve | Properties of Real Integration | CA Lecture 6 (I) by Dubey Sir | CSIR NET | IIT JAM","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=D2veCyZx6hc\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhUKEzMxNTEwOTE0NTU5MDcwMjQzNTlaEzMxNTEwOTE0NTU5MDcwMjQzNTlqrw0SATAYACJFGjEACipoaGF4a3RvcGZya2RyYW5kaGhVQ2hPdzhSY2JoeWN5X3YzbldReG5UNFESAgASKhDCDw8aDz8TwA-CBCQBgAQrKosBEAEaeIH0DAbzBfoA9A75AwQE_gHv-vQK-f__AOYIAQ78_gEA8uv_8wL_AAD6CPkSAgAAAPr88_j0_gEAFAYFBQUAAAAW-Qv9AQAAAAAa9Qf-AAAABQAFBgcM_wMI_RYFAAAAAAL8_gr-AAAAC-7uBAEAAAD88wD7_PT-ACAALRyPwTs4E0AJSE5QAipzEAAaYCsSABcgBQGl7C_lDPHyDvz4BPbWzgX_IPQA4iX35wjr2acdBv8d8gTrtAAAABIS7zPSAPdkAOrB2f8kHL3e6igjf_MM8tXjCs_p7_rcHhTUBxMXMQDFDuHuFOEgRfdLCiAALU9hODs4E0AJSG9QAiqvBhAMGqAGAAAAQAAAoMEAAGxCAACYwQAAQEEAALjBAACQwQAADMIAACzCAACowQAAIEEAAIBBAACKwgAAPMIAAHBCAACowQAAgEAAACBBAABgQQAAcMIAAKBAAADAwAAAAAAAACxCAACsQgAAeMIAANDBAABgwgAA-EEAAHhCAABAQQAAAEIAAJDCAABAwQAAUMEAAJjBAABwwgAAvEIAAIJCAACgwAAAGEIAAGBBAAAgwQAAHEIAAHxCAAA8wgAAbMIAAKjBAADKQgAAwEEAAOBAAAAwQQAAAMIAAKBBAABQQQAAFMIAAIjBAACAQQAAXMIAAMBAAACgQgAA6MEAANDBAAAAAAAAYEEAAADBAAAMQgAAgMIAABDBAAAQwQAACEIAAIC_AAAUwgAAvkIAAADAAAA4wgAACEIAACDBAADAQQAA4EAAAATCAAAwQgAAcEEAAPBCAAAAwQAAZEIAAFzCAACoQQAAqEEAAEDAAACYwQAAAAAAANjBAAAAwQAALMIAACTCAAAAQgAAiEEAAIJCAAAYwgAA4MAAAOBCAABgQQAAuMIAAFjCAACYQQAAuEEAABDBAABowgAA4EAAABRCAAA0wgAAEMEAANjBAACcQgAAYEEAAHDBAACIQQAAEMEAAJjBAABowgAAPMIAAODAAABgwgAA-EEAALJCAACAwAAAaMIAANhBAAAQwgAA-MEAAJDBAADgQAAArEIAAIC_AABkwgAAgEEAAJDCAAD4wQAAOMIAABRCAAAwQQAAsEEAAFxCAAAkQgAAMEEAAMDBAAAkQgAAgEAAAIDAAAB4QgAAAMAAAMjBAADwwQAAwEAAAPBBAAAEQgAAtsIAAMBAAACiQgAALMIAAPDBAACQwQAAHMIAAEBAAADgwQAA4EEAALBBAADGQgAAAEEAAEjCAACQQQAAcMEAACDCAADAwQAACEIAACjCAABwwQAANEIAABRCAACAvwAAsMEAAODBAADgQAAA-EEAAJDCAABEwgAAoMAAABTCAABwQQAAsMEAAIC_AABAQgAAAMAAABBCAABcwgAAqMEAABDBAACCwgAA-MEgADgTQAlIdVABKo8CEAAagAIAAKa-AAAEvgAAuD0AAFC9AACgPAAAtj4AACQ-AAAVvwAA4DwAADS-AAAUPgAAqL0AABQ-AACoPQAAQLwAAMi9AACaPgAAoDwAAEw-AAAFPwAAfz8AAPg9AAAcPgAAVD4AALK-AAAEvgAADD4AABy-AABwvQAAVD4AAEQ-AABAvAAABL4AAIA7AACIvQAAbD4AAOA8AABQPQAAor4AADS-AACivgAAyL0AAHQ-AAC4PQAAgDsAACw-AACGPgAAjr4AADy-AACmvgAAUL0AANg9AADKPgAAfD4AALq-AAC4vQAAWT8AAKg9AADgvAAAFD4AAKA8AAAQPQAAqL0AAOi9IAA4E0AJSHxQASqPAhABGoACAAC6vgAAUL0AAEA8AABFvwAAMD0AAFA9AADYPQAATL4AAMi9AAAwPQAANL4AACy-AACIvQAAZL4AADw-AACAOwAAQDwAADM_AABwPQAAqj4AAKg9AABAvAAAgDsAADC9AAAwvQAA2D0AAIA7AACoPQAAqL0AAMi9AAAQPQAAyD0AAAw-AACKvgAAqD0AAFA9AADIPQAAXD4AAHy-AADIvQAAiD0AAFA9AABcPgAA6L0AAEC8AACYvQAAf78AACy-AAAQvQAAmD0AANg9AAA0vgAA6D0AAAw-AAAQPQAA4DwAADA9AAAsPgAAcL0AAEA8AAAcPgAAgDsAAMg9AAAEPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=D2veCyZx6hc","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3151091455907024359"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10679359845643689770":{"videoId":"10679359845643689770","docid":"34-1-8-Z4E078E34727C93D2","description":"Bu kitap AYT sınavlarında çıkmış integral soruları gözetilerek, öğrenmeniz ve müfredatınız içinde olan tüm integral tiplerini, soru tiplerini soru tekrarına düşmeden ve hiçbir formül ezberletmeden...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1550427/33ee49688bde56c47acc16a06379244c/564x318_1"},"target":"_self","position":"14","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"İntegral 11 - İntegralde Değişken Değiştirme - Test -4 | Sayfa 24","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NJogH99kzko\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhYKFDEwNjc5MzU5ODQ1NjQzNjg5NzcwWhQxMDY3OTM1OTg0NTY0MzY4OTc3MGqvDRIBMBgAIkUaMQAKKmhoaW9yemdndnliY3R3bWNoaFVDUzgtSWtuUWQ1UkJ0a3hBZW5xNFMtZxICABIqEMIPDxoPPxPKB4IEJAGABCsqiwEQARp4gf4HCAT8BAD4BvUA-gT_AQQAAAL4__4A8gIRBf0B_wDp-QMGCP8AAPcECf3_AAAA_v0K_vT-AQAQAwL1BAAAAPj3_P38AAAA_f3tAAABAAD3BAL4AgAAAA0IAQUAAAAA__oKEAAAAAAJBAgBAAAAAPznCf4AAAAAIAAtu0reOzgTQAlITlACKnMQABpgI_kAKy7xxsj-BPbW2SInE8rhAPfPMf_czADUFKarBCzVuxwaAGLZ8_CcAAAAEfsFCP8AQX_y8tEv5Tkf2oHX_vh9TAFE6Nku1ADNGAQVuRoSGSoSACEbxQj2hNM_GigDIAAt2NcPOzgTQAlIb1ACKq8GEAwaoAYAAJhBAACAPwAAIEEAAHzCAABgQQAAkMEAAKhBAABcwgAAZMIAAKDAAADgwAAAgD8AAGzCAADAwQAAjEIAAJLCAABUwgAAoEAAANDBAAAIwgAATMIAAEBAAACIwQAAlEIAAIhCAADAQAAAMMIAAGjCAAB0QgAAykIAAFDCAADAQAAAmMIAANBBAABgwgAAEMEAAPDBAAD-QgAAyMEAADhCAAB4QgAAwEEAAExCAABYQgAA2EEAAKBBAAAAwgAATMIAAEhCAAAAwQAAYMEAAFBCAAAsQgAAQMEAAAAAAACgwQAAmMIAACBBAADAwQAAOEIAAIJCAAAEQgAATMIAAETCAABQQQAAmMEAABDBAAA8wgAAIEEAANDBAADQQQAA6EEAABTCAABgQgAA6EEAANLCAAAAQAAAiEEAAMhBAABMwgAAiMIAAMBAAAA0QgAAiEEAADDBAAAQQQAAwMEAAIBAAACKQgAAkMEAABDCAACGQgAAgkIAAJDCAACoQQAASMIAAABAAAAIQgAABEIAABDCAAAQwQAAgkIAANhBAABYwgAAkMIAAIA_AAA0QgAACMIAAFBBAADYQQAAhkIAADBCAAAAQAAAiMIAAOBAAADMQgAAMMIAAKDBAACIwQAAlsIAAIjBAACYwQAAZMIAADDBAACyQgAAEEIAAEDBAACgwQAAmMEAABjCAAAMQgAAIEEAANjBAADQQQAAgEAAAIA_AADgwQAAgEAAAIDAAAA0wgAAwEAAAATCAABwwQAAAMEAAPhBAAAAAAAAqMEAAGhCAADwQQAAEEEAAOhBAADAwQAAgMEAAPBBAACAwAAAnsIAAIDBAACawgAA4EEAAIpCAABowgAASEIAAIjBAACoQQAAuMEAAAjCAAAMQgAAHEIAAKhBAACgwAAAEMIAABRCAACgwAAAoMEAAEBBAABgQQAA4MAAAMDBAAAcQgAAQMAAAFBBAADgwQAAEMIAAHDCAAAoQgAAEEEAAARCAACIQQAAwMAAAJBBAADQwQAAgMEAACDCAADoQQAAgL8AAIBBAADAwQAAAEEAAKzCAAA4wiAAOBNACUh1UAEqjwIQABqAAgAA4LwAAJa-AACKPgAAiL0AAJI-AAAdPwAA6D0AAAu_AABcvgAAVD4AAP6-AAC4PQAAhj4AAMo-AAC4vQAA-D0AAIo-AACgPAAAjj4AAG8_AAB_PwAAgDsAANI-AABQPQAAML0AAL4-AADaPgAAPD4AADy-AADYPQAAoLwAAK4-AACaPgAAdD4AALi9AACivgAAir4AAIA7AAAPvwAA-L0AAAw-AAAUPgAAET8AAFS-AACYvQAAJL4AAJq-AACmvgAANL4AABS-AACSPgAA6D0AAOI-AADCPgAAlr4AAIi9AABBPwAArj4AAHy-AACmPgAA-D0AAEA8AACgvAAA2L0gADgTQAlIfFABKo8CEAEagAIAAMi9AAAsPgAAMD0AAEm_AACIPQAA6L0AAKo-AACKvgAAmD0AACw-AAAUPgAAML0AABS-AABcvgAAHD4AAIC7AAAsvgAAGT8AAPg9AAB0PgAA4DwAAFy-AAAQPQAAiL0AAKi9AADIPQAALL4AAIg9AAC4vQAAoLwAAKC8AAA0PgAABL4AALi9AAAQvQAAEL0AACQ-AAC4PQAAfL4AAFS-AAAcPgAAFD4AAKA8AACgPAAAFD4AABA9AAB_vwAAyL0AAL4-AACAOwAAmD0AADC9AAAQvQAA4DwAAKA8AAD4PQAAQDwAAFy-AACAOwAAUD0AABw-AAAUvgAAFL4AAKg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=NJogH99kzko","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10679359845643689770"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11339382622870700790":{"videoId":"11339382622870700790","docid":"34-8-6-ZD2C7A70F8478A623","description":"Daha fazlası için: http://www.khanacademy.org.tr Matematikten sanat tarihine, ekonomiden fen bilimlerine, basit toplamadan diferansiyel denklemlere, ilkokul seviyesinden üniversite seviyesine...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/774886/7c5d7bd65bc731e23758b2e58cd70b64/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BOSSJAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"Çizgi İntegralleri için Yol Bağımsızlığı (Çok Değişkenli Kalkülüs)","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=E4Fml_t6rOI\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhYKFDExMzM5MzgyNjIyODcwNzAwNzkwWhQxMTMzOTM4MjYyMjg3MDcwMDc5MGqTFxIBMBgAIkUaMQAKKmhoZ3pkbGFqb2JjeWh5eWJoaFVDOGhneDVoQ2l5RG1PM1VlQmw5NV8xURICABIqEMIPDxoPPxOEBoIEJAGABCsqiwEQARp4gfYNGQYJ9gDo_fT8BQABAOgKEgH7_v4A8AEHCwQC_wDz9QT_9gAAAO_9EAMHAAAAFPH-8_z_AgATBQHv8QAAAOj56f79AAAA7v_4__8BAADuFAX0AwAAAA_-_QEAAAAAEPoH-QD__wAN7vj1AQAAAO_mBAEAAAAAIAAt0AO2OzgTQAlITlACKoQCEAAa8AF_EDAAyfrL_9AwzgDhDPMByjLzAPw4zwC25_H_tQz-AeTO-wHaBOgABhHoAJv-9wEn6tX__-IIAD_a_ABH3RsA3xUEAR_69wAjFDICGgTy_9snFP_n-wEC9_LNAOoWxv4L8RT5DwIK_wvpswkQ_kMB-AEpBi789f_g2RX80wgVAyAKwPv5MPcBDN0Q9_QgCggU_hEIJh4T_PE14Pz_3BkF6dgRAQAR7PcCBeQEMhPu99ThIQLW3PgACOYtCN0P7gPy9ikC99_0A94IEQIoBPL40RL8ANwO_wISCgn-D8QMBf8I9e709_D85xT36NgN8f8gAC3gaQk7OBNACUhhUAIqzwcQABrAB7znwL4Vo9M77tfTPFXZ9zwSVdM8-DAgvfiBtbwDq888aRT3vPa2ST6SUoq9UVcNPb0oML2_oja8vOeAPMVVhT5UMG-9m38qvNlDS75DknY7KX-CvSCPCTyXJXC8-jbOPML5tL2KdnQ7OIcrvTBHzzw4uo-98icqPG-LCL1DRwe6I9gYvTKlGj1VtIO7TJkKvUTPHL0UxMi7CSjevKr0Lj1HUve81B5APKGUej1kaKu8waq6vKxw673w04I8MgWpu4RZEj2451k9YiAZPOv7hb0-aEy9hzsRPOBtib09uPs9xjwGuzaJiz1tALY9hEtHvHGknT0kBuY8QEkFvG2s5L2mES49lE7BO16dAz270ec9uBAYPK70Kr5txd49itQLu_mE7Dz2lQc9sZuAu03TnD3kNvW8CWyOPMhtarvMkZk7riKKO8OjaL3-Tgk9a5T_PCBLqj2oFva8XHaIvCve6D2zyMA8E6MAPAe_w7sgjdS8ZAG4PJuIoz2mM6Y9vOMYPBzjs7rfPTa9t5APvN9mxj05tfO9hx8YPMdp47wQm0O9fNd7PMPwET0sRaI9JkUWO_D5YT0UXw2-d4QRu7y7Jbv9EIu904Ojt7-7lb1VMCq8uJwgPFACpr16H0I9BMFKu_xlgb2OoVI83-tavB_9Jb0DtOu7PVfCO2wB57swR--9P5qgulSFiz0Pm-g9XqRROhTIMT0e8pA9t5DiuVqzWj09dpG96obYuuIAP73J3Yy8w6nmOtDV1r2BQAe-r2u9OMdnEj6uoOm9kAm0ufA74bwsL9Q8Ee4lO44Kl71a8RE7qdCNOIX5IT3J0Ay9ajb8tcui8LxbQh6-NwXjOVevtz3vhl69KnApN-FrHzy-J-A8hcAhuiL4hL1Td6W8Reh4Oi2lmD1kKhi9NJYSuLckrDwfuRW90xoNOc7Z6TrASGM90kuxOAoGoTze30W83sv0ORoAxTyNiWM9kX06N-ukYzyijKK9v1JkOd3zVz3HV1E9B3ofN1s9TLu7NLQ8y7WZuCqOQz3iAtA9uwH3OJHEIb2LDKy9yCZ8OJFkMb1Zq5E9tUa_OOPnGr2_lvw8OTL5OG7UVDy0RJ28M-cAOGIvlD2taR68P3XctU8ONT2cICA9ylJHOMHjKz7cpWi8B4l0uTnFxL1ntya-1kdyOM5yNLxdD8u9qHCbt7xBL70logk9zb9mOOTVnrx6ifG9ZVUwuPlk5T3I2Zo9tUDWNonwz72TUbU97XjxuLQWwL1UNLs9PF-yOL20ErpZn5e98mYzuCAAOBNACUhtUAEqcxAAGmAN7wA7OREJBsXw7xrWMSrGy8zTGMIy_wny_8VC3AsgJeXC-TkACtMHAp4AAAAoIL4DJAAKf7fb__IcEkevl8geC1ccIy_M2DPu7dYRIxXMxBo_AjMA_vqJ8hzEuUU7QO8gAC3pFhE7OBNACUhvUAIqrwYQDBqgBgAAFEIAAFBBAADQQQAAkMIAAMDBAABgQQAAeEIAAOBBAACAwgAAgEEAAERCAAAAQAAA0MEAAPBBAACgwAAAcEEAAJBCAADAwQAAIEEAAARCAADwwQAAcMEAALLCAAB0QgAAGMIAAEBAAACAwAAAIEEAACjCAAAgQgAAJMIAANjBAAA4wgAAjEIAAJDCAADAwAAAmEEAALxCAABAQAAAZEIAAHBCAAAgwgAAuEEAAIDCAACgQAAAeMIAAJJCAAB4QgAAIEIAAHRCAAAYwgAAQEEAAJDBAAAkQgAA0MEAAHBBAACQwgAAQMAAAEBAAAAIQgAAREIAAPjBAAAEwgAAAEAAAADCAABowgAAkMEAAEDAAAAAAAAA0MEAAMhBAACCQgAA8MEAAGxCAADowQAAgMEAALrCAADoQQAAEEIAAKhCAABgwQAAskIAAABAAAAowgAAoMAAAKJCAADgQAAABMIAAPhBAADgQQAAoMEAADhCAABAwAAAAMEAAEDBAACgwAAAyMEAAAAAAADAQAAAjkIAAIrCAADwQQAAgL8AACxCAABgwgAAYEEAAKDAAADIQQAADMIAAJhBAAAcQgAAgEIAAMjBAAA4QgAAgL8AAFRCAACAQQAA8MEAAIJCAADQwQAAEMIAACzCAABAQQAAIMIAAAzCAACIwQAAIMIAAKDBAAB8wgAACEIAALDBAACAQQAAREIAACxCAAAAQAAA2EEAAMBAAADoQQAAuMEAAFTCAABgwQAAAMAAAOBBAAAgwgAAdEIAAIBCAABAwAAAEMEAAABAAAAAAAAAIMIAAJBBAADAQQAAQMEAAEBAAACgwQAAbMIAAMDBAAC2wgAAoMAAAGDBAADAQAAALEIAANBBAAAAQgAAQEEAAKDAAACAQgAABEIAAOBAAADgQAAABEIAAKhBAABgwgAADMIAACBBAACgQQAAOMIAAADAAACyQgAA4sIAAKjBAAAAQAAAIEEAAIBCAAAEwgAAQMIAADhCAAA8wgAAYMEAAEBBAADAQQAAoEEAAGDCAAAwwQAAgkIAAIjBAADYQQAAwEAAAIDAIAA4E0AJSHVQASqPAhAAGoACAAAHvwAAUD0AAJo-AAA0PgAAhj4AAM4-AAB0PgAAGb8AAK6-AADgvAAABL4AAII-AAAsPgAApj4AALi9AADoPQAALD4AAKC8AACOPgAAcT8AAH8_AAAsPgAAHD4AAIi9AABEPgAAmD0AAKC8AABwvQAAVD4AAJo-AADIPQAAML0AAAw-AACCvgAA0j4AAHS-AAC2vgAANL4AAI6-AACmvgAAkj4AAMi9AAA5PwAAxr4AAMa-AADoPQAAXL4AAI6-AABQvQAAqr4AAMg9AACYvQAADL4AAOA8AACWvgAAML0AAH0_AAAQvQAA6D0AAFQ-AADIvQAAjr4AAIi9AABcPiAAOBNACUh8UAEqjwIQARqAAgAAQDwAAFA9AAAwvQAATb8AAES-AAAkPgAAXD4AAHA9AABUvgAAdD4AABQ-AABUvgAAqL0AADy-AACYPQAAUL0AAOg9AAAHPwAAQDwAAJY-AADYvQAAUD0AAMg9AAAsvgAAoLwAAJi9AAAMvgAAcL0AABA9AACgvAAAMD0AAJg9AABcvgAAjr4AAKC8AABAPAAAmD0AAAw-AABkvgAAUL0AAKC8AADoPQAAFL4AAIg9AACgvAAARD4AAH-_AACIPQAARD4AACQ-AABkPgAA2L0AAEC8AAAUPgAAyD0AAIA7AAAwPQAAoDwAAOC8AAD4vQAA-D0AAFA9AAAcPgAAQLwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=E4Fml_t6rOI","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11339382622870700790"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1071603902"},"8933047828036088445":{"videoId":"8933047828036088445","docid":"34-6-9-ZA9CDED885B8B335C","description":"complex integration techniques. Tune in to get insights into advanced integration methods and boost your understanding of complex variables!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/877971/06df253d3f0862eabe5dce2990a04539/564x318_1"},"target":"_self","position":"16","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"Solving Complex Integrals with Cauchy's Formula: Evaluating e2z / (z+1) 4 Around |z| = 2","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Z5d4ogQFalI\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhUKEzg5MzMwNDc4MjgwMzYwODg0NDVaEzg5MzMwNDc4MjgwMzYwODg0NDVqrw0SATAYACJFGjEACipoaG9qeGpoaGRjZWF0bGpjaGhVQ29lRmwzUTVPNWFHbENOZlFOSWJ4d2cSAgASKhDCDw8aDz8TywOCBCQBgAQrKosBEAEaeIEJBQkG_gIA6_wD_foAAQALDPb39gAAAP0FAwACBf4A6fwQBQQAAAD6D_D_AwAAAP356v7-_QAADwH3_AQAAAAJ8_cL-wAAAAAH_QD-AQAA9Pv-_AMAAAAPAAj7_wAAAPgLB_r7_wAA-gEFAAAAAAAF_gsNAAAAACAALV2u2Ds4E0AJSE5QAipzEAAaYC8VADYqBOrj_CHOzvziERPJz_jJ4v3_-ucADwgM2BEdvrDk__84thzvsAAAAP38DzwMAPVqL-S_DxgK69rP0jMwfwwTGtMIENPZ1P4GHgv-0S8MNwCxAA8bANvxRvEwASAALfFoLDs4E0AJSG9QAiqvBhAMGqAGAADoQQAAIMIAAFxCAACqwgAA-EEAAADAAABcQgAAgEAAAFDBAAAIQgAAyEEAAHTCAADAwQAAIEEAAExCAABAwQAAmMEAAADBAADIQQAAuMEAAILCAAA4wgAARMIAACBCAAAMwgAAsMEAAIBAAABMwgAAAEAAABxCAAA8wgAA-EEAAFTCAADgwAAAssIAAJjBAABwQQAAqEIAANjBAAAgQgAAIEEAAJBBAACEQgAAKMIAANhBAACwwgAA6MEAAGRCAACgQgAAPEIAAIhBAADIwQAAgL8AAFBBAABAQgAAuMEAANzCAAAsQgAAgL8AABhCAACWQgAAksIAAAjCAABgwgAAwEAAAJrCAAAkwgAAnsIAAEBBAABIwgAANEIAAFxCAAAEwgAAkEIAAGDCAACAwgAAiMEAABjCAACYwQAA4EEAAMDBAABUQgAA2EEAAKBBAAAEwgAAFEIAACBBAAAQQgAAEEEAABzCAAAowgAAjEIAANDBAACAwAAAQEAAACjCAAAgwQAAuEEAAKpCAAB4QgAAFMIAAHBCAAAQQQAAYMIAACjCAAAAwQAAgL8AALBBAADAwQAA0EIAAI5CAAAgQQAAOMIAAJhBAABQwQAA2EEAAGDBAAAUwgAAWMIAAEjCAADAwAAAdMIAALjBAABAQQAA4EEAABRCAADAwAAAgMAAAAzCAADAQAAAqMEAAIjBAADQwQAAKEIAAMDBAADYQQAAAEAAALBBAACAwQAAgMIAAADBAAAIQgAALEIAAMjBAAB8QgAAGEIAADjCAAAQQQAAkEEAAIDBAADowQAABEIAAPBBAABwwQAAQEAAAFDBAAAUwgAAMMIAAILCAADgQQAAXMIAAIhBAACAwAAA0MEAAHDBAABEQgAALEIAALpCAAA0QgAAIEEAABTCAACYQQAA4EAAADDCAAB4wgAAcEEAAIDBAACQwQAA6EEAANBBAADIwQAABMIAANDBAADYQQAA2EEAALDBAAAgwgAACMIAAJDBAABAwAAAwMEAAHjCAABQQQAAwMAAAAhCAACAvwAAwMEAAIBAAAAgwQAAcMIgADgTQAlIdVABKo8CEAAagAIAAFC9AAAQvQAAJD4AABA9AACIPQAAJD4AAIY-AAAJvwAAJL4AAKA8AABMvgAAUL0AAIi9AACSPgAAXL4AAIi9AABsPgAAgDsAAMg9AAC-PgAAfz8AAOg9AACIPQAAFD4AAKA8AAAEPgAAUD0AAES-AACoPQAAFD4AAIC7AACYPQAA4LwAAPg9AACoPQAAEL0AABQ-AACIvQAAir4AAIK-AADIvQAAMD0AAIC7AAAwPQAAHL4AAIg9AAAUPgAAoDwAALi9AADovQAAbD4AAPg9AABkPgAAqD0AAIa-AACovQAAJT8AABQ-AACAOwAADD4AADS-AADIPQAAoDwAABC9IAA4E0AJSHxQASqPAhABGoACAACWvgAAQLwAAEQ-AABNvwAAUD0AAMi9AACaPgAAzr4AAKC8AABkPgAAMD0AABS-AAAkPgAARL4AAEA8AABAPAAAED0AAE8_AAAsPgAAHD4AAKg9AACYvQAAED0AAHA9AACgvAAARD4AAKi9AAA8PgAAiL0AAIA7AAAwPQAAJD4AAKi9AADYvQAA6D0AAOC8AADaPgAAyD0AAIq-AACevgAAfD4AADw-AACYvQAAoDwAANg9AAAMvgAAf78AAAS-AABAPAAAmD0AAK4-AACAOwAADD4AALg9AADIvQAAyD0AABC9AADYPQAAEL0AAAS-AACePgAA4DwAACy-AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Z5d4ogQFalI","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["8933047828036088445"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17462774937159519067":{"videoId":"17462774937159519067","docid":"34-1-1-Z18977908BB7D267D","description":"My notes are available at http://asherbroberts.com/ (so you can write along with me). Calculus: Early Transcendentals 8th Edition by James Stewart...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3946287/263589856186573a46c2aa43059d9823/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XbDILgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"Calculus 5.4 Indefinite Integrals and the Net Change Theorem","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DYROkegaERw\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhYKFDE3NDYyNzc0OTM3MTU5NTE5MDY3WhQxNzQ2Mjc3NDkzNzE1OTUxOTA2N2qIFxIBMBgAIkUaMQAKKmhoY2VqeGlhYmhncWR3cGRoaFVDN2dUMkpoVnYydzd5RFBHeXA2T1R3dxICABIqEMIPDxoPPxPnCIIEJAGABCsqiwEQARp4gQD9__7-AwDx-___CAL_AAsA-_r3AAAA7QcHAAH_AADtBAjyAAAAAPAOCwMGAAAAAf4DA_7-AQAMBPnuAwAAAA70-QMDAAAABgP2Af8BAAD4AfwBA_8AAAPw_Ab_AAAA-wQJC_4AAAD8CAgFAAAAAPryDvsAAAAAIAAtUvfaOzgTQAlITlACKoQCEAAa8AF_BfsCywjiAPoY5ADnCvYAoBILAP0t2ADSCusAwfjOAPr63wDk1e__5hEBAL8Q7_8ZAcsADt0EADTP6f8W4wAB7RoXACHZ9QFEEw4B_gTr_-IgEP_54-___s7jAAcK1_4Q7wYB8_b3AO8DygIN_jYBBPkYASb8IADm4RH98AP7AgvW3P76J_kBCeQN-d0EHgIL6_0HBhD2AdEc7v_9Ae4DD-Qg_fck7gIhCgYMBgX2CN74_wb28_UGEwYQBQf84wX0-CEC7w_y9tjyBgUb8QX45gD4BQfeBxER_fQH-OUO_fHl7_fWAAH89CIA-NgRA_cgAC3g4Sk7OBNACUhhUAIqzwcQABrAB-li076K8AU9kHjDPF8eHD3zVt2848SHvfgzPLyHSzM9xMGUu2eaMD4gkVu8Q-StORJiU71oEUA8vsJdvcVVhT5UMG-9m38qvHV0_L0vE5o9CwIQvUpNwb1m5jg7TxqPPMy-kb3xtKG8avTuO9LrBT1mg8y81SICvcoufb1J56474JcfvSgTMj2wXyu9sac9va3lJL18gRm9CaWvO2VtVzuM5GG8Sx5PPC_rtDwJACm9210Wvaxw673w04I8MgWpu9HEoLz8tes8dtKMvEQgvb20YD29W9VHObzZ0Tuixo48_fe_O6zCaz2df2A910V2vOenGD2Ad7y8lX-tvCY19L1-Ay49q7oCPfX1_D2cogg96ytZvNzvhb3dCfY9yJ3rursqUD36jUC8v---OkHCZjzwdMI8i3WiOyCcKj1Iqs46wmz-u6oeRrqAgYA9VNNkPFPKoD0sd1C94rEbvCpxfT2nvj281X5GvCIPbr09WRu9HYPjOl2nUT1Vl508TYOiPA8mxbzIpWC8cJKLO8U1Qz34UQ2-CW8su5XcPL088cG9Q-nmu8HkxjxS_rQ9zdmMvEOpHT4fatu9xJqpOUUb9jxPtho7PSwvPMo-_ryK84a9Eo6TOylb5L0b9yE9XquQu_4s1rxhXKC88747vGmoEb0YrvM8fB0hPKc95bzrjA--Jd69t5VrpTx5i5w9Zf5yOzjYOz2jAgc-PZzruZYvHj2u2I-99j_humEtI738eCA8_mveuCrogb2cPKC9zgB1uG0D1z21o9i9DJ-vOYt2Kz0gl1g99qhfuCeI-r3apwQ8dfB4uQLvKT3NGba8nSUVOKs9kb0aUhW-MFEKOl3aNT0BDoa8QDpauR1gnLy8O5I9iDGwt2lZcr3TBja9LuDpuk6osTwFICS8e2Ojuep2Bj5S3l09Nzj4NcbyMz2J3CI9F372t4V_rLxDmJG6lLRfNp8ov7w5xXS8IZ4-N-ukYzyijKK9v1JkOXQ-oTyFf5w9jJZEuTViIb05pl08hNDCt_qBtj0b-iI9BuJ9N2CbBbyMRE29dp0vODWAgj1XsI085fOrtmh1Mr5kpCg9F8pMt1mnSr02Rwy9AVdLNxO6yzvXoZq6Gl43tpZIWDyuSMw8H0dQOJJdGT7ZT1C9rMI_uc3Her3TFey95pv4uLvtgryX5qG9-jj_t0CQgr2mvHE9oH71tlyooT19xJS9uKGWN8r0cD0i4Ss-8cuKOHF8Y736JQI-qYEsubQWwL1UNLs9PF-yOMHFjrtiFa-8QXEzNyAAOBNACUhtUAEqcxAAGmA9_QAyBBzB6dc-3Oyz4AX27AwA6_f7__PZ_7Ai2gQBOra0FDP_Qgor9KMAAAAPEwEfpADze8buCervLRH-qsPvH38zHfCxpB_izcEjLf_JWxAxJAsA1BieIxbd5T0hFgogAC1YFhI7OBNACUhvUAIqrwYQDBqgBgAAQEEAAJDBAAAUQgAAmMIAALDBAAAAAAAAokIAALjBAACOwgAAmMEAAARCAACgwQAAAAAAADjCAACYwQAAHEIAAMBBAADQQQAAAEAAAABAAABEwgAAMMIAAIzCAACYQQAAiMIAAOjBAABAwQAAyEEAAKhBAAAEQgAATMIAAERCAABswgAAmEIAAMDCAABEwgAAEEIAABRCAACAwAAA8EEAABRCAACAwQAAmEEAADBBAAAkQgAAXMIAAAAAAAAoQgAABEIAAPDBAAD4wQAADMIAABTCAAAIQgAAAEIAADBCAACqwgAAYEEAAGhCAABAQQAA8EEAAI7CAACIwgAAUMEAAAjCAAAAwwAAkEEAAGTCAACgwQAAYMIAAGBCAADgQAAAcMIAAKZCAADgQAAAsMEAAIjBAAAwQQAAEEIAADhCAADwwQAAykIAAEBAAABowgAAmMEAAOhBAACowQAAJMIAAPBBAAAEQgAA4EAAACBCAABcwgAAoEAAAGxCAAAQwQAA4EAAAEBAAACAPwAAEEIAAGDCAACwwQAA4EAAAOBAAACgQAAAgEEAAHBBAAAgQQAAEMEAADxCAACSQgAAyEEAAADBAADAwAAAUMEAANhBAAAgQgAAoMAAAEBAAAAAwgAAIMEAAETCAACwQQAAMEEAACjCAAAgQgAAcMEAACDBAADQwQAAsEIAACDBAABcwgAAyMEAAI5CAACgwAAAgEEAADzCAADwQQAAIMEAAHzCAAAAwQAAGEIAAJBBAABcwgAAMEEAAFhCAACAQAAAEMEAAFDBAACAPwAAQMAAAPhBAAAQQQAAAEEAAAAAAAAAQQAAksIAAKDAAACSwgAAwMAAAHTCAAAQQgAAuEEAABhCAAAAwQAAAEIAAKBAAAB4QgAAVEIAACBBAACAwQAAAEAAANBBAACwwQAAYMIAABRCAAAgwQAAQEAAAEDCAAC2QgAAWMIAADTCAAAIwgAAmMEAANhBAAC4wQAAosIAALBBAABgwQAAiEEAAGRCAADowQAAEMEAAADAAAAswgAAuEIAAJBBAAC4wQAAIMEAANDBIAA4E0AJSHVQASqPAhAAGoACAAAwPQAA4LwAAEw-AADgvAAAgDsAAEC8AABQPQAAM78AAIi9AAAUPgAAED0AAKg9AABwPQAA2D0AADy-AADyvgAAJD4AAEC8AACKvgAAMT8AAH8_AAAwPQAARL4AAL4-AAAwPQAAoj4AAGQ-AAAcvgAApj4AAMI-AACAOwAA2L0AAI6-AADqPgAAqj4AAJa-AACovQAAmL0AADC9AACyvgAAoDwAAIC7AABcPgAAVL4AAOK-AADoPQAAED0AAFy-AACGvgAAgr4AAOC8AADSPgAARD4AAAQ-AACivgAAHL4AAGk_AAD4PQAAcL0AAPg9AADYvQAA2L0AAMg9AACKviAAOBNACUh8UAEqjwIQARqAAgAAHL4AAEC8AABwPQAATb8AACS-AAD4PQAATD4AAFC9AACIvQAAiD0AAFy-AAAsvgAAQLwAAHC9AACoPQAAgLsAAFA9AAAxPwAA2D0AAMY-AADIvQAABL4AAJi9AADIvQAAEL0AAIA7AABwPQAAgLsAAEA8AABQPQAAcL0AAAQ-AACIPQAAtr4AAKi9AAAwPQAAUD0AADQ-AADYvQAAyL0AAHA9AAAQPQAAUD0AAIC7AABwPQAAiL0AAH-_AAAcvgAA2D0AAJY-AACePgAAcL0AAEC8AAAcPgAAgDsAADA9AACAOwAAFD4AAFC9AACgPAAAzj4AAHA9AABwPQAAyL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=DYROkegaERw","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17462774937159519067"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"628159572"},"4673848388761785998":{"videoId":"4673848388761785998","docid":"34-6-2-Z4E87C95A264F4768","description":"Consider a volume and assume that the boundary of R is such that no line parallel to the x axis or to the y axis cuts it in more than two points.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3430537/94b36306aa74bfa1a3f0b2ee9f1545cf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/IAnZHQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"Iterated Integrals | Calculus | Chegg Tutors","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3A5GY5YfLKA\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhUKEzQ2NzM4NDgzODg3NjE3ODU5OThaEzQ2NzM4NDgzODg3NjE3ODU5OThqrw0SATAYACJFGjEACipoaGV2eHVscG5rb3B5YW5kaGhVQ0VCMzY3ekN4MnAtdHY2eGhoenl5TXcSAgASKhDCDw8aDz8T1wSCBCQBgAQrKosBEAEaeIH4DAT_Av4A_goIAQUG_QH5A_8B-P39APgFDfkDBP4A-fT4-_gAAAABGQ3-AgAAAOsEAAT_AQAACfL28gIAAAAN8P3_-QAAAAIW8_f_AQAA-An1AgP_AAAZAPEH_wAAAPHzBhEAAAAA-AMN-wAAAAD75Ar-AAAAACAALTCYyjs4E0AJSE5QAipzEAAaYAEjAD8bBevU1SniFNn1EvkACPfM0xgAD9kA-Pjs7O4Xz9QWL_8O3Aj4vgAAAAkA8ib0APBX8OPK1B4d9Oe33Rkcf_4t7B_VHd4d1f8KIfQB8ijxDwDjF_8PEM7rUgw7DCAALSRxRTs4E0AJSG9QAiqvBhAMGqAGAACAPwAA0EEAAJZCAABIwgAAiEEAAMhBAAAsQgAAKMIAADTCAAAAwQAAcEEAAHDCAAA0wgAAqsIAAHxCAADgwQAAwEEAABzCAABQQQAAhsIAAIA_AABwwQAAgD8AADhCAAAgQQAAfMIAAETCAADAwQAAmkIAAERCAABwwQAAkEEAAFTCAADgwAAArsIAAPDBAACwQQAAvEIAAEDBAACiQgAAgMAAAJhBAACAQgAAiEEAANBBAABAQQAAdMIAAAxCAADCQgAA2EEAAGDCAAAgwQAABMIAAKBBAAAEQgAAwEEAAPrCAABwQQAA4MEAABBBAAAwQQAAUMIAAPDBAACmwgAAQEAAAKjCAAAQwgAAyMEAAGjCAADYwQAAcEIAAIhCAACgwAAAqEEAABzCAABEwgAAoMAAAMDBAACwQQAAAMEAAAzCAADYQQAAcMEAAHRCAACAwAAATEIAAIBAAAAMQgAAREIAALDCAACgQQAALEIAACDBAACwwgAAgL8AAIjCAACwQQAALEIAAARCAACAwQAAmMIAAMBBAAAEQgAAqsIAAFDCAAAAwAAAuEEAANhBAAAAwQAAWEIAAKBAAAA4QgAAIMEAABTCAAC4QQAA0EEAAIDBAAAUwgAAiMEAAMjBAACgwAAA4MEAAJjBAAAgwgAAAMEAAERCAAAQwgAAsMEAAMDBAACgwAAAIEEAAKDBAAA0wgAAgMEAAIDAAAAQQQAAUEEAANBBAAAMwgAAnMIAAIDBAAC4QQAAAEIAAADBAAAgQQAAsMEAAGjCAADoQQAAGMIAAKjBAAAAQgAAVEIAAFxCAADQwQAAqMEAABjCAACgwAAAPMIAAEzCAAAkQgAACMIAAJBBAAAgwQAAAEEAABzCAADAQQAAgEEAAI5CAAAoQgAAiMEAAGDCAAA4QgAAiMEAAIBBAAAQwgAAAEIAAOhBAABwwQAAUEEAAGhCAAAAQAAAiMIAAFDBAAAAwQAAcEIAAEDCAACmwgAA4EEAAABAAACgwQAA-MEAAFjCAAAAAAAAoEAAAIBAAADgQAAAOMIAAIBBAACgwQAAFMIgADgTQAlIdVABKo8CEAAagAIAAPi9AACIvQAAgDsAAOg9AAA0vgAA2D0AAIo-AAAPvwAAJL4AABQ-AAB0vgAAcL0AAOC8AAB8PgAAZL4AAFC9AABMPgAAcD0AADA9AAAzPwAAfz8AAKi9AABkvgAAyD0AALi9AAA0PgAAgLsAAEy-AAAQPQAARD4AAHA9AACuvgAA2L0AACy-AABsPgAARL4AAEC8AABEvgAATL4AACy-AADYvQAAoDwAAAw-AAAUvgAAPL4AALg9AAB8PgAAJL4AAES-AAAsvgAAUL0AAJg9AABMPgAARD4AAGS-AABAPAAAWz8AAIA7AABsPgAATD4AAOC8AAD4PQAA4DwAAIq-IAA4E0AJSHxQASqPAhABGoACAAA0vgAALD4AAFA9AABFvwAAEL0AAIA7AAAsPgAATL4AAIC7AABcPgAAmD0AAFC9AABQvQAAyL0AAOg9AADgvAAAgLsAAAE_AABQvQAAnj4AAKC8AABAvAAAiL0AAKi9AABQvQAA4DwAAMi9AABAvAAAmL0AALg9AAAQPQAARD4AAOi9AADYvQAAiL0AAMg9AAAwPQAAfD4AADS-AABMvgAAoLwAAHA9AACIvQAAMD0AAJg9AADgvAAAf78AAAw-AABEPgAAmD0AAFQ-AADYvQAA-D0AADw-AAAMvgAA2D0AAOA8AADIvQAA4LwAAJi9AAC4PQAA6L0AALg9AADIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=3A5GY5YfLKA","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4673848388761785998"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2746845454"},"4766110775508062957":{"videoId":"4766110775508062957","docid":"34-4-5-Z18401E0365D73E62","description":"Welcome to Mathwired! In this video I go over a big part of calculus, the companion to differentiation - Integration! We touch on some useful techniques as well, such as u-substitution.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3933514/6e10b778b78f2c925b660ab21b1188bf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LNkbMAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","isAdultDoc":false,"relatedParams":{"text":"AP Calculus review: Integration! | Slope fields, Indefinite & definite integrals, FTC, and more","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rNt8Gwl3pJo\",\"src\":\"serp\",\"rvb\":\"EqoDChM2NTMwODk3MDkwMDU2Nzk5MTY3ChM1OTE2OTc1NzM1NDE4NjE4MjE5ChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2ChM4ODMwNzM0NTM2NjEwNzI2NzUzChM3MTUwOTA2NDkzMjUyMjU1ODk3ChM1ODA4MDY3NjkzNjA4MTQ5NzE0ChQxMTA2MTI1MjcxODU3Njg3MjIzNAoUMTgwNjY3MTE4MTQwODExNjk1NzYKFDE1NTgxNjM1NDg4MzkyNjEwMzkyChM5MzQyOTc5MTI0MDUxMDIwMTYxChMzMTUxMDkxNDU1OTA3MDI0MzU5ChQxMDY3OTM1OTg0NTY0MzY4OTc3MAoUMTEzMzkzODI2MjI4NzA3MDA3OTAKEzg5MzMwNDc4MjgwMzYwODg0NDUKFDE3NDYyNzc0OTM3MTU5NTE5MDY3ChM0NjczODQ4Mzg4NzYxNzg1OTk4ChM0NzY2MTEwNzc1NTA4MDYyOTU3ChM1MzM5NjI5MjExMjQxNjMzOTczChMyNTE5Njc0NDkzMDM0ODk2NTc0GhUKEzQ3NjYxMTA3NzU1MDgwNjI5NTdaEzQ3NjYxMTA3NzU1MDgwNjI5NTdqtg8SATAYACJFGjEACipoaGVieXVpaHhjbXllcHRiaGhVQ0NKYVBRdFQzal92Y1Vvc1NHWERQVGcSAgASKhDCDw8aDz8TxAaCBCQBgAQrKosBEAEaeIEMBAL-_gIA9_0I_vsE_wEIAQf69___AOQRBwED_QEA9O3_9QH_AAD6EAT-BgAAAPf9_vX6_wAAGPz5AAMAAAAV8Pf3_QAAAAkQ-w7-AAAA7v70-QIAAAAL9fv__wAAAPP4AAcAAAAAAwD6_wAAAAD3BQf8__8AACAALWlX2js4E0AJSE5QAiqEAhAAGvABf_UYAe4C4wHpCe8A2g7JAJkV8QD9K9kAxPMJANIT3QAICfgAyfH_AB4L8gDEBgEAE_Xo__zv-QBB5wgALdAJAN4OEgEf3wkAIRYXAPvj7v7YPR3_4QMC__jg2f_4EOX_C-YO__oU-AIJ7sQHDf40Af4IDwEp9QgC4tMKAPwKAAQJ8t0A-ib5AfTzBvjsBiABCuz9BykiBv3oEfwFFwEEBPznA_sHJ9z-JP31Bgf4FQjf4gQBAtr8BQz5Gf3nKfX96uYZ_87_AffmBg0BKvf2Bd77AwXr-vMM9PYEBgzRCgT6CPv-7BkBAAEC_gDy6fX-IAAtD2wvOzgTQAlIYVACKnMQABpgIAAAPxsP2vLzOeH-uPEU2970BNvILv_a5f_dAsIDAzHQrfgP_xvjNgWrAAAAAgQRGcIAA3HF8s0XECgh2KO9LTJ__wgStLkR59rHIP0E4UQqFvoYAMEdqQsZ7-o-HwgYIAAtglYfOzgTQAlIb1ACKq8GEAwaoAYAAJJCAABQwQAAoEEAAGjCAABAwQAAEMEAAHRCAACAwAAAEMIAAABAAADIQQAAgsIAAIjBAABQwQAASEIAAKDBAAA0QgAAAMAAAJhBAACwwQAASMIAADDCAACMwgAA0EEAALjBAACAQQAA2MEAANjBAADAQQAAkEEAAFDCAADAQAAAjMIAAHRCAACIwgAAEEEAAIBBAACeQgAAAMEAADhCAAA4QgAAuMEAAGhCAAAowgAAuEEAAMbCAAAQQQAAuEEAAExCAADoQQAAyMEAAADBAADAQQAA-EEAAIBBAAAgQgAAAMMAAODAAADAQAAAeEIAABhCAACAwgAAiMEAALDBAADYwQAAgsIAADDBAABQwQAAAMAAAHTCAACUQgAAmkIAANjBAAAMQgAAKMIAAJLCAAAAwgAAqMEAACBBAAAAQgAAAMIAACRCAAAgwgAA4EEAAIjBAACOQgAAgD8AAFBBAADAQAAAyMEAAADBAABAQgAAkMIAAJDCAADIQQAAIMEAAFDBAADAwAAAAEAAALhBAACQwgAAOEIAAEBCAAAowgAAGMIAADBBAACAwAAAkEEAAHTCAAAgQgAA-EEAAIhBAACAPwAAcMEAAODAAAB8QgAAAMAAABjCAABAwAAAFMIAAKDBAAAMwgAA0MEAAKDBAADwQQAAmEEAAETCAACYwQAAKMIAADBBAABAwQAA4MEAAKjBAAC-QgAA4MEAAChCAACowQAAEEEAALhBAAC8wgAAUEEAAIBBAABwwQAAyMEAACBCAAAMQgAADMIAAIhBAACgQAAAgMAAAJhBAAAgQgAAgEEAADjCAADowQAAIMEAADzCAABMwgAAwMIAABBCAABowgAAoEEAAKDAAACIQQAAwEAAAOBBAADAwQAAikIAAHhCAACIwQAACMIAAMhBAACAQAAAkMEAAGzCAABAwQAAfMIAANDBAABAwAAAykIAAFTCAACAwgAAQMEAAIjBAABEQgAAmMEAAGTCAADAQQAAGMIAAADBAAAQwQAAkMEAAMBAAAAgwQAA4EAAAKRCAAAUwgAAYEEAAEDCAAA8wiAAOBNACUh1UAEqjwIQABqAAgAA-L0AAIC7AAA0PgAAQDwAAMi9AAA8PgAAkj4AADe_AACoPQAAuD0AAMi9AAAcvgAAfD4AACQ-AABcvgAA6L0AAKo-AABwPQAAND4AAFM_AABtPwAAyD0AADA9AAD4PQAAMD0AAHw-AABcPgAA4DwAAEC8AAAUPgAA2D0AAHS-AACIvQAAfD4AAKo-AAAkvgAAoLwAAPi9AAAUvgAAwr4AAOg9AACYPQAATD4AAHy-AABwPQAAJD4AAEA8AAAsvgAAoLwAABS-AADYPQAAXD4AAAQ-AACSPgAA6L0AAHC9AAB_PwAAUL0AAKC8AAD4PQAAkr4AAPg9AABQvQAAlr4gADgTQAlIfFABKo8CEAEagAIAANi9AABUPgAAmL0AAEO_AAAsvgAAFD4AAIo-AAD4vQAABL4AAGQ-AAA8vgAA-L0AAOg9AAAMvgAA2D0AAOC8AABUvgAAHT8AAJg9AACSPgAAED0AAAS-AACIPQAAgDsAAKi9AAAMvgAAbL4AAJg9AABsvgAAZL4AAIC7AACgPAAA6D0AABS-AACAuwAAVL4AAGQ-AACAOwAATL4AAAy-AACYvQAAXD4AAEA8AAAQvQAATD4AACS-AAB_vwAAmD0AAKo-AAAUPgAAmj4AAIi9AADgvAAAsj4AADC9AAAEPgAAmL0AABC9AABQPQAAiD0AAHQ-AABUPgAAmD0AABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=rNt8Gwl3pJo","parent-reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4766110775508062957"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"6530897090056799167":{"videoId":"6530897090056799167","title":"The \u0007[Smooth\u0007] \u0007[Integral\u0007]:)","cleanTitle":"The Smooth Integral:)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=btGWpSpHBTw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/btGWpSpHBTw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnF6MTF2WDUza0xjUTFNOFRvS2JyQQ==","name":"Polar Pi","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Polar+Pi","origUrl":"http://www.youtube.com/@ChristGodinyouItrust","a11yText":"Polar Pi. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":184,"text":"3:04","a11yText":"Süre 3 dakika 4 saniye","shortText":"3 dk."},"date":"22 şub 2023","modifyTime":1677024000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/btGWpSpHBTw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=btGWpSpHBTw","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":184},"parentClipId":"6530897090056799167","href":"/preview/6530897090056799167?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/6530897090056799167?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5916975735418618219":{"videoId":"5916975735418618219","title":"#\u0007[integration\u0007] #maths #calculus #education #calculushelp #smoothintegral","cleanTitle":"#integration #maths #calculus #education #calculushelp #smoothintegral","host":{"title":"YouTube","href":"http://www.youtube.com/shorts/L53kYWzvl6k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/L53kYWzvl6k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":16,"text":"00:16","a11yText":"Süre 16 saniye","shortText":""},"date":"10 eyl 2025","modifyTime":1757462400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/L53kYWzvl6k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=L53kYWzvl6k","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":16},"parentClipId":"5916975735418618219","href":"/preview/5916975735418618219?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/5916975735418618219?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4959902445381120245":{"videoId":"4959902445381120245","title":"\u0007[integral\u0007] of (4x - 1) / (2x + x) from 1 to 4","cleanTitle":"integral of (4x - 1) / (2x + x) from 1 to 4","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Rd_LXgH6kuQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Rd_LXgH6kuQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":275,"text":"4:35","a11yText":"Süre 4 dakika 35 saniye","shortText":"4 dk."},"date":"6 ağu 2025","modifyTime":1754438400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Rd_LXgH6kuQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Rd_LXgH6kuQ","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":275},"parentClipId":"4959902445381120245","href":"/preview/4959902445381120245?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/4959902445381120245?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7226833087246045236":{"videoId":"7226833087246045236","title":"Easy Way to Master \u0007[Integrals\u0007] Without Calculus Stress","cleanTitle":"Easy Way to Master Integrals Without Calculus Stress","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jQ4JwtnLmxc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jQ4JwtnLmxc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":213,"text":"3:33","a11yText":"Süre 3 dakika 33 saniye","shortText":"3 dk."},"date":"2 kas 2025","modifyTime":1762083006000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jQ4JwtnLmxc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jQ4JwtnLmxc","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":213},"parentClipId":"7226833087246045236","href":"/preview/7226833087246045236?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/7226833087246045236?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8830734536610726753":{"videoId":"8830734536610726753","title":"How to Set Up a Line \u0007[Integral\u0007] Over a Piecewise \u0007[Smooth\u0007] Oriented Curve 𝓒 = 𝓒1 + 𝓒2","cleanTitle":"How to Set Up a Line Integral Over a Piecewise Smooth Oriented Curve 𝓒 = 𝓒1 + 𝓒2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=24Wk5qXIFlU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/24Wk5qXIFlU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDekxJckNkdzh5QmNrbkVmNWt0Nmpudw==","name":"Bill Kinney","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Bill+Kinney","origUrl":"http://www.youtube.com/@billkinneymath","a11yText":"Bill Kinney. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":336,"text":"5:36","a11yText":"Süre 5 dakika 36 saniye","shortText":"5 dk."},"date":"9 oca 2025","modifyTime":1736380800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/24Wk5qXIFlU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=24Wk5qXIFlU","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":336},"parentClipId":"8830734536610726753","href":"/preview/8830734536610726753?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/8830734536610726753?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7150906493252255897":{"videoId":"7150906493252255897","title":"evaluate \u0007[integral\u0007] 1 / (e^3x + 1) from 0 to infinity","cleanTitle":"evaluate integral 1 / (e^3x + 1) from 0 to infinity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=o5vHzJDJexQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/o5vHzJDJexQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":354,"text":"5:54","a11yText":"Süre 5 dakika 54 saniye","shortText":"5 dk."},"date":"28 eyl 2025","modifyTime":1759059006000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/o5vHzJDJexQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=o5vHzJDJexQ","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":354},"parentClipId":"7150906493252255897","href":"/preview/7150906493252255897?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/7150906493252255897?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5808067693608149714":{"videoId":"5808067693608149714","title":"Solving the \u0007[Integral\u0007] of (e^x - 1) ³ | Step by Step","cleanTitle":"Solving the Integral of (e^x - 1) ³ | Step by Step","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pLVOJHeO6ms","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pLVOJHeO6ms?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":163,"text":"2:43","a11yText":"Süre 2 dakika 43 saniye","shortText":"2 dk."},"date":"24 ağu 2025","modifyTime":1755993600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pLVOJHeO6ms?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pLVOJHeO6ms","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":163},"parentClipId":"5808067693608149714","href":"/preview/5808067693608149714?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/5808067693608149714?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11061252718576872234":{"videoId":"11061252718576872234","title":"Avoid Common \u0007[Integration\u0007] Mistakes with This Proven Strategy","cleanTitle":"Avoid Common Integration Mistakes with This Proven Strategy","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WFl-KWrYVPI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WFl-KWrYVPI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":771,"text":"12:51","a11yText":"Süre 12 dakika 51 saniye","shortText":"12 dk."},"date":"29 eki 2025","modifyTime":1761696000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WFl-KWrYVPI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WFl-KWrYVPI","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":771},"parentClipId":"11061252718576872234","href":"/preview/11061252718576872234?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/11061252718576872234?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18066711814081169576":{"videoId":"18066711814081169576","title":"\u0007[InTegraL\u0007] -\u0007[Smooth\u0007] Operator.mpg","cleanTitle":"InTegraL -Smooth Operator.mpg","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tTis1Yxd0W0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tTis1Yxd0W0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRExvWnZkMm1rZm1SQ25Mc21TS0pJZw==","name":"Mokus band - Integral","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mokus+band+-+Integral","origUrl":"http://www.youtube.com/@Mokusne","a11yText":"Mokus band - Integral. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":275,"text":"4:35","a11yText":"Süre 4 dakika 35 saniye","shortText":"4 dk."},"views":{"text":"6,1bin","a11yText":"6,1 bin izleme"},"date":"15 oca 2013","modifyTime":1358208000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tTis1Yxd0W0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tTis1Yxd0W0","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":275},"parentClipId":"18066711814081169576","href":"/preview/18066711814081169576?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/18066711814081169576?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15581635488392610392":{"videoId":"15581635488392610392","title":"\u0007[Integration\u0007] of 1/(x²+4x+5) Solved | Step-by-Step Using Completing Square","cleanTitle":"Integration of 1/(x²+4x+5) Solved | Step-by-Step Using Completing Square","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jXn-vCgIc9A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jXn-vCgIc9A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":136,"text":"2:16","a11yText":"Süre 2 dakika 16 saniye","shortText":"2 dk."},"date":"1 ağu 2025","modifyTime":1754006400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jXn-vCgIc9A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jXn-vCgIc9A","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":136},"parentClipId":"15581635488392610392","href":"/preview/15581635488392610392?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/15581635488392610392?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9342979124051020161":{"videoId":"9342979124051020161","title":"\u0007[Integration\u0007] of (e^(4x) - 1) / (e^(4x) + 1) Using Substitution","cleanTitle":"Integration of (e^(4x) - 1) / (e^(4x) + 1) Using Substitution","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AeIwekJd63c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AeIwekJd63c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":265,"text":"4:25","a11yText":"Süre 4 dakika 25 saniye","shortText":"4 dk."},"date":"8 ağu 2025","modifyTime":1754611200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AeIwekJd63c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AeIwekJd63c","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":265},"parentClipId":"9342979124051020161","href":"/preview/9342979124051020161?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/9342979124051020161?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3151091455907024359":{"videoId":"3151091455907024359","title":"\u0007[Smooth\u0007] Curve | Properties of Real \u0007[Integration\u0007] | CA Lecture 6 (I) by Dubey Sir | CSIR NET | I...","cleanTitle":"Smooth Curve | Properties of Real Integration | CA Lecture 6 (I) by Dubey Sir | CSIR NET | IIT JAM","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=D2veCyZx6hc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/D2veCyZx6hc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaE93OFJjYmh5Y3lfdjNuV1F4blQ0UQ==","name":"Dips Academy - IIT JAM / CSIR NET / GATE Maths","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dips+Academy+-++IIT+JAM+%2F+CSIR+NET+%2F+GATE+Maths","origUrl":"http://www.youtube.com/@DipsAcademyOfficial","a11yText":"Dips Academy - IIT JAM / CSIR NET / GATE Maths. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1984,"text":"33:04","a11yText":"Süre 33 dakika 4 saniye","shortText":"33 dk."},"date":"30 mayıs 2025","modifyTime":1748635537000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/D2veCyZx6hc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=D2veCyZx6hc","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":1984},"parentClipId":"3151091455907024359","href":"/preview/3151091455907024359?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/3151091455907024359?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10679359845643689770":{"videoId":"10679359845643689770","title":"\u0007[İntegral\u0007] 11 - İntegralde Değişken Değiştirme - Test -4 | Sayfa 24","cleanTitle":"İntegral 11 - İntegralde Değişken Değiştirme - Test -4 | Sayfa 24","host":{"title":"YouTube","href":"http://www.youtube.com/live/NJogH99kzko","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NJogH99kzko?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzgtSWtuUWQ1UkJ0a3hBZW5xNFMtZw==","name":"Tunç Kurt Matematik","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Tun%C3%A7+Kurt+Matematik","origUrl":"http://www.youtube.com/c/Tun%C3%A7KurtMatematik","a11yText":"Tunç Kurt Matematik. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":970,"text":"16:10","a11yText":"Süre 16 dakika 10 saniye","shortText":"16 dk."},"views":{"text":"1,7bin","a11yText":"1,7 bin izleme"},"date":"22 mar 2025","modifyTime":1742655628000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NJogH99kzko?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NJogH99kzko","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":970},"parentClipId":"10679359845643689770","href":"/preview/10679359845643689770?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/10679359845643689770?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11339382622870700790":{"videoId":"11339382622870700790","title":"Çizgi İntegralleri için Yol Bağımsızlığı (Çok Değişkenli Kalkülüs)","cleanTitle":"Çizgi İntegralleri için Yol Bağımsızlığı (Çok Değişkenli Kalkülüs)","host":{"title":"YouTube","href":"http://www.youtube.com/v/E4Fml_t6rOI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/E4Fml_t6rOI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOGhneDVoQ2l5RG1PM1VlQmw5NV8xUQ==","name":"KhanAcademyTurkce","isVerified":true,"subscribersCount":0,"url":"/video/search?text=KhanAcademyTurkce","origUrl":"http://www.youtube.com/@KhanAcademyTurkce","a11yText":"KhanAcademyTurkce. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":772,"text":"12:52","a11yText":"Süre 12 dakika 52 saniye","shortText":"12 dk."},"views":{"text":"3,3bin","a11yText":"3,3 bin izleme"},"date":"17 kas 2014","modifyTime":1416182400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/E4Fml_t6rOI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=E4Fml_t6rOI","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":772},"parentClipId":"11339382622870700790","href":"/preview/11339382622870700790?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/11339382622870700790?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8933047828036088445":{"videoId":"8933047828036088445","title":"Solving Complex \u0007[Integrals\u0007] with Cauchy's Formula: Evaluating e2z / (z+1) 4 Around |z| = 2","cleanTitle":"Solving Complex Integrals with Cauchy's Formula: Evaluating e2z / (z+1) 4 Around |z| = 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Z5d4ogQFalI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Z5d4ogQFalI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb2VGbDNRNU81YUdsQ05mUU5JYnh3Zw==","name":"Ayan Sarkar","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ayan+Sarkar","origUrl":"http://www.youtube.com/@AyanSarkar1","a11yText":"Ayan Sarkar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":459,"text":"7:39","a11yText":"Süre 7 dakika 39 saniye","shortText":"7 dk."},"views":{"text":"4,2bin","a11yText":"4,2 bin izleme"},"date":"3 kas 2024","modifyTime":1730592000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Z5d4ogQFalI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Z5d4ogQFalI","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":459},"parentClipId":"8933047828036088445","href":"/preview/8933047828036088445?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/8933047828036088445?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17462774937159519067":{"videoId":"17462774937159519067","title":"Calculus 5.4 Indefinite \u0007[Integrals\u0007] and the Net Change Theorem","cleanTitle":"Calculus 5.4 Indefinite Integrals and the Net Change Theorem","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DYROkegaERw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DYROkegaERw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDN2dUMkpoVnYydzd5RFBHeXA2T1R3dw==","name":"Asher Roberts","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Asher+Roberts","origUrl":"http://www.youtube.com/@asherroberts","a11yText":"Asher Roberts. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1127,"text":"18:47","a11yText":"Süre 18 dakika 47 saniye","shortText":"18 dk."},"views":{"text":"7,9bin","a11yText":"7,9 bin izleme"},"date":"2 eyl 2020","modifyTime":1599004800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DYROkegaERw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DYROkegaERw","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":1127},"parentClipId":"17462774937159519067","href":"/preview/17462774937159519067?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/17462774937159519067?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4673848388761785998":{"videoId":"4673848388761785998","title":"Iterated \u0007[Integrals\u0007] | Calculus | Chegg Tutors","cleanTitle":"Iterated Integrals | Calculus | Chegg Tutors","host":{"title":"YouTube","href":"http://shortinformer.com/which-is-an-example-of-an-iterated-integral/","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3A5GY5YfLKA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRUIzNjd6Q3gycC10djZ4aGh6eXlNdw==","name":"Chegg","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Chegg","origUrl":"http://www.youtube.com/@chegg","a11yText":"Chegg. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":599,"text":"9:59","a11yText":"Süre 9 dakika 59 saniye","shortText":"9 dk."},"date":"21 nis 2016","modifyTime":1461196800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3A5GY5YfLKA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3A5GY5YfLKA","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":599},"parentClipId":"4673848388761785998","href":"/preview/4673848388761785998?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/4673848388761785998?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4766110775508062957":{"videoId":"4766110775508062957","title":"AP Calculus review: \u0007[Integration\u0007]! | Slope fields, Indefinite & definite \u0007[integrals\u0007], FTC, and ...","cleanTitle":"AP Calculus review: Integration! | Slope fields, Indefinite & definite integrals, FTC, and more","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rNt8Gwl3pJo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rNt8Gwl3pJo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ0phUFF0VDNqX3ZjVW9zU0dYRFBUZw==","name":"Mathwired","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathwired","origUrl":"http://www.youtube.com/@mathwired8255","a11yText":"Mathwired. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":836,"text":"13:56","a11yText":"Süre 13 dakika 56 saniye","shortText":"13 dk."},"date":"20 ağu 2020","modifyTime":1597881600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rNt8Gwl3pJo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rNt8Gwl3pJo","reqid":"1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL","duration":836},"parentClipId":"4766110775508062957","href":"/preview/4766110775508062957?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","rawHref":"/video/preview/4766110775508062957?parent-reqid=1769714031819096-7349077243931442903-balancer-l7leveler-kubr-yp-vla-94-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"7349077243931442903794","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"smooth integrals","queryUriEscaped":"smooth%20integrals","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}