{"pages":{"search":{"query":"smooth integrals","originalQuery":"smooth integrals","serpid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","parentReqid":"","serpItems":[{"id":"9204033713488730900-0-0","type":"videoSnippet","props":{"videoId":"9204033713488730900"},"curPage":0},{"id":"3271055668124593592-0-1","type":"videoSnippet","props":{"videoId":"3271055668124593592"},"curPage":0},{"id":"12585580304877590548-0-2","type":"videoSnippet","props":{"videoId":"12585580304877590548"},"curPage":0},{"id":"7361687618854465916-0-3","type":"videoSnippet","props":{"videoId":"7361687618854465916"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dHNtb290aCBpbnRlZ3JhbHMK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","ui":"desktop","yuid":"2174949341765307137"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"6530897090056799167-0-5","type":"videoSnippet","props":{"videoId":"6530897090056799167"},"curPage":0},{"id":"10378004806149164144-0-6","type":"videoSnippet","props":{"videoId":"10378004806149164144"},"curPage":0},{"id":"14966728311628119329-0-7","type":"videoSnippet","props":{"videoId":"14966728311628119329"},"curPage":0},{"id":"8148380408805026382-0-8","type":"videoSnippet","props":{"videoId":"8148380408805026382"},"curPage":0},{"id":"16622868516710186467-0-9","type":"videoSnippet","props":{"videoId":"16622868516710186467"},"curPage":0},{"id":"14149494705980546625-0-10","type":"videoSnippet","props":{"videoId":"14149494705980546625"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dHNtb290aCBpbnRlZ3JhbHMK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","ui":"desktop","yuid":"2174949341765307137"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"16679047037387707830-0-12","type":"videoSnippet","props":{"videoId":"16679047037387707830"},"curPage":0},{"id":"4959902445381120245-0-13","type":"videoSnippet","props":{"videoId":"4959902445381120245"},"curPage":0},{"id":"6302413714726689944-0-14","type":"videoSnippet","props":{"videoId":"6302413714726689944"},"curPage":0},{"id":"17768030027530579344-0-15","type":"videoSnippet","props":{"videoId":"17768030027530579344"},"curPage":0},{"id":"4487819312805081225-0-16","type":"videoSnippet","props":{"videoId":"4487819312805081225"},"curPage":0},{"id":"7697340183637159381-0-17","type":"videoSnippet","props":{"videoId":"7697340183637159381"},"curPage":0},{"id":"10550552082466536992-0-18","type":"videoSnippet","props":{"videoId":"10550552082466536992"},"curPage":0},{"id":"15310572957193524718-0-19","type":"videoSnippet","props":{"videoId":"15310572957193524718"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dHNtb290aCBpbnRlZ3JhbHMK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","ui":"desktop","yuid":"2174949341765307137"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dsmooth%2Bintegrals"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"5383658791693542359776","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1336776,0,56;284409,0,56;151171,0,50;1281084,0,33;287509,0,88;784778,0,55;912283,0,57"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dsmooth%2Bintegrals","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=smooth+integrals","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=smooth+integrals","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"smooth integrals: 2 bin video Yandex'te bulundu","description":"\"smooth integrals\" sorgusu için arama sonuçları Yandex'te","shareTitle":"smooth integrals — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y858ce966dddffbfa20c81782fe82d6d8","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1336776,284409,151171,1281084,287509,784778,912283","queryText":"smooth integrals","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"2174949341765307137","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1437540,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765307152","tz":"America/Louisville","to_iso":"2025-12-09T14:05:52-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1336776,284409,151171,1281084,287509,784778,912283","queryText":"smooth integrals","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"2174949341765307137","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"5383658791693542359776","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":151,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2174949341765307137","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"9204033713488730900":{"videoId":"9204033713488730900","docid":"34-10-8-Z311980AC0CD11352","description":"sqrt(x)) dx manually integration trick with square roots rational substitution for sqrt x integral solving calculus integrals with square roots definite and indefinite integrals involving sqrt(x)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2824449/e3ababc435aa217533a39279aaf54734/564x318_1"},"target":"_self","position":"0","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9dbJyjgs-rs","linkTemplate":"/video/preview/9204033713488730900?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of x/(1- x) dx: Fast u-Substitution & Simplify | Step-by-Step","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9dbJyjgs-rs\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhUKEzkyMDQwMzM3MTM0ODg3MzA5MDBaEzkyMDQwMzM3MTM0ODg3MzA5MDBqrw0SATAYACJFGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKhDCDw8aDz8TmwKCBCQBgAQrKosBEAEaeIH-_gEI-wUAAQsDBvgH_QL9AfUG-P39AOby9v_8_QEA9fcD__gAAAD-BgQKBAAAAPwECPP7_gEABgoE8QQAAAAJ9PcL-wAAAAEPAAT-AQAA8vMBAfYCAAEFB_X9AAAAAPsEBP0AAAAA_QgIBAAAAAALA_wJAAAAACAALXmg4js4E0AJSE5QAipzEAAaYAoTAC7qBsLCKCTeBewDDwb1B9vO9xL_7QAABSP40A0KCdURGP8tuPYTuQAAABYm9TUEAAleGvfOK_Pi_f-t-i4if-3oDe4Tztnu8FLmAyTzBv4HIAC-B_LrBc8QVRUCFSAALa0dPTs4E0AJSG9QAiqvBhAMGqAGAACAPwAAAMEAALhCAADgwAAAIMEAANBBAADQQgAAQEAAAFTCAAB8wgAAPEIAAEDBAADAQAAAYMEAAEDBAABAwAAAoEAAAODBAADgQQAAgEAAAJBBAAA4wgAAFMIAAIBBAABgwgAAmEEAAGDCAABcQgAAEEEAAGBBAACQwgAAMMEAAJrCAACIQQAAPMIAAGDBAAD4QQAAyEEAAOBAAABwQQAALMIAAIC_AACQQgAAwEAAAFRCAADgwAAArkIAAMBAAAAEQgAAkEEAAODAAABUwgAAiMEAAPhBAAAQwQAAAEAAACBBAAAAwQAAMEIAABhCAAAEwgAATMIAAEzCAABMwgAA-MEAACzCAADowQAA2EEAAIDCAAAIwgAA4EAAAOhBAAD4wQAAqkIAAIDCAACewgAApMIAAKBAAACAwAAAQMEAAJBBAADEQgAAYMEAAADBAACoQQAAPEIAACBBAACowQAA4EAAABBBAADgwQAAgEIAAKBAAACYQQAA6EEAAFTCAAAAQgAAmEIAAPhBAACqQgAA4MAAAKBAAABAQAAAQMAAANbCAAAwwQAAUEEAADxCAACQwQAATEIAADBCAACIQQAADMIAAADAAAC4wQAAqEEAAGDBAACwwgAAAEIAADjCAABQwQAAYMIAAEBAAADYwQAAMEEAAIDBAAAowgAAMMEAAGDCAAA8wgAAYMEAAIhBAAAgwQAA_kIAABjCAAAAQQAAAEIAAADAAAAYwgAAnMIAAFDBAAB0QgAAyEEAAPDBAAAMQgAAoEEAAKjBAACwQQAAEMEAAKBAAAAYwgAAgEEAAKBBAAAIwgAAqEEAALjBAAD4wQAAAMIAAGzCAADwQQAAqMEAACBBAABQQQAAoEAAAOBAAAD4QQAA4EEAADBCAADgQAAAAAAAANjBAAAAwAAA4MEAACTCAADQwQAADEIAAEzCAAB0wgAAgMAAAKhCAADCwgAAEMEAAEDAAACYwgAAgEEAALDBAAAwwQAAgMAAAMjBAABYQgAAcEEAAFzCAABgQQAA8EEAAMDBAADKQgAAiMEAAAAAAAAkwgAATMIgADgTQAlIdVABKo8CEAAagAIAAOC8AACovQAADD4AAFA9AACIPQAAdD4AANg9AAALvwAAqL0AAIg9AABAPAAAcD0AAIC7AADYPQAAnr4AAIi9AACiPgAAgDsAADC9AAANPwAAfz8AAHC9AACovQAAED0AAES-AACoPQAALD4AAHy-AABAPAAADD4AAIg9AAAcPgAAqL0AAIY-AACoPQAAUL0AAOg9AAAEvgAANL4AAES-AADovQAAML0AAIA7AADgPAAAUD0AAKC8AACoPQAAfL4AAKK-AAB8vgAAUD0AABQ-AACiPgAAZD4AAIq-AADovQAAIz8AABC9AABQvQAAmD0AAMi9AADgPAAAmL0AAFS-IAA4E0AJSHxQASqPAhABGoACAABAPAAAPD4AAES-AAA3vwAAqr4AAHA9AAD2PgAAiL0AAFw-AACGPgAABL4AAHC9AACgPAAAfL4AAOg9AAAwPQAAfL4AAOY-AACSvgAAuj4AAKA8AAA0vgAAUL0AAMg9AADYvQAABD4AAI6-AABQPQAAkr4AAIq-AACYvQAA6D0AAKi9AADmvgAATL4AAMg9AAC2PgAAuD0AAES-AABEvgAANL4AAIY-AACgvAAAmL0AAAE_AAA8vgAAf78AAAy-AACoPQAA2L0AAIg9AAAMPgAARD4AABw-AAC4vQAADD4AAAS-AABMvgAA4LwAAAQ-AACOPgAAgj4AACQ-AABwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=9dbJyjgs-rs","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["9204033713488730900"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3271055668124593592":{"videoId":"3271055668124593592","docid":"34-11-2-Z8874B4854DAAFBBB","description":"In this video we will talk, how to evaluate line Integrals over piecewise smooth curves.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3615731/fcc7d4f25028b912cad88840952aae8a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Ph3QGwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMUY4sI2pZDY","linkTemplate":"/video/preview/3271055668124593592?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Session:4 - Line integrals over piecewise smooth curves.","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MUY4sI2pZDY\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhUKEzMyNzEwNTU2NjgxMjQ1OTM1OTJaEzMyNzEwNTU2NjgxMjQ1OTM1OTJqtg8SATAYACJFGjEACipoaHB0amltc2FzYWF1eWNiaGhVQ3JPbGZ3U0o4MGdZNGVaNkQyUF8tSHcSAgASKhDCDw8aDz8T3AWCBCQBgAQrKosBEAEaeIECBQL-_wIAAwP9_vsD_wH5A_8B-f39APgFDPoDA_4A8-3_9QH_AADzBgoKAQAAAO35__T2AAAAFQn9_wQAAAAP-vz19gAAAPgK_AQIAAAA9fz-7gEAAAAJCg0JAAAAAO0DEAL_AAAABfEE8AAAAAAMBgj6AAAAACAALTMg1zs4E0AJSE5QAiqEAhAAGvABfwQJAdP71P_t8NAAyhXi_7EoIP8HK_MA0ff_AMD3zQAODtQB4QPsABD7Bv_BBwH_OPfQ_wPOE_8n_fL_IuUaAOQDDQEo6-8AMQ4VAv_05f_kHij-9fUKAP7N4gAHCtb-FQAR_wIF9_7vA8kCFugnAuj6KAQr9QgC88wH_9gTAgH4-c3-9BP7BtPX8frcFx0BDPH7-xkVIgD8A-QC9-IBBgrh-_osEOgBCO7qBwUVCv7X8Av69gD0_gMwE__iAf0F9PgiAtz1-wDn-AcA_-7-BvcD_AIKDPsEAu0RCRXj-_vx9fv98wr8_eLi9_jr_u4DIAAtzR0nOzgTQAlIYVACKnMQABpgPPcAAyEz0_MaEP780A0K8-gE7ebcKv8bBQDb-P7tKf_l3AwEADLEIM6zAAAAB_j3_voA62rL-ef230H8w6fcCiR__QZEy8gP_fHN9Aof3vUF_iM_AADvqyUX2AQsD0sGIAAt-BYzOzgTQAlIb1ACKq8GEAwaoAYAALBBAACIwQAAfEIAAJDCAAAgwgAAmEEAAI5CAACYQQAAcMEAAEDAAABQwQAAAEEAANjBAAC4QQAAcMEAAJBBAACWQgAAEMIAAEhCAAAAAAAAmMEAAEDCAAAYwgAAZEIAACjCAADAwAAAAEEAACBBAACwwQAAyEEAACDCAAAAQgAAqsIAAIjBAACawgAAPEIAAEhCAACSQgAAIMIAAJhBAADYQQAAMMEAAIBBAAAgQQAAMEIAAETCAAAAQgAAJEIAAHhCAADQwQAAgL8AACTCAAAAQAAAqEEAAABCAADgQQAA2MEAAMDAAAAkQgAAYEEAABxCAABQwgAAPMIAACDCAAAgwQAAhMIAAPDBAAC2wgAAEEEAAGzCAAAQQgAAgEIAAFDCAACwwQAAUMEAANDBAAB8wgAAsMEAAKBAAACAQQAAFMIAAKBCAAAIwgAAkMEAABRCAACWQgAAcMEAAKDCAAC6QgAAAEEAAIA_AACQQQAAkMIAAHDBAAAgQQAA8MEAAOhBAAAMwgAAiEEAAJxCAACUwgAAEEEAAMBAAAAAAAAAFMIAAPhBAABQwQAAwEAAAGBBAABcQgAAqkIAACxCAADowQAA4MAAAIjBAACCQgAAQEEAAKjBAACCwgAAGMIAAMDBAAAAwQAAgD8AAHDBAAAwwgAAUMEAAAAAAACAwAAAHMIAAABCAADAwQAAzMIAAMjBAABsQgAAAMIAACBBAACwQQAAiEIAAPjBAACqwgAAMEEAADDCAABUQgAATMIAADDBAADAQAAAgMEAAMBBAADowQAAgEAAANjBAACAPwAAikIAABxCAAAAQgAAgMEAAMbCAAAswgAAJMIAAGDBAABgwQAA6EEAAIhBAAAAwAAAYEEAAERCAADgQAAAREIAAJhCAADQwQAAKMIAAOjBAABAQAAAkMEAAEDCAAAQQQAAmEEAAJBBAABQwgAAIEEAALbCAAA8wgAAgD8AAABCAAAsQgAAsMEAACzCAAAAwgAAAMEAADDCAABsQgAA4EAAAADAAACwwQAAoMAAAAhCAADoQQAA2EEAACRCAAAAwCAAOBNACUh1UAEqjwIQABqAAgAAmD0AABQ-AAA0PgAARD4AAFC9AACOPgAAUL0AANK-AACovQAAuD0AAIi9AAAcPgAAFD4AAHQ-AACIvQAALL4AAMY-AACAOwAAQDwAAAE_AAB_PwAA2D0AAPg9AAA8PgAA6L0AALi9AAAwPQAAir4AACQ-AABkPgAAUL0AAKY-AACAuwAAqL0AAAS-AAAsvgAA4DwAAIi9AAD4vQAAlr4AAMi9AAAEPgAABD4AAPi9AACgvAAAoDwAADS-AACGvgAAnr4AAIa-AAAUPgAAfD4AACQ-AAAwvQAAuL0AAIi9AABPPwAALL4AAEw-AADYPQAAPL4AABS-AACAuwAAgLsgADgTQAlIfFABKo8CEAEagAIAAES-AABEPgAA-L0AAEu_AACovQAAuL0AAJg9AABMvgAAQDwAAKI-AAD4vQAATL4AACy-AAAsvgAAoLwAAIi9AADIvQAAKz8AAOA8AACSPgAAQDwAABy-AACYPQAAML0AAHC9AABkPgAAZL4AADA9AAC4PQAAED0AAJi9AACYPQAAcD0AAHy-AADovQAAUL0AAGQ-AAC4vQAAmL0AAPi9AACIPQAAFD4AAJi9AABAvAAAiL0AAPg9AAB_vwAAHL4AAIC7AABUPgAAyD0AABy-AADIPQAAJD4AAIC7AABAPAAAgDsAAHC9AABwvQAAoLwAACQ-AABQPQAA4DwAAOC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=MUY4sI2pZDY","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3271055668124593592"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12585580304877590548":{"videoId":"12585580304877590548","docid":"34-8-4-Z01341A0FDECA12D1","description":"Smooth Integral (Smooth Criminal - Polo G | AP Calculus AB Parody) Original Video : • Polo G - Bad Man (Smooth Criminal) [Offici... keep a graphing calc by the seat I was go...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1244774/50d1eaa6b5e919e80657c8be9a8e0005/564x318_1"},"target":"_self","position":"2","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9_16umTLKJQ","linkTemplate":"/video/preview/12585580304877590548?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Smooth Integral (Smooth Criminal - Polo G | AP Calculus AB Parody)","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9_16umTLKJQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhYKFDEyNTg1NTgwMzA0ODc3NTkwNTQ4WhQxMjU4NTU4MDMwNDg3NzU5MDU0OGquDRIBMBgAIkQaMAAKKWhodGNnd21mZ3FlcmZqZmhoVUNHbjdjYjZRSUNYXzRFMUtacHZNdXZ3EgIAESoQwg8PGg8_E7MBggQkAYAEKyqLARABGniB_QUF-wH_AAz9BgP5Bv4B5_34BPsAAAD5_wUA-gT-AADoCAEDAAAA9Qr8-QUAAADx-Pb8-QAAABAB9_wEAAAAA_UO8_4AAAD9EQIP_gEAAAT3_gMBDAACAAcPBQAAAADhDwD8AP7-AQL49fwAAAAAE_sAAfz0_gAgAC2Il847OBNACUhOUAIqcxAAGmAKIgBBCBXtrycqwR_3P_DZCxDS2Pou_yUy_wb-FdAICaeLGCz_58794p8AAAASAt8tFADef_Qkl-YEUwzjyOxlKXoeJR3nLfKv-7Tx8yPp1dYi_PkA0yjP7SayLFESNikgAC2JehA7OBNACUhvUAIqrwYQDBqgBgAAMMEAAADBAACMQgAATEIAADzCAAAgwQAAwMAAAADBAABwwQAAQEAAAPDBAAAAQAAAKMIAAABBAAAwQgAAgMAAAKhBAABcwgAAoEEAAFjCAACwQQAAgkIAAMjBAABQQQAAgkIAAEBBAAAgwgAAgMAAALDBAABAwQAAuMEAALjBAAAgwQAA8EEAANjBAAAAQQAAiEEAAGhCAAAUwgAAwEAAAEDBAACwQQAAMEIAAAAAAABAQAAAjEIAAFBBAAAQQQAAyEEAALDBAACKwgAAgL8AAHRCAACSwgAAOMIAAMBBAACgwQAAPEIAAHBBAACIQQAADMIAAFBBAACEwgAAyMEAAEjCAAAQQgAARMIAAAzCAACwwQAABEIAANhBAACYQgAANMIAAABBAABsQgAAiMEAABzCAADAQgAAoMAAAEBAAABMwgAAAAAAAHRCAAAcwgAA8MEAABRCAABAwgAA8EEAANJCAAAQwQAAGEIAALjBAAD0QgAAyMEAAIDBAAAwQgAA4EEAAHDCAADYQQAAIMEAAHDBAABUQgAArkIAAI7CAABAwQAAqEEAAIhBAABYQgAAyMEAAFhCAAA8QgAAaEIAAKDBAACAQQAAoMEAANBBAACWQgAAgL8AALJCAAA4wgAAMEIAAGBBAAAAwgAA-MEAAHhCAAAAAAAAAMIAAADBAADgwQAAaEIAAFDBAACAvwAA6EEAAKDAAABQQQAAgkIAAKBAAABQwgAAPMIAAIA_AADQQQAACEIAADzCAAAgQgAAhEIAAJZCAABAQAAAUEEAAAhCAADgQQAAmEEAANBBAABwwQAAQEEAAHxCAAD4wQAAsMEAAIA_AADgwQAAQEAAAPjBAABwQgAAvsIAAABBAACYwQAAgEAAANhBAABAwQAAuEEAAKDAAACqwgAAoMEAABzCAACAwQAAkEEAADRCAAD4QQAAAMMAAIjBAABEQgAAIEIAADRCAABowgAAhMIAAGRCAADQwQAAuMEAADBBAABoQgAAiMEAABBBAAAAwQAAkEEAAAzCAAAwwQAAIEEAAJjBAADQQQAAcMIAAJZCIAA4E0AJSHVQASqPAhAAGoACAACAuwAAED0AAJY-AABEPgAA2L0AAKY-AACgvAAA_r4AAIi9AAAMPgAAiL0AAPg9AAC4PQAAij4AACS-AAAMvgAAGT8AAFC9AAAwvQAAGz8AAH8_AACqvgAABL4AAEw-AABUvgAAJL4AALg9AACGvgAA6j4AAM4-AADgvAAA4LwAAIC7AABUPgAA6D0AAIi9AAAwPQAAFL4AABS-AACmvgAAyL0AACQ-AADiPgAAmD0AADA9AACYPQAAUD0AAES-AAB8vgAAUL0AADC9AACAOwAAmD0AAPg9AADSvgAAUD0AAEs_AACgvAAA4LwAAAQ-AABsvgAAiD0AABw-AABkviAAOBNACUh8UAEqjwIQARqAAgAAML0AAIA7AACgvAAAbb8AABA9AACKPgAAXD4AAJa-AADYPQAATD4AAIi9AABAPAAAlj4AAEy-AACgPAAAiD0AABC9AAAdPwAAcL0AABw-AACgPAAAUL0AAGQ-AAAEPgAAmL0AANI-AAAcvgAA4DwAAJ6-AADgPAAAiD0AAIA7AACgPAAAhr4AAHy-AACYPQAA4LwAABS-AAAcvgAAjr4AAIC7AACKPgAAij4AAOg9AAA0PgAAhr4AAH-_AAC4PQAABD4AAEw-AAAcPgAA4LwAADw-AACGPgAAVL4AAOg9AABwvQAAFL4AAPi9AACOvgAAkj4AANg9AACAOwAADL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=9_16umTLKJQ","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12585580304877590548"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7361687618854465916":{"videoId":"7361687618854465916","docid":"34-1-2-Z972CF2AB0A163E32","description":"In this video, we evaluate the definite integral: ∫ from 1 to √10 of x√(x² - 1) dx using the u-substitution technique, a powerful method for handling integrals involving radical expressions.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4566853/3871c95d32fea21e5b2b85e8bd74f050/564x318_1"},"target":"_self","position":"3","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRCoTLeau7k0","linkTemplate":"/video/preview/7361687618854465916?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"definite integral of x (x² - 1) from 1 to 10 using substitution","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RCoTLeau7k0\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhUKEzczNjE2ODc2MTg4NTQ0NjU5MTZaEzczNjE2ODc2MTg4NTQ0NjU5MTZqrw0SATAYACJFGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKhDCDw8aDz8TygGCBCQBgAQrKosBEAEaeIH2Cf71_wEA9_0I_fsE_wEPDPIE9QAAAOgB-Pv5_gEA7PgQ_P3_AADzBgoKAQAAAAL-_fbz_QEABPkF_gMAAAAJ5_b8_QAAAAAY9gf-AAAA7f70-QIAAAALA-0BAAAAAPcDDPwBAAAA-QIEBwAAAAAF_QL5AAAAACAALUuj0js4E0AJSE5QAipzEAAaYAQOACMGDN7dAizpDuQAEQcBEO3s-xMA4-sA-gkA5P0j58IMBf8m1vYFygAAAAImBSfiABJGD_3EDfoP_Bq68h8Qf_wF3wPh-e7b9Br1IAX2Cvz4HgDnG-cGC-r0QxoJLCAALd5tajs4E0AJSG9QAiqvBhAMGqAGAACgQQAA-MEAALpCAABEwgAAIEEAAKhBAABAQgAAMEEAAKjBAACAwAAAIMEAANDBAACAwQAAgMEAADDCAAAgQQAAlEIAAIC_AABwQQAAsMEAANBBAACYwQAASMIAACBBAACEwgAAgMAAAIDCAACAQQAAUEIAAEDBAABwwgAAgL8AAJjCAABgwQAAosIAAABCAADgwAAA6EEAADDBAAAwwQAA6MEAACDBAABAQAAA4MAAAKBCAADYwQAAQEIAABBCAABAQAAAoEAAALDBAABcwgAAcMEAAEDAAAAAQQAAbEIAANDBAADgQAAAxkIAACRCAACoQQAAwMIAAADCAAB4wgAAgEEAAMbCAABAwQAA4MAAACzCAACowQAAgEEAAFDBAAC0wgAAwEEAAATCAADIwQAAgMAAADDBAAC4wQAAdMIAABRCAADIQgAAFMIAAOjBAABwwQAAiEEAALhBAAAwwQAABEIAAHDBAAAAQAAAyEEAAGTCAAAgQQAAAEIAAPDBAACgwAAAEMEAAMBAAADYQgAAMMIAAEDAAACwQQAAcEIAANrCAACQwQAAAEEAADRCAACoQQAAmkIAAFBBAAAwQQAAMMEAAKBAAACIwQAATEIAAGRCAABYwgAA-MEAAIDAAABAQQAAfMIAAOjBAAAAAAAAyMEAABDCAACAwAAAAAAAACDBAADwQQAAgD8AAFDCAACwQQAAmEIAAEBAAAAIQgAATEIAACxCAABEwgAA6MEAAJDBAAAcQgAAEEIAAGzCAACYQQAAPEIAAIjBAACAQAAAgMEAAMBAAACwwQAABEIAAMhBAAAwQQAABEIAAGBBAAB4wgAAcMEAABDCAAAcwgAAmMIAAABAAADAwQAAkMEAAOBAAAAkQgAAcMEAAGxCAABUQgAAQEAAAJDBAABAQQAAMEEAACDCAACQwgAAAEIAAJDBAAAAQQAAgMAAAJxCAACYwgAA-MEAALjBAADUwgAA8EEAADBBAABwwQAA2MEAAIhBAACgQAAAeEIAADjCAAAkQgAAAEAAABDBAAC0QgAAAMEAAFDCAACAvwAAKMIgADgTQAlIdVABKo8CEAAagAIAAHC9AABEvgAAoDwAAAw-AACAOwAAmj4AALY-AAAdvwAAoDwAADC9AAD4vQAAiD0AAIC7AACYPQAA6L0AABS-AACOPgAAmD0AAGy-AAAfPwAAfT8AAGQ-AAAEvgAAHD4AACS-AADIPQAAPD4AAES-AAAMPgAAqj4AAEQ-AAA0vgAAJL4AAFQ-AAAcPgAA2D0AAGw-AAA0vgAANL4AAIK-AACYPQAAXL4AAGw-AABQPQAAmj4AAHQ-AABwvQAAkr4AAJK-AADavgAAqD0AAHQ-AABcPgAAcD0AADy-AABQvQAAfz8AACy-AABwPQAAUD0AALi9AADIPQAAQDwAAPq-IAA4E0AJSHxQASqPAhABGoACAAA8vgAAgLsAAIa-AABJvwAALL4AAJg9AACOPgAALL4AAIA7AABcPgAA6L0AAAQ-AAC4vQAABL4AAIg9AADgPAAAZL4AAAU_AAA8vgAArj4AAPi9AAAsvgAAUL0AAIg9AADYvQAA6D0AAGS-AACAOwAAFL4AAGS-AACgvAAAmD0AADA9AACSvgAAQDwAADA9AACGPgAA6D0AADS-AACCvgAAUL0AACw-AAAwvQAAcL0AAIo-AACKvgAAf78AAFC9AABMPgAAQLwAAGw-AABQvQAA6D0AAGw-AAAUvgAAuD0AAIi9AAC4vQAAgLsAAJg9AAB8PgAALD4AADA9AADgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=RCoTLeau7k0","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["7361687618854465916"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6530897090056799167":{"videoId":"6530897090056799167","docid":"34-0-7-Z2078DB610396F8AA","description":"Jesus Christ is NOT white. Jesus Christ Cannot be white, it is a matter of biblical evidence. Jesus said don't image worship. Jesus is God, Jesus is THE Messiah. And this integral is neat...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3172853/d0078ab7ce1f5191c3dec34f7ed39ecb/564x318_1"},"target":"_self","position":"5","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbtGWpSpHBTw","linkTemplate":"/video/preview/6530897090056799167?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Smooth Integral:)","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=btGWpSpHBTw\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhUKEzY1MzA4OTcwOTAwNTY3OTkxNjdaEzY1MzA4OTcwOTAwNTY3OTkxNjdqrQ0SATAYACJDGi8ACihoaHRtenpsZ3lqa2luemhoVUNCcXoxMXZYNTNrTGNRMU04VG9LYnJBEgIAECoQwg8PGg8_E7gBggQkAYAEKyqLARABGniB8wkHCP8CAA8KBP_9BQAA6P35BPsAAAD-_QwCAAX-APfs_gYHAAAA8QYBAgkAAADsB_319QEAABP1AQADAAAADPH9__kAAAAED_sECgABAfkB-fgD_wAAAgYFEQAAAADt-AoFAAAAAAb5__0AAAAAEP0JBAAAAAAgAC3ZfdY7OBNACUhOUAIqcxAAGmAUEwADEAnw3foO8_70CQX3DPz6098OAA0QAOkFAugHEt68Ewz_BOL1484AAAD4BRkX-QDsQwX1zOkKNw_n1u8cD38YAf4G2wjg9Oft8ST04_wR_w0ACxHjA_joIT8OMiQgAC0bpnU7OBNACUhvUAIqrwYQDBqgBgAA4MEAAADCAADiQgAAXMIAACRCAACYwQAAuEIAAOhBAACSwgAAdMIAACBBAAAkwgAAAMEAAEDAAAAAQQAAcEEAAAhCAADwwQAAFEIAANBBAAAgwQAAuMEAAGDCAACAPwAA2MEAAABBAABQwgAAkMEAALhBAACAPwAATMIAAIDBAABgwQAAVEIAAIrCAAAAwgAAsEEAAIhBAABgQgAAYEEAAKhBAABAwQAA8EEAAJDBAAAUQgAAFMIAAMhBAAC4QQAAXEIAAERCAAA4wgAAkMEAAHDBAADoQQAAyEEAAGRCAACOwgAAyMEAABBBAADQQQAAREIAAHTCAAA0wgAAyMEAAPjBAADcwgAAMMEAAGDCAADYwQAAIMIAALpCAACwQQAALMIAAM5CAAAAwgAAisIAAIhBAABQwQAA0MEAAMBBAABwwQAAXEIAAFDBAACgQQAAgD8AAIhCAACQwQAA8EEAAKDAAAAAAAAA4EAAAAxCAADwwQAAIMEAAMBBAABQwgAAwMAAANjBAACwQQAAWEIAAKDBAAAsQgAADEIAACzCAACGwgAAoMAAAKhBAADIQQAAcMEAAIJCAABkQgAAqMEAAOBAAAAwwQAAEMEAADxCAAAAQQAA6MEAAEBAAADAwQAAMEEAAIrCAAAAQAAAMMIAAIhBAACQQQAAaMIAAARCAABMwgAAQMEAADhCAABAwAAAYMEAAOZCAACAwQAALEIAADjCAACAwAAAMMEAAKDCAAAQQQAAmEEAAKDAAABwwQAADEIAAPhBAAAwQQAA2MEAADBBAAAQwQAAcEEAAJDBAAAMQgAAuMEAAIBAAACIQQAA8MEAABzCAAB0wgAA4EEAAFTCAABAQAAA-EEAAEBBAAAsQgAAsEEAAMhBAADIQgAAeEIAAADBAACgwAAAgEIAAIjBAACwwQAAdMIAAADAAADAwQAAUMIAANDBAADYQgAAmMIAAGzCAADowQAAwMAAANBBAAAwwgAACMIAAMDAAADAwAAAEEIAAADCAAAQwQAACEIAACDBAAD4QQAAlkIAABhCAAAwQQAAbMIAAGTCIAA4E0AJSHVQASqPAhAAGoACAACovQAAbL4AAAQ-AACoPQAAmL0AAHQ-AAAEvgAA_r4AAJi9AABEPgAAoLwAAKg9AACgPAAAlj4AAOA8AACYvQAAtj4AAIC7AACgvAAA3j4AAHE_AABMvgAA-D0AADQ-AACOvgAAgLsAAIC7AACOvgAAuj4AAMI-AABQPQAAHD4AADC9AABEPgAA-L0AAIg9AABQPQAAXL4AADy-AABUvgAAqL0AAGS-AAAUPgAA4LwAAOC8AADoPQAAgDsAAOi9AADKvgAApr4AAHC9AAAEvgAAsj4AALg9AADOvgAAyD0AAH8_AADgvAAAuD0AAEQ-AAAsvgAAED0AABA9AACSviAAOBNACUh8UAEqjwIQARqAAgAAir4AAHA9AABAPAAAf78AAOA8AACovQAAij4AAKK-AAAkPgAAgDsAAIi9AAAUvgAAUD0AAJi9AAAwPQAAQDwAABC9AAD-PgAAoDwAABw-AADIPQAA4DwAAJg9AADgPAAAHL4AAHQ-AADovQAAgDsAADC9AABQPQAAcD0AAAQ-AABwPQAARL4AAJK-AACYPQAAXD4AADC9AADYvQAAhr4AABA9AAAMPgAA-D0AADQ-AADoPQAAQDwAAH-_AADgPAAAyD0AAIo-AAB0PgAAoDwAAKY-AAA0PgAAlr4AAAw-AACAuwAA-L0AAFQ-AACevgAAhj4AALi9AAB8vgAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=btGWpSpHBTw","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":480,"cheight":360,"cratio":1.33333,"dups":["6530897090056799167"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"10378004806149164144":{"videoId":"10378004806149164144","docid":"34-0-8-ZAF45E12275AB4B72","description":"In this video, we solve the definite integral: ∫ from e to e² of 1 / (x ln(x)) dx using u-substitution, one of the most effective methods in calculus for handling complex expressions.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3323915/813a85ac6b07258c9fbd771fe7fd8483/564x318_1"},"target":"_self","position":"6","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7CcyHf5bpL8","linkTemplate":"/video/preview/10378004806149164144?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"integral 1/(x ln x) u substitution limits e e²","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7CcyHf5bpL8\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhYKFDEwMzc4MDA0ODA2MTQ5MTY0MTQ0WhQxMDM3ODAwNDgwNjE0OTE2NDE0NGqvDRIBMBgAIkUaMQAKKmhoZGZzdG9seGxhY3lsbWRoaFVDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZxICABIqEMIPDxoPPxOKAYIEJAGABCsqiwEQARp4ge4F_AUB_wD8AwUC-Qb-Av0C9Af4_fwA4PkE9gf7AgD3_AoLCQAAAOYLBAr9AAAAAwH5BfL-AQD2CwACBQAAAAry9gz6AAAAABj1B_4AAADy8vj1AgAAAAsD7QEAAAAA8fIF-wIAAAD8_g0FAAAAAAL_8fsA_wAAIAAtaizPOzgTQAlITlACKnMQABpgCQ0AIQMI19ogOegL5fwPDPUP9dbyCgDu9gACC_7LGgzoxxIG_xrZ7gfFAAAAEiIBDvsAE0wg_b8WBPz4LbPtMg5_-QX3-Pnu3-LaFu4c_eb8Cwc1AN8m7_sNz_whLSojIAAtjVpZOzgTQAlIb1ACKq8GEAwaoAYAABDBAABMwgAA0EIAAHTCAAAwQgAAuEEAALZCAACQQQAAqMEAAJDBAAAYwgAAyMEAAGBBAACowQAAUMEAANBBAAAoQgAAYMEAAGBCAAD4wQAAAMEAAADAAAAMwgAAoEAAAFjCAACwwQAAiMEAAIDAAACeQgAAQMAAAHDCAACYwQAAUMIAAJhBAACewgAAKEIAANhBAACSQgAAIMEAABDBAAAcwgAAAEEAABDBAADAwQAATEIAABDCAAC4QQAAXEIAAOBBAAD4wQAAgMEAAGzCAABAwQAAiEEAAEBAAAAwQgAABMIAAEBBAAC4QQAATEIAABBBAACSwgAAPMIAAJTCAABQwQAAuMIAAMDAAAAYwgAALMIAAFDCAAAYQgAAIMEAALzCAAB8QgAARMIAALDBAADgQAAAsMEAACjCAABMwgAAuMEAAKZCAAAAwQAAoMAAAHBBAAAQQQAAREIAALBBAABAQQAAUMEAAADCAAAAQgAA4MEAAPBBAAAcQgAANMIAAIC_AACAQAAABEIAAN5CAABAwgAA8MEAAKBAAADIQQAAwMIAAPDBAACQQQAAQEIAADBBAACOQgAA4EEAAOhBAADYwQAAEMIAANjBAABQQgAAuEEAABTCAAAkwgAAwMEAALDBAACwwgAAiMEAAKhBAAAowgAAKMIAAAzCAABAwgAAIMEAAKDAAAAAwQAACMIAAABBAAB4QgAAAMIAAJJCAABUQgAAIEIAAADCAAAEwgAAoMAAAHBBAAAsQgAAUMIAAOBAAAAUQgAAIEEAAADAAACgwAAAsMEAAFDBAABQQQAAEEIAAIjBAAAEQgAAwEAAADzCAAA8wgAAaMIAACDBAADowQAA6EEAACTCAADIwQAAQMAAAIRCAACIwQAAqkIAADBCAABAQQAAMMEAAOBBAADIQQAAFMIAAJjCAADgwAAAKMIAAADAAADgQQAAWEIAAHTCAADgwQAAFMIAAJjCAACAPwAAMEEAAADCAABMwgAAEEEAAJBBAABMQgAAJMIAAABBAAAIwgAAEMEAAKxCAABwQQAA-MEAAKBBAAAYwiAAOBNACUh1UAEqjwIQABqAAgAAmD0AAMi9AACYPQAAED0AACS-AAA8PgAAmD0AAA-_AADgvAAAMD0AAOA8AADIPQAAQLwAAFQ-AABUvgAALL4AAI4-AABQPQAAUL0AABs_AAB_PwAAML0AAMi9AAAwPQAAPL4AALg9AACYPQAAdL4AAFC9AAA8PgAAiD0AAGQ-AADovQAAED0AAHA9AABQvQAAfD4AAIC7AAA8vgAAgr4AAEA8AAAwvQAA2L0AABC9AAA0PgAAJD4AAHA9AACGvgAAlr4AAMa-AADgPAAAVD4AAFQ-AABUPgAAjr4AAIC7AAA5PwAAQDwAAIg9AADmPgAAED0AADA9AACgvAAAjr4gADgTQAlIfFABKo8CEAEagAIAAFC9AABQPQAAqr4AAEO_AAC2vgAARD4AAA8_AADgvAAAVD4AANY-AACovQAA6D0AAOA8AAAQPQAADL4AAOg9AACivgAADz8AAK6-AAC6PgAAuD0AAMa-AACgvAAAFD4AANi9AACGPgAAlr4AAKg9AADovQAAFL4AAIi9AACgvAAAML0AAM6-AAC4vQAAEL0AANI-AADovQAAFL4AALK-AACYPQAAgj4AAEw-AABEvgAAAz8AAAy-AAB_vwAAcD0AADQ-AAA0vgAALD4AAII-AABcPgAAVD4AABy-AAA8PgAALL4AAIK-AABMPgAA-D0AAMY-AACIPQAAqL0AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=7CcyHf5bpL8","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["10378004806149164144"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14966728311628119329":{"videoId":"14966728311628119329","docid":"34-0-17-ZBA7192D88F739698","description":"check out by alex shelton’s music on all platforms - Alex Velvett special thanks to mrs orr for being the best math teacher probably ever...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3794342/e1998eda310eed055aefcffb6eed8522/564x318_1"},"target":"_self","position":"7","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYYTEUHLBT88","linkTemplate":"/video/preview/14966728311628119329?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Smooth Integral / Billie Mean / Euler - Michael Fraction (Calculus Parody of Michael Jackson)","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YYTEUHLBT88\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhYKFDE0OTY2NzI4MzExNjI4MTE5MzI5WhQxNDk2NjcyODMxMTYyODExOTMyOWqvDRIBMBgAIkUaMQAKKmhodXV3dmRxYnBzYmpyeWNoaFVDUUhiQkZRMVJMcEVKMGJCY3JhNVkwZxICABIqEMIPDxoPPxOCBIIEJAGABCsqiwEQARp4ge73CvcE-wD4CAYJAAf8AtXxA_f_AwQA6ewECf7_AAAN8fH9AwEAAPX6-vgBAAAA9AX5AgL_AAAOBPjsAwAAAA36AAABAAAA8Bf9B_8BAAAF9v4DAQ0AAgoLDgoAAAAA-_kDAvYD_gEE8gIIAAAAABT6AAH88_4AIAAt6ePEOzgTQAlITlACKnMQABpgIxAAJgoR_evUFtb47igR7CBK8O0Z9P80IwDyF_zSFCC_tjQXANze8_a6AAAABRcaBNYAv1gp-voA-ToxBv0MLeh_IAfoEzQk6P7a8QcAMgb-QkUxANY919H73xYuBR0hIAAtpmU3OzgTQAlIb1ACKq8GEAwaoAYAADDBAABEwgAAkkIAANBBAAAUwgAAsEEAAORCAABAwAAAqMEAAEzCAACAwQAAPEIAALhBAAAYQgAAOEIAAHzCAACgQAAAFEIAAAxCAAAAwAAAAEIAAHDBAADQwQAAREIAAKZCAADQwQAAQEAAABjCAAAwQgAAgMAAAFhCAACAPwAAREIAAHhCAACAQAAAMMEAAJjBAAB8QgAAFMIAABRCAABAwAAAAAAAAGTCAACgQQAAHEIAAIZCAADAQQAAGEIAAJhBAACIQQAAvMIAACxCAACkwgAAIMEAACTCAABoQgAAcMEAAFRCAADYwQAAmMEAAGDCAAA0wgAAoMAAAJLCAADYQQAAQEEAABDCAAAYwgAA0sIAAIBCAAAwwQAAJEIAANhBAADQQQAACMIAAEDAAAAAwgAAmMEAAFxCAABwwQAAAAAAAGDBAACAQAAAAEEAAPBBAABQQQAAKMIAAIBAAADgQQAAEEEAALjBAACQQQAAgEAAAIDBAAAoQgAAIMIAAABCAABgQQAAcEEAAABAAACIQQAAgMEAABhCAABIwgAAVMIAAEBBAACCwgAAVEIAACjCAABoQgAAYMEAACDBAABwwQAAcMEAAHhCAAAYwgAAlkIAAKjBAAC0QgAAoEEAAKDBAABAQgAAAMIAAMDAAACoQQAAcMEAAITCAABwQQAAkEEAALjBAAB8QgAAMEEAAARCAAAwQQAAWEIAAKDAAAAAQAAAZMIAAEDBAACwwQAAAEEAAMhBAADYQQAAoEEAAAxCAABQQQAAOMIAAOhBAADgQQAAUEEAACBBAAAkQgAAmEEAAODAAAB8QgAAkMEAADDBAACIwQAAOMIAAEBBAACQQQAAsEEAACzCAACYQgAAjEIAAODAAAAAQQAAoMAAADBCAACgQQAAYMIAADBBAAAAwwAAiEEAAKjBAADQQQAAskIAAIbCAACAQQAAAMEAAIC_AABMwgAAwMIAAETCAABMQgAA2EEAAFDBAAAgQgAAcMEAAIhBAAAMwgAALEIAAHBCAADgwAAA8EEAAJpCAACQwgAAUMEAAFTCAACgwSAAOBNACUh1UAEqjwIQABqAAgAAuL0AADA9AADyPgAARL4AAEC8AABMPgAAqL0AAPa-AAC4vQAAMD0AAIC7AACAuwAAuD0AAEw-AACIvQAA-L0AAHw-AADYvQAAyD0AAEQ-AAB_PwAA6L0AADQ-AAAQPQAAXL4AADy-AACKPgAA-L0AADQ-AACGPgAAgLsAAMg9AADYPQAAMD0AAEA8AADovQAAmD0AALi9AABUvgAAir4AAKK-AACgPAAAmj4AADA9AAAQvQAAUD0AAKI-AACYvQAAgLsAAKA8AADIPQAAmD0AAKi9AABAPAAAur4AAEC8AAABPwAAqD0AAFA9AADoPQAABL4AAAS-AABkPgAAJL4gADgTQAlIfFABKo8CEAEagAIAAFw-AAAMvgAAiD0AAGe_AADavgAAuD0AADS-AACoPQAAiD0AADA9AAC-vgAAPL4AAAE_AACovQAAiD0AAEA8AADYPQAAKz8AAMg9AACKPgAAmD0AAOi9AAAcPgAA4LwAAEC8AAAEPgAAFD4AABC9AAAwvQAAUD0AAHC9AADovQAAdD4AAJ6-AACevgAAjj4AAGS-AACIPQAAML0AAAS-AACAuwAArj4AAJI-AABQvQAAcD0AAFS-AAB_vwAAoj4AAHC9AACAOwAAcL0AAOi9AAAQPQAA0j4AAJq-AAA0PgAAEL0AABw-AAB0vgAAqr4AAEQ-AAAMvgAAoDwAAFS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=YYTEUHLBT88","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14966728311628119329"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"8148380408805026382":{"videoId":"8148380408805026382","docid":"34-4-6-Z348597F908BA085A","description":"• Integration by substitution • Integration by parts • Trigonometric Integrals • integral exponential functions • integration by partial fractions • definite integrals In this Calculus 2 lesson we...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4554260/63807acebbfb072f1af3d230a0efd3f4/564x318_1"},"target":"_self","position":"8","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DamhcRIQ9bkc","linkTemplate":"/video/preview/8148380408805026382?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of x^5 / sqrt(1 + x^3) | Step-by-Step U-Substitution Explained","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=amhcRIQ9bkc\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhUKEzgxNDgzODA0MDg4MDUwMjYzODJaEzgxNDgzODA0MDg4MDUwMjYzODJqrw0SATAYACJFGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKhDCDw8aDz8TowKCBCQBgAQrKosBEAEaeIHzCQcI_wIA_goHAQQF_gEGB_gA9___APTw-f8FAv8A-_0G7v0AAAD-BgQKBAAAAPn2C_P8_gAA__r5-wMAAAAJ6Pf8_QAAABEVB_n-AQAA7PT3_wIAAAACCvAIAAAAAPcAAAIG-v8B-QMM-wAAAAAS-wAB_PT-ACAALdl91js4E0AJSE5QAipzEAAaYBIYAC4OA8rCHizY9sr5Fw7n4eDP5wz_5vAAKCHn2BsIAMf3GP9Arf4RsAAAAAwn9DgPAA5qH_3fLwDR5hCd1jI9f_YIBgUa1d7g40b8BAbRAuLiPADAF-MNIcUESxoFFyAALfU9Kjs4E0AJSG9QAiqvBhAMGqAGAAC4QQAAsMEAANBCAACKwgAAwMEAAEBAAADEQgAAsEEAADzCAABYwgAA4EEAANjBAABQQQAA0MEAAADBAADgQQAAIEIAAHDBAAAsQgAAQMEAADDBAABgwQAAOMIAAKhBAACOwgAAkEEAAIjBAAAgQgAAoEAAAAAAAACqwgAAwMAAAHjCAACAwAAABMIAABhCAADgwAAAXEIAAABBAACgwAAAFMIAABxCAAB0QgAAsMEAANhBAADIwQAAqEIAAABAAABIQgAAwEAAAADAAABEwgAAgL8AAABAAABgQQAAiEEAAIDBAACAPwAA8EEAAIxCAABAQAAAlsIAAFTCAACMwgAA0MEAAKDCAAAEwgAAwMAAAJjBAACAPwAAUEEAAFRCAABowgAA1EIAAILCAAAQwQAADMIAALBBAACgwAAA2MEAAADBAACkQgAAcEEAAEDBAABAwAAABEIAAFBCAADAQAAA-EEAAIjBAABUwgAA4EEAAKDBAADYQQAAEEIAADDCAACgwQAAgEIAACBCAACYQgAA-MEAAKDAAAD4wQAAMEEAAKDCAACYwQAAcEEAAPBBAADwQQAAmkIAAChCAADQQQAALMIAAGDBAABMwgAA6EEAADBBAACawgAA6EEAAIDBAAA4wgAArsIAAODAAAAAAAAA4MEAACzCAABUwgAAUMEAAGjCAAAAQQAABMIAAKBAAACQwQAAtkIAAFTCAACAQAAAIEEAAIhBAABAwAAAmMIAAIC_AACQQgAAAEEAADzCAABEQgAAHEIAAIA_AAA0QgAAXMIAAIBAAABwwQAAYMEAABBBAADIwQAAIEEAALjBAAAMwgAATMIAAIjCAADYQQAAmMEAAIA_AADgQAAAQMAAACDBAAAoQgAAMMEAAGBCAADYQQAAgEAAAMDBAACAwQAAAEAAAAzCAABgwgAAKEIAAFDCAABMwgAAYMEAAIRCAAC0wgAAsMEAAIjBAAB8wgAAIEEAADjCAAC4wQAAIEEAABDCAAC4QQAA4EAAAEDCAACgQQAAMEEAAADAAACsQgAAgMAAAOhBAADIwQAAHMIgADgTQAlIdVABKo8CEAAagAIAALi9AACIvQAABD4AAMg9AADgPAAAJD4AALg9AAAVvwAA4DwAAFA9AAAQPQAA2D0AAIg9AACYPQAANL4AAMi9AAD4PQAAuD0AAKi9AAAXPwAAfz8AAOC8AACovQAAgLsAAK6-AADYPQAAmD0AAKq-AADgPAAABD4AAMg9AAA8PgAA-L0AAMg9AABQPQAAqD0AANg9AACIvQAAPL4AADS-AABAPAAA2L0AAEC8AACIPQAA4DwAAHA9AAC4PQAA-L0AAHS-AACavgAAmL0AABQ-AACmPgAAoj4AAJ6-AABAvAAANT8AAOC8AACYvQAAMD0AAPi9AAAwvQAAML0AAHS-IAA4E0AJSHxQASqPAhABGoACAACAuwAAcL0AAIK-AABFvwAAnr4AABC9AACuPgAAEL0AAKA8AABcPgAAQDwAAEC8AABwvQAATL4AANg9AABQPQAAFL4AAP4-AAA8vgAAjj4AABC9AACovQAAUL0AAIC7AAC4vQAAPD4AAJq-AACAuwAAJL4AAEy-AACgvAAAyD0AADC9AAC6vgAAMD0AAJg9AACSPgAABD4AAHS-AACCvgAAUD0AAGw-AAAUvgAAcL0AAJI-AAAMvgAAf78AAFC9AABEPgAAkr4AADw-AAAQvQAAcD0AAAQ-AAAwPQAA6D0AABC9AAAcvgAAgDsAADA9AABMPgAA2D0AAEC8AACgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=amhcRIQ9bkc","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["8148380408805026382"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16622868516710186467":{"videoId":"16622868516710186467","docid":"34-5-1-Z2098C3567E602423","description":"• Integration by substitution • Integration by parts • Trigonometric Integrals • integral exponential functions • integration by partial fractions • definite integrals In this video, we solve the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3036408/d68394cc903b08df49d983b31e570be6/564x318_1"},"target":"_self","position":"9","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSnWFqaQSuWU","linkTemplate":"/video/preview/16622868516710186467?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 2 tan(x) / (1 + cos²(x)) Explained | Calculus Tutorial","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SnWFqaQSuWU\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhYKFDE2NjIyODY4NTE2NzEwMTg2NDY3WhQxNjYyMjg2ODUxNjcxMDE4NjQ2N2qvDRIBMBgAIkUaMQAKKmhoZGZzdG9seGxhY3lsbWRoaFVDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZxICABIqEMIPDxoPPxP6AYIEJAGABCsqiwEQARp4gfATAAABAAAEAAUHAQn8AgYD8vX2__4A6AH3-_j-AQAACP3zBAEAAP0U-vMEAAAAAwH5BfL-AQAV-fP0AwAAABH69QH0AAAAAhX09_8BAADt_vP5AgAAAPsA_AMAAAAACQsE7gAAAAD9Cv8DAAAAAP8BCgb_AAAAIAAtdlDOOzgTQAlITlACKnMQABpgBxkALBn31rQCN-Aa3Pn59_X66sLsF__y5gACE_vtDhHhz-Eo_wzk8wDAAAAABgUfOesAEFALA9_0Ahf0BqTUFzV_AwwfBgP88fzPKgMICuf_AOYxAMwl8wML5iM4JCQmIAAtVqdLOzgTQAlIb1ACKq8GEAwaoAYAAIDAAACIwQAAmkIAAGDCAAA0QgAAcMEAAIxCAADwQQAAbMIAAGDCAACgwQAAMMEAAHBBAABgwQAAwEEAADBCAACAPwAAsMEAAGhCAAAQwQAAcMIAAFDBAABYwgAA0EEAABzCAAAQwQAAwMAAAIhBAACYQQAAYEEAAHTCAAAAwQAAbMIAADRCAACYwQAAYEEAAIhBAADEQgAAgEEAACBBAACgQQAAiEEAAAxCAAAgwgAA-EEAADzCAACYQQAAEMEAAARCAADgwAAAiMEAALjBAACQwQAAgD8AAEDAAAAwQQAAFMIAAIDAAADwQQAAgkIAACBCAACiwgAAGMIAAFjCAAAEwgAAvsIAAEDAAADowQAAKMIAAATCAABEQgAAaEIAAJDCAAC4QgAASMIAAETCAADIwQAAQMEAAMjBAABwwQAAUMEAAIRCAACAQAAAwMAAAFDBAADAQQAAQEEAAExCAAAcQgAAYMEAAJrCAAAsQgAAIMEAAGBBAACCQgAAOMIAAKDAAAAwQQAAlEIAAHRCAADIwQAABEIAADDBAADAwQAAaMIAAAzCAABwQQAAJEIAAEDAAAAsQgAAPEIAAODAAACgwQAAwMEAAMjBAACGQgAAgL8AAJDCAACgQAAAEMEAAEzCAADOwgAAcEEAAODAAAB4wgAA8MEAAJjBAAAowgAAeMIAANjBAABAwAAAkEEAAODAAADKQgAAYMEAAAxCAAAwQgAAgEAAALDBAACUwgAAgD8AAMBBAADAQQAAHMIAAJJCAABkQgAACMIAAMBBAAC4wQAAAEEAAADAAADgwAAA6EEAAMDBAABgQQAA4EAAAAzCAAC-wgAApMIAAGxCAAAgwQAAcMEAAODAAABwwQAAkMEAAOBBAADIwQAAlEIAAChCAAAQQQAAcMEAAIBAAABQQQAAIMIAAIrCAAAAQQAALMIAAEzCAACgQAAADEIAAJzCAADAQAAAmEEAAGTCAACoQQAAoMEAAEDCAAAUwgAAyMEAAFxCAAAsQgAAgsIAAFRCAACgwAAAUEEAAIZCAABgQQAAYEEAAAjCAABgwSAAOBNACUh1UAEqjwIQABqAAgAAoLwAADS-AAAMPgAAqD0AAKi9AAA0PgAAqj4AAAW_AADIPQAAuD0AACS-AABQPQAAiL0AACw-AAC6vgAAJL4AAKY-AAAwPQAAgDsAAA8_AAB_PwAAUL0AAGS-AAAsPgAATL4AAGQ-AABsPgAAhr4AAIA7AABMPgAAoDwAACS-AAAQPQAAQLwAAIA7AABQvQAAyD0AAES-AAAkvgAAmL0AAMg9AACgPAAAZD4AAKA8AACIPQAAQLwAADA9AABkvgAAzr4AABy-AACgPAAAnj4AAKo-AADgPAAAFL4AAHC9AAAxPwAA6L0AAFC9AAAwPQAAiL0AABC9AAAQvQAAZL4gADgTQAlIfFABKo8CEAEagAIAAEA8AACIPQAARL4AADu_AAB0vgAAML0AALo-AABwvQAAFD4AAII-AADYPQAAFD4AAOC8AADYvQAAyD0AAIA7AACovQAA7j4AACy-AACmPgAARL4AABS-AABQvQAAED0AALi9AAA0PgAAcL0AADC9AABAvAAAQLwAAJi9AADIPQAAtr4AAK6-AAAkvgAATD4AAFQ-AACAOwAAfL4AAFy-AABEvgAALD4AAOi9AABsPgAAwj4AAHC9AAB_vwAAQDwAABw-AABwvQAAcD0AAFA9AABwvQAAyD0AADC9AAAEPgAA4DwAAEy-AACgPAAA4DwAAIo-AACgPAAA6D0AACy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=SnWFqaQSuWU","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["16622868516710186467"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14149494705980546625":{"videoId":"14149494705980546625","docid":"34-3-3-Z002FB848FED6BA2F","description":"by step simplify tan x + tan^3 x before integration calculus integral of tan plus tan cubed u-substitution for tan x + tan^3 x integration using trig identities how to integrate powers of tangent...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3099667/ea8cdff896ccacd5dc1499c3930c2095/564x318_1"},"target":"_self","position":"10","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMzPf465kamc","linkTemplate":"/video/preview/14149494705980546625?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of (tan x + tan³x) | Step-by-Step Simplified Integration | Trig Calculus Made Easy","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MzPf465kamc\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhYKFDE0MTQ5NDk0NzA1OTgwNTQ2NjI1WhQxNDE0OTQ5NDcwNTk4MDU0NjYyNWqvDRIBMBgAIkUaMQAKKmhoZGZzdG9seGxhY3lsbWRoaFVDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZxICABIqEMIPDxoPPxOBAYIEJAGABCsqiwEQARp4gfEFAwH7BQADA_3--wP_Afv8BP36_f0A8_v9_AcBAAAE9vv4BAEAAPoK-wMCAAAA_AQI8_v-AQAT-vT1AwAAAAzx_f_6AAAABgv6_f4BAADu_vT5AgAAAPsA_AIAAAAA-AkACPwAAAAECAMEAAAAAAAAAgYAAAAAIAAtEgbgOzgTQAlITlACKnMQABpgFhQAOf7uvqolB-XsxfEVAPPr3u3bDf_2_AAQEtjeDRr5ywUo_wze7hG5AAAAARLwIgkACFcZ2-EU_Av965LkKi9_9worCCD06vLrQf4JCO_8-goKALUPAgoc1xQqGy8HIAAtE2lCOzgTQAlIb1ACKq8GEAwaoAYAACxCAAAwwgAAbEIAAADCAADoQQAAQEAAAKZCAADgwQAAMMIAANBBAACAPwAAWMIAAMBAAACIwgAAMMIAAGxCAAAkQgAAMMEAADRCAACUwgAAsEEAABBCAAAUwgAAgMEAAPjBAAA4wgAASMIAAEjCAADAQgAAHMIAACDCAABQwgAAYMIAAABBAAA8wgAADEIAAAAAAADoQQAAUMEAANBBAACAQAAAwEAAAFxCAACAvwAADEIAAIbCAACgwAAAEEEAAJpCAABgwQAAuMEAAADAAAAgQQAAAMEAADBBAAAUQgAA-MIAALjBAADIQQAAjEIAACDBAACwwgAADEIAADzCAABAQQAAqsIAAKDAAAAwwgAAcMEAAKDBAABoQgAAhkIAAADBAACgQQAAuMEAAFjCAACgQQAAgD8AAARCAADAQAAAkEEAAKBCAAD4wQAAqMEAAGBBAACAPwAA4EEAADBBAADoQQAAAMIAABBCAAAcQgAAWMIAAI7CAAAAwAAALMIAAFxCAAC4QQAAgEAAAJBBAACcwgAATEIAACRCAAAQQgAApMIAAKDAAABAwgAAmEEAAIA_AADAQAAAqEEAANhBAADgwAAAcMEAALjBAABYQgAA6EEAAPjBAAAEQgAAiEEAALDBAABswgAATMIAAAzCAAAAQgAAgMEAAEjCAAAUQgAANMIAABDBAACgwQAAQMAAABBBAAAQQgAAAMAAAGBCAAAoQgAAcMEAAMhBAADYwQAAyMEAAAhCAABUQgAADMIAACxCAACgQQAAQEAAAABAAAAAwQAADMIAAEBAAADgwAAAeEIAAMDBAABgQgAAgMAAAIDBAAAgwgAAGMIAAIbCAADYwQAAoEAAAETCAAC4wQAA0MEAADBCAADowQAABEIAAChCAACgQAAAiEEAACxCAAAAQQAAyMEAAJjBAADAQAAAoEAAAIDCAACIQQAAjkIAAETCAABkwgAAAMIAABDCAACiQgAAlMIAAEzCAACgQQAAwMEAAMBAAAAUQgAANMIAAHBBAAD4wQAABMIAAKpCAACUwgAA2MEAAHDBAAA8wiAAOBNACUh1UAEqjwIQABqAAgAANL4AAOi9AAB0PgAAED0AAOC8AADoPQAABD4AAAG_AABcPgAA2D0AAHC9AAB0PgAADD4AAFw-AADovQAAbL4AADA9AABQvQAAXL4AAB0_AAB_PwAAUL0AANi9AAAUPgAARL4AAIo-AAB8PgAApr4AABw-AADCPgAAcL0AALg9AAAcvgAArj4AAIg9AAD4vQAAMD0AAES-AABMvgAAQLwAALi9AADgPAAABD4AACQ-AABAPAAAMD0AAKg9AADovQAAzr4AAPi9AAAcvgAAfD4AANo-AAAUPgAAmr4AAEA8AABHPwAA4DwAABC9AAAwPQAAdL4AAJi9AACIvQAAur4gADgTQAlIfFABKo8CEAEagAIAAHA9AAAwPQAAgDsAAF-_AAB8vgAAEL0AALY-AABAvAAAJD4AAMg9AAAwPQAAML0AAIg9AAB8vgAADD4AAFA9AADYvQAAEz8AAJi9AAB0PgAA2L0AAES-AABAPAAAUL0AAHC9AAC2PgAAHL4AAIC7AAAQvQAAyL0AANi9AACoPQAALL4AABG_AAA8vgAATD4AAOg9AABQPQAAZL4AAKa-AADovQAAij4AABA9AACIPQAAoj4AACS-AAB_vwAAmL0AABQ-AACgvAAAqD0AAIg9AACAOwAAqD0AAIA7AACoPQAAEL0AAFS-AADIvQAAUL0AALo-AACgPAAALD4AAPi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=MzPf465kamc","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["14149494705980546625"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16679047037387707830":{"videoId":"16679047037387707830","docid":"34-1-12-Z8E09C5C9F6411A10","description":"• Integration by substitution • Integration by parts • Trigonometric Integrals • integral exponential functions • integration by partial fractions • definite integrals In this Calculus 2 lesson...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/988028/491717f0842c2b47ed88ab0a25aebeaf/564x318_1"},"target":"_self","position":"12","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Di3Ge6TMDjw8","linkTemplate":"/video/preview/16679047037387707830?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"2. Calculus 2: Trig Integral sin(4x)/sin(x) | Step-by-Step Simplification","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=i3Ge6TMDjw8\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhYKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwWhQxNjY3OTA0NzAzNzM4NzcwNzgzMGqvDRIBMBgAIkUaMQAKKmhoZGZzdG9seGxhY3lsbWRoaFVDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZxICABIqEMIPDxoPPxP9AYIEJAGABCsqiwEQARp4gff-_AD-AwD9AgUC-gX-AgwF_wL3AAAA_PH4CP8F_gD9_P39BwAAAPoQA_4GAAAAA_v9-_3-AQAT-vT1AwAAAAzx_f_6AAAAFgb2-f4BAAD5Afr4A_8AAAf6Av3_AAAABQX79v7_AAAGDAb8AAAAAAX-Cw0AAAAAIAAtAFPbOzgTQAlITlACKnMQABpgFBMAGxHvxdY6FOPn7PoW6_no4sjUGv8DAAAVEuLiGSAL1Qoc_ybk-BLAAAAACvbsIRYAAlID7N8f9f_p-abLKCl_A_cg9vLg4tTnLwUHDQr77vsQALn9Aw8lzw4k9xwLIAAt_FFPOzgTQAlIb1ACKq8GEAwaoAYAAIBBAAAMwgAAREIAAIzCAABwQQAAIMEAAJhCAAA0QgAAIMIAAIbCAAAAAAAATMIAAFDBAABMwgAAoEEAAADAAADYQQAAcMIAAKhBAAAAwgAAQMIAAAjCAABswgAAKEIAAEzCAADAwAAAJMIAAHBBAADwQQAAgEEAAETCAAAgQgAAksIAAAAAAABMwgAAAMAAAIhBAACWQgAAgL8AAOhBAAC4wQAAwMAAAFRCAAAIQgAAFEIAAJjBAABQQQAAoEAAAI5CAADgwAAAQMEAAIzCAADgwQAAAMEAAKBAAACYwQAAksIAAPhBAAAAAAAAOEIAAAxCAABwwgAA6MEAALjCAABAwQAApMIAACDBAABMwgAAMMIAAGTCAAA4QgAAdEIAAHzCAACkQgAACMIAAFDCAACgwAAA4MAAAKDAAACwwQAAAMAAADBCAACYQQAAAEAAAGDBAABcQgAAHEIAABBCAACAQAAADMIAAIrCAACoQgAAFMIAAIBAAACYwQAAKMIAABzCAACQQgAAikIAACRCAABUwgAAOEIAAIBBAAAkwgAAhMIAANDBAACAPwAAOEIAACBBAACEQgAAZEIAAABCAAAEwgAATMIAALDBAAAQQgAAQMAAAKDBAACAPwAANMIAABjCAACQwgAADMIAAFDBAABgQQAAEMEAADTCAAAAwQAAJMIAAEDCAAAYwgAAcMEAACBBAACSQgAAAEAAAMDAAADAQQAAEEIAABDBAACWwgAAQMEAAFBCAADgwAAA2MEAAARCAACwQQAA4MAAAARCAACowQAAyEEAAARCAADAQAAAiEEAACTCAADgQQAAmMEAADDBAAB0wgAArMIAABBCAAAcwgAAgD8AAEBAAABwwQAAisIAAERCAAAAwAAAxEIAANBBAAAAQQAAMEEAAIDAAAAswgAAgEAAAGjCAACAPwAA6MEAAFjCAAAAQQAAeEIAAEDCAAD4wQAAoMEAACTCAAAgQgAAAAAAAADCAACgQQAAkMEAAFBBAACIwQAAiMIAAMBBAAAAQQAAoEAAAHxCAACwwQAANEIAABDCAACMwiAAOBNACUh1UAEqjwIQABqAAgAAqL0AALi9AABMPgAA-L0AAOC8AACmPgAAbD4AAB2_AAC4PQAAMD0AAMi9AACAOwAAcD0AANg9AAD4vQAAUD0AACQ-AACovQAAHD4AABs_AAB_PwAAJL4AAEC8AACWPgAAXL4AAJ4-AACAOwAANL4AAKY-AACWPgAAUD0AAOi9AAAQvQAAmD0AAEQ-AACIvQAA-L0AAFC9AAAkvgAAyL0AADA9AAC4PQAAMD0AABC9AAAUvgAAML0AAKY-AACuvgAArr4AAGS-AADYvQAA-D0AAKY-AADIPQAAHL4AAFA9AAAfPwAAFD4AAOi9AAA0PgAAUL0AAFQ-AABAvAAAdL4gADgTQAlIfFABKo8CEAEagAIAAIi9AAAEPgAAcL0AAHu_AACevgAADL4AAIo-AABEvgAAcD0AADQ-AACAOwAA4DwAAEC8AACIvQAAQLwAAKC8AADCvgAA3j4AAEC8AACKPgAAuD0AAFS-AABQvQAAHL4AAOi9AADYvQAAPL4AAHA9AAAsvgAAcL0AAKC8AABEPgAALL4AAGy-AAAsvgAA4LwAAJY-AAAUPgAAfL4AAIK-AAAQvQAAiD0AAHS-AADYPQAAqj4AABy-AAB_vwAA-D0AANI-AACgPAAAZD4AABC9AAAQvQAAij4AABS-AABEPgAAcL0AAJi9AAD4PQAAqL0AAIo-AADgvAAAQLwAALi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=i3Ge6TMDjw8","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["16679047037387707830"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4959902445381120245":{"videoId":"4959902445381120245","docid":"34-0-5-ZC13F7E86235C1F43","description":"Perfect for students in Calculus 1 or anyone looking to master definite integrals with tricky expressions. 🎓 Subscribe to Smooth Integral for sharp, short, and smooth calculus lessons! examples...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4316373/de3733be65fca2183139fcd789523efa/564x318_1"},"target":"_self","position":"13","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRd_LXgH6kuQ","linkTemplate":"/video/preview/4959902445381120245?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"integral of (4x - 1) / (2x + x) from 1 to 4","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Rd_LXgH6kuQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhUKEzQ5NTk5MDI0NDUzODExMjAyNDVaEzQ5NTk5MDI0NDUzODExMjAyNDVqrw0SATAYACJFGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKhDCDw8aDz8TkwKCBCQBgAQrKosBEAEaeIH0DAbzBfoA7gkC-_oBAAEDFvn59f__AOsL_wYJ_wAA0Q0GBP_9_wABGw3-AgAAAAv8A_72_QEABfUN9QQAAAD76fn5_wEAAAcN-fz-AQAA7P4A9QIAAAANEPUF_wAAAOr8__0CAAAA_gMY-gAAAAD68fr4AAAAACAALRyPwTs4E0AJSE5QAipzEAAaYAcTAB4OGujcAxr2Au0EEgzt-Prh6w8A-esACf745wcI7tAIA_8Y6QP40wAAAAQLCBztAAQ4HPjJDP0S8iHD9w8Af_gS9fjl_evl6AXvGBTmDwX7EADmD-8DD98GHiAdGyAALTpEiDs4E0AJSG9QAiqvBhAMGqAGAABgQQAALMIAANZCAABgwgAAuEEAAEDBAACIQgAAFEIAANDBAAAAAAAAMMEAACDBAABQQQAAwEEAAPjBAABgQQAAkEIAANDBAAAYQgAAMMEAADBBAADAwAAAhMIAAAAAAABgwgAABMIAABjCAACAQQAAhkIAAFDBAAAkwgAA2MEAANTCAAAwwQAAjMIAANhBAAAwQQAAGEIAADDBAACAQAAARMIAAIBBAACAwAAAkMEAAHBCAABgwgAAEEIAABxCAACgwAAAAMAAANDBAABQwgAAwMEAAJhBAACAQAAAQEIAAEDCAAAAAAAASEIAABxCAABAQQAAvMIAAFDCAABQwgAAwEAAALLCAADAwQAAgMEAAODBAADgwQAAsEEAAJjBAACswgAASEIAAGjCAAAAQQAA4MEAAADBAADQwQAAXMIAAABAAAC4QgAA6MEAACDBAADgwQAAAEAAAIhBAAAUwgAAHEIAAHBBAADAwAAAqEEAACDCAACAQQAAYEIAABTCAAC4wQAAQEAAACDBAADsQgAABMIAAKjBAACAQQAAbEIAAL7CAAAAwAAAwEEAAPhBAAD4QQAAhkIAAKBBAAAEQgAAoMAAAIDAAAAIwgAArkIAADBCAAAowgAAdMIAANDBAABAwQAAaMIAAIDAAADQQQAADMIAAPDBAACAwAAA4MEAADDBAABgQQAAMMEAADTCAAAAQgAAmEIAAMDBAACgQgAAKEIAAHxCAACQwgAAJMIAAFDBAABgQQAAiEEAAGDCAABAQAAAOEIAAKDAAAAAwAAAgL8AAEDBAABIwgAAmEEAABBCAACQQQAAEEIAAABBAAB8wgAAoMEAAODBAAAUwgAAcMIAABBCAACowQAAiMEAAHBBAAA0QgAAcMEAAHBCAAA4QgAAAEEAAJDBAACoQQAAoMAAACDCAAB8wgAAAEEAACDCAAAgQQAAgEEAAFxCAABgwgAAyMEAANDBAACswgAACEIAAPhBAADowQAAXMIAAHBBAADIQQAATEIAAMjBAAAwQQAAQMEAADBBAACSQgAAAEEAABTCAACQQQAAsMEgADgTQAlIdVABKo8CEAAagAIAAMg9AABMvgAAqD0AAFC9AADgPAAAVD4AAOg9AAAFvwAA4LwAAIC7AADYvQAAoLwAALi9AABkPgAAVL4AADC9AACuPgAAUL0AAKK-AAD-PgAAfz8AAJg9AAAwPQAAuD0AAPi9AACYPQAAcD0AAOi9AABMPgAAxj4AAAQ-AACoPQAALL4AAKY-AAAUPgAALL4AAKI-AAB8vgAARL4AAJa-AACIPQAALL4AAJo-AABQvQAAyL0AAKA8AAA0vgAAgr4AAKK-AADSvgAABD4AALg9AACaPgAADD4AAKC8AACYvQAAcT8AAI6-AAD4PQAAyD0AACS-AAC4PQAAMD0AAJ6-IAA4E0AJSHxQASqPAhABGoACAAAcvgAA4LwAAI6-AABZvwAAiL0AAIi9AACKPgAAnr4AAKg9AAAUPgAAgLsAADQ-AACYvQAARL4AALg9AACAuwAAqr4AAPI-AABQvQAArj4AAIA7AACovQAAiL0AAIg9AAAEvgAAFD4AABy-AACIPQAAHL4AACy-AACgPAAA2D0AAOg9AABMvgAAyL0AAIC7AABkPgAAFD4AAGy-AAAkvgAA6D0AAOg9AABAvAAA4DwAAI4-AACCvgAAf78AABC9AACqPgAAML0AAAw-AAAkvgAAUD0AALg9AACIvQAALD4AAHC9AABMvgAAgLsAAIC7AAA0PgAAqD0AABS-AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Rd_LXgH6kuQ","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["4959902445381120245"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6302413714726689944":{"videoId":"6302413714726689944","docid":"34-9-14-Z3B9D73F9D03E7B1A","description":"In this video, we solve the **improper integral**: *∫ from 2 to ∞ of (5 / x²) dx* This type of integral involves an infinite upper bound, and we use *limits* to evaluate it properly. You’ll learn...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4580465/cd1334632c771f10302043623d10315a/564x318_1"},"target":"_self","position":"14","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvcD6NBV2Yes","linkTemplate":"/video/preview/6302413714726689944?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration of 5 / x² from 2 to | Improper Integral Explained","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vcD6NBV2Yes\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhUKEzYzMDI0MTM3MTQ3MjY2ODk5NDRaEzYzMDI0MTM3MTQ3MjY2ODk5NDRqrw0SATAYACJFGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKhDCDw8aDz8TlgGCBCQBgAQrKosBEAEaeIH3DAf8_gMA_QIFAvoG_gIODPIE9QAAAO0HBwAB_wAA6fwQBQQAAAD6C_sDAgAAAAL-_fbz_QEAAQEDAQQAAAAM8f3_-gAAAAYJAQr-AQAA8Qj68gIAAAALDvYF_wAAAOj8BAz_AAAA_vz-_QAAAAAG_Q0BAAAAACAALcRC2Ds4E0AJSE5QAipzEAAaYAkSABYQ_evSATbe7uIEJRUE2PnYARkA6NwABx8WzwIVzcQKBf8n3vz2vwAAAPYODyjSAARWLwPDIv4q9Ris3iAffwQUBwf1BeP2zhf2Eu7g-gfuIwDTI-oEDc4OOS4OISAALXJfSjs4E0AJSG9QAiqvBhAMGqAGAABAwAAAUMIAALRCAAB0wgAAMMEAAOjBAABQQgAAgD8AADzCAACwwQAAAEEAACDBAAAEQgAA0EEAANjBAACAPwAAeEIAAATCAABQQgAAYMIAAIjBAAAMQgAAMMEAAABCAAAAwgAAmMEAABDCAAAYQgAAbEIAANDBAACcwgAAiEEAAGDCAADAwQAA0MEAAGBCAAAoQgAAjEIAAMjBAADAQAAAAMIAAIA_AAAQQQAAIMIAAEBBAABMwgAAgkIAAPhBAABEQgAAQMAAADBBAAAwwgAAoEAAADBBAAC4QQAANEIAABTCAAAAAAAAQEEAADxCAAA0QgAAQMIAAKjBAACswgAACMIAAKzCAAAcwgAAQMEAAEDAAACIwQAA4MAAALjBAAC-wgAA4EAAAAjCAADQQQAAuMEAAADBAABAwAAALMIAAEDBAACEQgAAqMEAAIDBAAAEQgAAYEEAAFxCAACgwAAAKEIAAMDAAABYwgAAHEIAAODBAAA4QgAAUEEAAGDCAADowQAAEEEAALhBAADQQgAAHMIAABjCAACwwQAAgL8AAPDBAABQQQAAAMEAACBCAAAAQQAAXEIAAJBBAAAYQgAAmMEAAExCAACGwgAAbEIAAARCAAAQwQAAkMEAADDBAAAowgAA3sIAAIjBAACwQQAAIMIAAL7CAACSwgAAgMEAABjCAACAQAAAGMIAAAjCAAAMQgAAaEIAALTCAABsQgAA0EEAAMhBAAAgQQAAUMEAACBBAACwwQAAMEEAAHTCAACQQgAAZEIAAIDBAAAAQgAAAMIAAABAAADowQAAUMEAAPBBAADoQQAA4MAAAIBAAAA8wgAAAMIAAFDCAADIQQAACMIAAGBBAADYwQAAksIAAIC_AABQQgAACMIAALRCAABgQQAAAAAAALDBAAAAwAAAEEIAAITCAAAswgAAqEEAAKTCAADoQQAAFEIAAGRCAABEwgAAsMEAALDBAAAUwgAAwMAAAEDAAABAwAAAKMIAABDBAACIQQAA8EEAAMBAAAAsQgAAFMIAACzCAABoQgAA4EAAALDBAAAAQgAAAMAgADgTQAlIdVABKo8CEAAagAIAAES-AAC-vgAAoDwAABA9AABAvAAAqj4AACw-AAAtvwAAFL4AACQ-AADIPQAA-D0AAIC7AAAQPQAApr4AADy-AACKPgAAmD0AAIg9AAATPwAAfz8AAOA8AAAcvgAAED0AAHy-AACiPgAAMD0AANK-AABQPQAAqj4AAEQ-AACuPgAATL4AACS-AAA0PgAAgDsAAKg9AAB0PgAAVL4AAFy-AABQPQAAgLsAANg9AADgvAAA6L0AACw-AACgPAAAor4AAJK-AAAMvgAAyD0AAOC8AAD6PgAADD4AAOi9AABQvQAAMz8AAAw-AABwvQAAiD0AAFC9AAAcvgAAUL0AAJq-IAA4E0AJSHxQASqPAhABGoACAAAsvgAAgLsAANi9AABBvwAAFL4AACS-AACSPgAAPL4AAJg9AAAkPgAAUD0AAEC8AAAQPQAAUL0AANg9AAAQvQAAoLwAANY-AAAQvQAAyj4AAKC8AADIvQAAiL0AAKi9AABAvAAAiD0AAFC9AACgvAAAgLsAAHA9AABwvQAAND4AAAS-AAB8vgAA2L0AAKg9AAA0PgAAjj4AAOi9AAAMvgAAUD0AABC9AACAOwAAUD0AAEw-AAAQvQAAf78AAEA8AADgvAAAMD0AADQ-AABAvAAAuD0AAPg9AACGvgAABD4AABC9AAD4vQAAmD0AAIC7AABcPgAA-L0AAHC9AABwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vcD6NBV2Yes","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["6302413714726689944"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17768030027530579344":{"videoId":"17768030027530579344","docid":"34-0-0-ZC89D44928E3E0021","description":"with radicals and linear terms rationalizing integrals with square roots advanced integration using substitution method integration of radical expressions calculus 2 step by step int...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3372075/08eb107a24388f13d7e0204f7c37d3c9/564x318_1"},"target":"_self","position":"15","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfCR571lfAvE","linkTemplate":"/video/preview/17768030027530579344?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration of (x + 2)/(x + 1) dx | Simplify & Solve | Calculus 2","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fCR571lfAvE\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhYKFDE3NzY4MDMwMDI3NTMwNTc5MzQ0WhQxNzc2ODAzMDAyNzUzMDU3OTM0NGqvDRIBMBgAIkUaMQAKKmhoZGZzdG9seGxhY3lsbWRoaFVDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZxICABIqEMIPDxoPPxOiA4IEJAGABCsqiwEQARp4gff-_AD-AwAFBA4F-gj8AhQF-Ab1AQEA8Pj9Bf8BAADq8_z9_P8AAAUOA_cJAAAA-Qf68_b-AQAM9wPwAwAAAA717QH-AAAADA3wAv8AAAD4AfwBA_8AAAf_-P7_AAAAAAQD9_z_AAD-Cf8DAAAAAP8BCgb_AAAAIAAtAFPbOzgTQAlITlACKnMQABpgFhUAKwL30NsWHekG8wAF8Qvw7MLpFP_z6AAeFQLdES3ktwAa_xvu7wPAAAAADO0OLN4AFVD-BMwmAOr0F87aJB9_6_oI5vrr7-LyOugTFgsG7_0mAKcj-QgR5fFAAgwzIAAtZutPOzgTQAlIb1ACKq8GEAwaoAYAAKDAAAAcwgAAnEIAAKzCAAAAQQAAgEAAAFhCAABwQgAAJMIAALjBAABAQAAAoEEAAABBAACoQQAAgEEAAPBBAAA8QgAAWMIAACxCAAAAQQAAmMEAAMjBAAAowgAAgEEAACDCAABAwQAAkMEAABxCAACQQQAAiMEAAGTCAADwwQAArMIAAODAAABIwgAA4EEAAIBAAAC2QgAAAMAAAIC_AAAAwgAAKEIAAJDBAACAPwAADEIAAPDBAAAMQgAANEIAAIBAAAAgwQAAEMIAAFzCAADgwQAAgEAAABDBAADYQQAAuMEAAMBBAABUQgAAUEIAABBBAACWwgAAgMEAAGDCAACYwQAAmsIAANDBAAAwQQAAQMIAANDBAAAAwQAAQEEAAJLCAACQQgAArMIAAHDBAACwwQAAuMEAABzCAAAYwgAAAEAAAIZCAAAAAAAAwMAAAAjCAAAoQgAAwEEAAABBAABwQQAAgD8AAJzCAADgQQAAkMEAADBCAAAsQgAANMIAAPjBAAA8QgAAgEEAAP5CAADIwQAAsMEAAIBBAAD4QQAAwsIAAIBAAADAQQAAdEIAAOBBAAB4QgAACEIAAFBBAACAwQAAQMAAACDCAACuQgAAUEEAAFzCAAAowgAA6MEAABjCAAAkwgAACEIAAMBAAABkwgAAiMIAAGDBAABwwgAAoEAAAADAAADowQAAmMEAAAxCAAC4QgAAuMEAAFhCAAAEQgAAMEIAAIDCAADYwQAAUMEAAKhBAACYQQAAfMIAAAxCAABEQgAAoEAAAAhCAADAwAAAmEEAALDBAACgQQAA4EAAAFDBAAC4QQAAoMAAAGTCAAA0wgAAisIAAIDAAACYwQAAiEEAAABBAACowQAAuEEAADBCAAAAwgAAUEIAAFhCAADAQQAAMMIAABBBAAAAwgAACMIAAEDCAADgwAAAIMIAANDBAADQQQAAyEEAAJ7CAAAAwAAAuMEAAKzCAAAQQgAAAEAAADjCAAB4wgAAMEEAADxCAAA8QgAAKMIAAIjBAACgwAAAIEEAAHBCAABgwQAAgMAAAMhBAABAwSAAOBNACUh1UAEqjwIQABqAAgAABL4AAHC9AACAuwAA6L0AALg9AAB0PgAAdD4AACm_AACovQAAFD4AAEC8AACIvQAAcD0AABw-AADGvgAAgDsAAMY-AACAOwAAgj4AAC8_AAB_PwAAHL4AAKC8AACgvAAALL4AAIY-AAAcPgAAFL4AAAw-AACSPgAAmD0AAIA7AABAvAAAqD0AAFQ-AADgvAAAgDsAAFC9AACgvAAANL4AAAy-AAA8PgAAhj4AAIA7AAAcvgAAyL0AAEC8AACavgAAnr4AALi9AAD4PQAAhj4AAGQ-AACKPgAAgLsAAKi9AAAXPwAA4DwAAFA9AACYvQAAPL4AAIC7AACAOwAApr4gADgTQAlIfFABKo8CEAEagAIAAOC8AABMPgAAFL4AAFW_AACCvgAAuD0AAAM_AABAvAAAbD4AAMg9AAAQPQAAML0AAIi9AABcvgAA2D0AAEA8AAAUvgAAwj4AAIq-AACqPgAAmL0AAAS-AACIvQAA4DwAAIi9AABAPAAAXL4AABA9AABkvgAANL4AAFC9AAA8PgAAir4AAKq-AAA8vgAAgLsAADQ-AAAUPgAAir4AAIi9AAA0vgAAUD0AAIi9AAD4PQAA0j4AAAy-AAB_vwAA6D0AAEw-AACAOwAA2D0AAIg9AACIPQAAqD0AAFC9AAAsPgAAUL0AADy-AACIPQAAML0AAHQ-AADgPAAABD4AAEC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=fCR571lfAvE","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["17768030027530579344"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4487819312805081225":{"videoId":"4487819312805081225","docid":"34-1-15-Z639D03F2938B61F6","description":"Step-by-step integration of sqrt(1 + sec x) Integral of square root of (1 + sec x) How to solve integral with sqrt(1 + sec x) Calculus integral sqrt(1 + sec x) explained In this video, learn how...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1032305/dd3ef1d76433c38f75690d197d7a2537/564x318_1"},"target":"_self","position":"16","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7w8gQUT_Oq8","linkTemplate":"/video/preview/4487819312805081225?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sqrt(1 + sec x) – Step-by-Step Solution","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7w8gQUT_Oq8\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhUKEzQ0ODc4MTkzMTI4MDUwODEyMjVaEzQ0ODc4MTkzMTI4MDUwODEyMjVqrw0SATAYACJFGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKhDCDw8aDz8T_wKCBCQBgAQrKosBEAEaeIHzCQcI_wIAAwP9_vsD_wETAgT59gEBAPb0AwkIA_8A_fYHBAIAAAD6CPoQAgAAAAL-_fbz_QEABgAM_wQAAAD76_r5_wEAAAAH_QD-AQAA9P32A_UCAAAAAwIB_wAAAAMGAgcAAAAAAQoN_wAAAAAU8AcCAAEAACAALdl91js4E0AJSE5QAipzEAAaYB0TAB4SCdCmBCHn_uUJDwPy5N_V3gf_6O0ADxHm3gIS_9oAD_8pxfgKvgAAAA8c7zwUAPxWE_zRHQMN-gek9xwvf9_5EvoO2ecD1zz7AAjlGtX6HQDQAer9D7QLJREDCSAALYzYSTs4E0AJSG9QAiqvBhAMGqAGAACAvwAARMIAAFhCAAA4wgAAIEEAAABBAACyQgAAZEIAAHTCAAB4wgAAuEEAAATCAABQwQAAhMIAAABBAADwQQAAAEIAAFjCAADQQQAA0MEAAABAAAD4wQAAKMIAAIA_AABgwgAAEEEAAHDCAACIQQAAAEIAACBBAAB0wgAAEEIAAHTCAACgwAAAMMIAADDBAADoQQAATEIAABBBAAAAQQAAyMEAACRCAABEQgAA8EEAAPBBAACIwQAAOEIAAABBAAAEQgAAAMAAAJDBAACwwgAABMIAAPjBAACAvwAAYEEAAEjCAACAPwAAKEIAAFRCAABgwQAAhsIAALjBAACqwgAAMMEAAGzCAAAwwQAAuMEAABzCAABwwQAAAEIAAMpCAAAowgAAqkIAAGTCAAAwwgAAMMEAAIBAAAAQwQAAWMIAAKDAAACwQgAAEEEAAADBAAAgQQAAwEEAAERCAADwQQAAkEEAADDCAAAAwgAAqEIAAIjBAAAQwQAAwEEAABTCAAAAwgAAhkIAACBCAABMQgAAOMIAABhCAACAvwAAYEEAAI7CAABAwAAAAEAAABRCAAA8QgAAQEIAADxCAAAQwQAA4MEAAMDBAAC4wQAAOEIAAEDBAABIwgAA0EEAAADBAAAowgAAVMIAABDCAABswgAAuEEAALjBAAAYwgAAwMEAAAzCAACgwQAAGMIAANhBAABQwQAAmkIAAEDAAAAAQAAAwEEAAHBBAAAgwQAApMIAAAzCAACOQgAAgD8AAPjBAADwQQAAVEIAABDBAAA8QgAAgMEAAMBAAAAAQgAAEEEAAOBBAACEwgAAIEIAAADBAACAwAAAWMIAAFzCAAC4QQAAWMIAAIA_AADAwAAAEMEAAEDCAADYQQAAAEAAAJxCAAAMQgAAAEEAACDBAACIwQAADMIAAPjBAABcwgAA4EAAAIC_AACqwgAAyMEAALBCAAC4wgAAiMEAAPDBAABswgAAMEIAAIDAAACYwQAAREIAABzCAAAwQQAAIMEAAGDCAAAAQAAA2EEAAEDBAAC4QgAAQEAAACBCAAD4wQAAOMIgADgTQAlIdVABKo8CEAAagAIAAOC8AABwvQAAiD0AABA9AACIvQAAlj4AABA9AAADvwAAyL0AAMg9AAAQPQAAcL0AAEC8AACoPQAAHL4AAOC8AADYPQAA4LwAACy-AAAFPwAAfz8AAEC8AACovQAA4LwAAKq-AAA8PgAAqD0AAFS-AADgPAAARD4AAAQ-AAAsPgAAPL4AAKI-AACoPQAAiL0AAKg9AAD4vQAAVL4AAI6-AAAwvQAAPL4AAAQ-AACYPQAAgDsAAFC9AABAPAAAmr4AAKq-AACevgAAcL0AABQ-AADSPgAAVD4AAJq-AADgvAAAKT8AAHA9AAC4PQAAuD0AAJi9AAAMPgAAQDwAAKq-IAA4E0AJSHxQASqPAhABGoACAACovQAA6D0AABS-AABhvwAATL4AAOA8AADmPgAAML0AANg9AABMPgAAMD0AAKg9AABwvQAAZL4AAPg9AACIPQAAFL4AANY-AAD4vQAAlj4AAMi9AABAvAAA4LwAAEA8AAA0vgAARD4AAHy-AABAPAAAbL4AAIa-AAAQvQAAuD0AAOA8AADSvgAA-L0AAFA9AACWPgAA6D0AAIa-AACavgAANL4AAGQ-AAAQvQAAgDsAAL4-AACovQAAf78AAKC8AAB8PgAAgLsAAGQ-AACYPQAAPD4AAEQ-AAC4vQAA2D0AAFC9AACuvgAAJD4AADC9AACOPgAAuD0AAOA8AABwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7w8gQUT_Oq8","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["4487819312805081225"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7697340183637159381":{"videoId":"7697340183637159381","docid":"34-6-1-Z3E4AE65E7E12E981","description":"In this video, we walk through a full step-by-step solution for the integral: ∫₄⁹ (x - 9) / (3√x + x) dx This example combines substitution and simplification techniques to tackle an integral...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2713610/4fe53236f4f43e6cd27351eaef08b808/564x318_1"},"target":"_self","position":"17","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dt1QUGAkN6D8","linkTemplate":"/video/preview/7697340183637159381?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration Trick with Square Root | Solve ₄⁹ (x - 9)/(3 x + x) dx","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=t1QUGAkN6D8\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhUKEzc2OTczNDAxODM2MzcxNTkzODFaEzc2OTczNDAxODM2MzcxNTkzODFqrw0SATAYACJFGjEACipoaGRmc3RvbHhsYWN5bG1kaGhVQ0lZZnJidWh1OExJbUNFQ3k5Vm5KTGcSAgASKhDCDw8aDz8TwwKCBCQBgAQrKosBEAEaeIHtBPv3A_wA-QgO_PsE_wEgAfX-FQECAOQDBP0J_AIA9Oj-AvoAAAD8DPwFDQAAAPgI-fL1_gEAEfUK-vIAAAAQ-vz09QAAAA8b-gL9AQAA6vP2_wMAAAAG9vQB_wAAAAb_FAr_AAAADQcT_AAAAAAK7QL9AAEAACAALZzVxjs4E0AJSE5QAipzEAAaYA4fAEgb-a3C9xzh7_f8Ffzx3-u--gn__9sAMxrzyg4b5J8REv8UuOgIqgAAAB3f8CXnAAFrC-jJRADt7eWi60M3f9QJBev1IfMb9j_2ChPq_fXuHgDIOesWI8kvUhonJiAALXrcJTs4E0AJSG9QAiqvBhAMGqAGAACQQQAAmMEAAL5CAACawgAAMEEAAMDBAAB4QgAAsEEAADDCAACIwQAAyEEAACBBAADgQAAAIEIAAPDBAADIQQAAbEIAAGzCAACGQgAA0MEAACDCAAAAAAAA6MEAAMBBAACgwQAASMIAALDBAADIQQAATEIAALjBAAB4wgAAEMEAAM7CAAAQwQAAAMIAAPhBAACQQQAAhkIAAMDBAADgQQAAEMIAABhCAAAAwAAAHMIAAAhCAAAowgAAaEIAABhCAACgQQAAgD8AAGDBAABYwgAAoMAAAABBAADYQQAAEEIAALDBAACAPwAAUEEAAMBBAAAAQQAAfMIAADDCAABUwgAAAMAAAMjCAAAAwgAAoMAAAIjBAADIwQAAEEEAAKDAAACcwgAA0EEAAIrCAAAwQQAAoMEAAMDBAACAwAAABMIAAKjBAACaQgAAwMAAAADBAADAwQAAyEEAADhCAABwwQAAGEIAAFBBAAAUwgAAqEEAANjBAACgQQAAPEIAAGjCAAAUwgAA0EEAACDBAADUQgAAFMIAACzCAABgwQAAoEEAAGTCAAAMQgAAAEIAAPhBAAAcQgAAlEIAAJBBAAAAQgAAgMAAANBBAABMwgAApkIAACBBAAAUwgAAQMIAAADCAABMwgAAmsIAABDBAAAoQgAAXMIAAHzCAACYwQAAMMIAAHDBAACgwAAACMIAAIDCAABIQgAArkIAAIrCAACgQgAAMEEAAIBCAABowgAAuMEAAIA_AACAvwAAAMAAACzCAAAMQgAAcEIAADDBAADwQQAAcMEAALDBAAAkwgAAgEAAADBBAAAkQgAAcEEAAMhBAACQwgAA-MEAAEjCAACgQAAALMIAAPhBAABQwQAA0MEAALBBAAAEQgAARMIAAFxCAABQQQAAAMAAACjCAAAAwAAAoEAAAHTCAAAUwgAA6EEAAJbCAADgQAAA8EEAABxCAABQwgAAQEAAAHDBAACswgAAYEEAADBBAAAswgAAaMIAABBBAADoQQAA4EEAAIDBAAAAQgAAwMAAAADAAAAoQgAAAEAAAKDAAAAkQgAAQMAgADgTQAlIdVABKo8CEAAagAIAAJa-AADYvQAAmj4AAFQ-AAAUPgAAoj4AAFC9AAApvwAALL4AAFA9AADYPQAAgr4AAAQ-AAC4PQAAbL4AAOi9AABEPgAAMD0AACS-AAAfPwAAfz8AABC9AACOvgAAiL0AAKi9AACmPgAAhj4AAIa-AADoPQAAsj4AAEw-AACGPgAAmL0AAKY-AAA0PgAALL4AAJi9AAAMvgAADL4AACy-AABAPAAA4DwAANg9AADOvgAAcL0AAFw-AAAMPgAAhr4AAKq-AACKvgAAHD4AAKg9AAABPwAApj4AADS-AAAUvgAAWz8AAAy-AADoPQAAND4AABS-AADYvQAAEL0AANq-IAA4E0AJSHxQASqPAhABGoACAAC4vQAAiD0AABy-AAA7vwAAPL4AAOg9AAD6PgAAgLsAAII-AABEPgAAiD0AABQ-AADIvQAARL4AAOC8AAAcPgAAHL4AAAU_AABMvgAAwj4AAKi9AAAkvgAA-L0AAPg9AAAUvgAALD4AAI6-AABQvQAAFL4AAFS-AACovQAA-D0AAAS-AADCvgAAUL0AAIg9AABkPgAAoDwAAJ6-AABkvgAATL4AAHw-AACoPQAADL4AAPY-AACIvQAAf78AABA9AACSPgAAsr4AABw-AAAEPgAAND4AAJg9AACgvAAADD4AAHC9AADWvgAAqD0AABQ-AABcPgAAPL4AAKC8AADIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=t1QUGAkN6D8","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["7697340183637159381"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10550552082466536992":{"videoId":"10550552082466536992","docid":"34-3-2-Z0075F6E03ACEA02A","description":"• Integration by substitution • Integration by parts • Trigonometric Integrals • integral exponential functions • integration by partial fractions • definite integrals In this video, we solve the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/928475/2f08f2e0bef1d602d349d78b67a5c17b/564x318_1"},"target":"_self","position":"18","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbcYxtQZLkRQ","linkTemplate":"/video/preview/10550552082466536992?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integration of ln(x) / x² from 1 to | Improper Integral Tutorial","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bcYxtQZLkRQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhYKFDEwNTUwNTUyMDgyNDY2NTM2OTkyWhQxMDU1MDU1MjA4MjQ2NjUzNjk5MmqvDRIBMBgAIkUaMQAKKmhoZGZzdG9seGxhY3lsbWRoaFVDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZxICABIqEMIPDxoPPxOAA4IEJAGABCsqiwEQARp4gfcMB_z-AwD9AgUC-gb-AhUC8vr1AgIA9AYC_wcC_wDp-QMGCP8AAPUPCAD7AAAAAQgB_vL-AQAGAAz_BAAAAAno9_z9AAAAAgv3Bv4BAADu_gD2AgAAAAUI9P0AAAAA7fgJBQAAAAAD-gX2AAAAAAP2CfsAAAAAIAAtxELYOzgTQAlITlACKnMQABpgAxIAHgAP3MEGKun73AMYCP7v7-MCEADq4QAEGhHQAxffwgYZ_xXj-PTDAAAA_gkOJt0A_E4a_MMV9if-IKnpHBJ_9AkO-vIJ3fvSJ_8T--gEBesLAMsf3_UL3BE2LBsoIAAtK4NWOzgTQAlIb1ACKq8GEAwaoAYAAKBBAAAgwgAA5kIAAEjCAAAoQgAAoEAAADxCAABAwAAAgMEAAKDAAADwwQAAGMIAAIC_AAAwQQAAHMIAAJhBAAB0QgAA-MEAAGRCAABEwgAA0MEAALBBAADQwQAAiEEAAFjCAADYwQAACMIAADBBAACyQgAAmMEAAGjCAAAAQAAAgMIAAPjBAACEwgAAEEIAAHBBAAB4QgAAIEEAAABAAAAIwgAAEMEAAFDBAADowQAAPEIAAOjBAADgQQAA8EEAACBBAACAwAAA0MEAABDCAABQwQAAIEEAAABCAAAQQgAAYMIAAADAAAAYQgAA2EEAABxCAACOwgAAQMIAAGjCAAAgQQAA2MIAACDBAABAwgAAyMEAAGTCAAAQQgAADMIAAOTCAAAsQgAAEMIAAIA_AACQQQAAmMEAANjBAAA0wgAAQEEAAHxCAAAYwgAAgMEAAEBBAAC4QQAAFEIAAMBBAACYQQAAQMAAAGTCAABkQgAA8MEAACBCAAAgQgAARMIAAFDBAACgwAAAAEEAAI5CAAAswgAASMIAAOBAAADgQQAAgMIAAIBAAAAAQAAAqEEAAHBBAACeQgAAgEEAAOhBAACYwQAAoMAAADjCAACWQgAAIEIAAKDAAADgwQAAgMEAAGDBAACswgAAAMEAANhBAAAIwgAAQMIAAADBAACowQAAwMAAABDBAAC4wQAAeMIAADBBAABcQgAAYMEAAK5CAAAoQgAAOEIAAHDBAAAEwgAAwEAAAJDBAABoQgAAOMIAAOhBAADoQQAA4MAAAMBAAAC4wQAAAEAAAKDBAACQQQAANEIAADBBAACYQQAAoEEAABjCAADAwQAADMIAAMDBAACIwgAAwEAAADTCAAAowgAAMMEAAGBCAABcwgAAwkIAAAxCAAAAQAAAMEEAAHBBAABwQQAAOMIAAFjCAADIQQAADMIAAKBBAADIQQAAjkIAAFjCAAAwwgAAyMEAALrCAAAAQAAADEIAANDBAACKwgAAIEEAADhCAAAAQgAAwMEAADxCAADIwQAA0MEAAI5CAACAwAAAVMIAANBBAADYwSAAOBNACUh1UAEqjwIQABqAAgAAbL4AAJa-AACoPQAAMD0AABC9AABcPgAAUD0AAD2_AABAvAAAgLsAABw-AADIPQAAcL0AAKg9AACCvgAA6L0AALI-AACgPAAAmr4AAAs_AAB_PwAAUD0AAHC9AACIvQAAcL0AAGQ-AAAQPQAAgr4AAMg9AADYPQAAXD4AAIY-AAC4vQAAyD0AABw-AAAcvgAAFD4AAMi9AAAMvgAAnr4AAOg9AABEvgAARD4AALi9AADYPQAA2D0AAIC7AADmvgAAzr4AAKa-AACoPQAAHD4AAIY-AAA0PgAAir4AAKi9AABhPwAA4DwAAJg9AAAkPgAAqD0AABC9AAAwvQAA-r4gADgTQAlIfFABKo8CEAEagAIAAES-AAAcPgAAsr4AAEO_AAC6vgAAML0AAA0_AABsvgAAfD4AAFQ-AACgPAAAUD0AAFC9AADgvAAAUD0AAKA8AAB8vgAAyj4AAGy-AAC-PgAAyD0AAJK-AAAwvQAAMD0AAKi9AAAsPgAAjr4AAJg9AADYvQAAHL4AAOC8AADgPAAA6L0AAJ6-AACAOwAA4DwAAJ4-AAC4PQAAHL4AAHS-AAAEPgAAVD4AACQ-AABAPAAA0j4AANi9AAB_vwAAcD0AAAw-AAC4vQAAVD4AAPg9AAD4PQAARD4AABy-AABEPgAADL4AAGS-AACoPQAAoLwAAI4-AAC4PQAAQLwAAIC7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=bcYxtQZLkRQ","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["10550552082466536992"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15310572957193524718":{"videoId":"15310572957193524718","docid":"34-1-4-Z5E619232B35987EC","description":"by step. The problem involves logarithmic functions and requires the integration by parts method. We carefully explain each step so you can fully understand the process. Perfect for calculus...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2780508/88b9edc401cb7b53e3072eb28d5337a3/564x318_1"},"target":"_self","position":"19","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Df2UxIeySNBI","linkTemplate":"/video/preview/15310572957193524718?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus Integral: Solving ln(x³ + 1) dx Explained","related_orig_text":"smooth integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"smooth integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=f2UxIeySNBI\",\"src\":\"serp\",\"rvb\":\"Eq0DChM5MjA0MDMzNzEzNDg4NzMwOTAwChMzMjcxMDU1NjY4MTI0NTkzNTkyChQxMjU4NTU4MDMwNDg3NzU5MDU0OAoTNzM2MTY4NzYxODg1NDQ2NTkxNgoTNjUzMDg5NzA5MDA1Njc5OTE2NwoUMTAzNzgwMDQ4MDYxNDkxNjQxNDQKFDE0OTY2NzI4MzExNjI4MTE5MzI5ChM4MTQ4MzgwNDA4ODA1MDI2MzgyChQxNjYyMjg2ODUxNjcxMDE4NjQ2NwoUMTQxNDk0OTQ3MDU5ODA1NDY2MjUKFDE2Njc5MDQ3MDM3Mzg3NzA3ODMwChM0OTU5OTAyNDQ1MzgxMTIwMjQ1ChM2MzAyNDEzNzE0NzI2Njg5OTQ0ChQxNzc2ODAzMDAyNzUzMDU3OTM0NAoTNDQ4NzgxOTMxMjgwNTA4MTIyNQoTNzY5NzM0MDE4MzYzNzE1OTM4MQoUMTA1NTA1NTIwODI0NjY1MzY5OTIKFDE1MzEwNTcyOTU3MTkzNTI0NzE4ChMxMzA2OTcyMTE3ODczNzMyMDk4ChM3MjI2ODMzMDg3MjQ2MDQ1MjM2GhYKFDE1MzEwNTcyOTU3MTkzNTI0NzE4WhQxNTMxMDU3Mjk1NzE5MzUyNDcxOGqvDRIBMBgAIkUaMQAKKmhoZGZzdG9seGxhY3lsbWRoaFVDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZxICABIqEMIPDxoPPxPyB4IEJAGABCsqiwEQARp4gfATAAABAAAJ8AD_-wb-AR8B9f4UAQIA8AEC_P4BAADz_fz8CQAAAPAW_v8EAAAA7xD2_PUAAQANBPntAwAAAAry9gz6AAAADQH4Awn_AQH_BOoEAv8AAAUBAP3_AAAA9vcN8gAAAAD7_wX3AAAAAPgABwT__wAAIAAtdlDOOzgTQAlITlACKnMQABpgGBMAISn75d__GeD51SEI-_3f77zdIf_9zAANDQbkIirdvwcS_zPg9QW8AAAA_-8gEc0AHVIGENn9GAz_G7XTQSx_9gT7_fP58vDQJfUN-OoKBewqAKw1_woRyfAuCv8cIAAtLzRFOzgTQAlIb1ACKq8GEAwaoAYAACBBAACwwQAAYEIAAHjCAACIwQAAYMEAALxCAADgQAAATMIAAAzCAACAvwAAhsIAAEDAAABkwgAA2EEAALhBAADYQQAAQEAAAERCAAAIwgAATMIAALDBAAAAwgAAIEEAAJzCAABAwQAAmMEAAIC_AADoQQAAMEEAAKLCAAAgQQAAhsIAAFBBAAAMwgAAgEAAAKhBAACaQgAA4EAAAIBAAAAAAAAAyEEAAERCAADgwAAAcEEAAMjBAABwQQAAcEEAAERCAAAAwQAAAEAAABzCAAAwwQAAgD8AABBBAABgwQAAoMIAAADBAACoQQAAQEIAAEBAAABcwgAAkMEAALDCAAAYwgAA8MIAAPjBAAAkwgAAYMEAAMjBAACEQgAAnkIAAILCAACaQgAAWMIAANjBAACowQAAAEAAAKBAAACgwQAA4MAAAKxCAACgQAAAiMEAAIBBAACYQQAA-EEAAEBCAABQQQAA8MEAAIzCAACUQgAADMIAAAAAAACEQgAAHMIAAHBBAAAYQgAADEIAAGxCAAA8wgAA4EAAAKDAAAAAwgAAgsIAAABAAAAQQQAAJEIAAFBBAACMQgAAJEIAAMBAAACYwQAA-MEAAKDBAACcQgAAcMEAAHTCAADAQQAAgEAAAFzCAACgwgAAMMEAAKjBAACQwQAAHMIAAAzCAAAcwgAAQMIAAJjBAADwwQAAmEEAAOjBAACmQgAAYMEAAKDAAACoQQAAAAAAAABBAACewgAAcMEAAEhCAAA4QgAAVMIAAIBCAABUQgAAiMEAAFBCAADAwQAAEEEAAMhBAABAQQAA-EEAADTCAAAgQQAAoMAAANDBAACAwgAANMIAAKBAAABAwgAA4EAAAKjBAAAAwQAAGMIAADhCAACAvwAAnkIAAEhCAACgwQAAqEEAAAAAAABAQQAADMIAACDCAAAAQQAAUMEAADTCAACowQAAfEIAAJDCAADowQAA4MEAAFjCAAAQQQAAMMIAAFTCAABwQQAAEMIAAIhBAAAgQQAApsIAAKBAAADAwAAA2MEAAGRCAACgQAAABEIAAEBAAAAowiAAOBNACUh1UAEqjwIQABqAAgAAPL4AADS-AADgvAAAgLsAAOC8AABUPgAAoDwAACG_AAAwvQAAND4AAKA8AACAuwAAuD0AALi9AAC-vgAAuL0AANo-AADgPAAAyD0AACk_AAB_PwAAHL4AAIA7AABUvgAAyD0AAOg9AADIPQAAyD0AALi9AABkPgAADD4AABQ-AACAuwAAFD4AADC9AAD4vQAAgDsAAIC7AAC4vQAAtr4AADw-AAAwvQAApj4AAFC9AABwPQAAgLsAAPi9AAC6vgAAAb8AABS-AACAuwAAqj4AANg9AAAMPgAAlr4AAOC8AAATPwAADD4AAFA9AABUPgAAQDwAAIg9AAAQvQAAD78gADgTQAlIfFABKo8CEAEagAIAAIC7AAAcPgAAXL4AADu_AACCvgAAuD0AAA0_AADovQAAVD4AAHQ-AACAuwAAgLsAAIg9AACovQAAyD0AAEC8AAAMvgAAzj4AAEy-AADaPgAABL4AADS-AAAwvQAAuD0AAKi9AABQPQAABL4AAIA7AABwvQAARL4AALi9AADoPQAAXL4AAJa-AABcvgAA4DwAAIo-AAAwPQAAHL4AACy-AAAkvgAAVD4AABA9AABQPQAArj4AAKC8AAB_vwAAcD0AACQ-AACAOwAAiD0AAJg9AABAPAAAZD4AABy-AAA8PgAAUL0AAIq-AABwPQAA2D0AAII-AABQvQAAUD0AABC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=f2UxIeySNBI","parent-reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["15310572957193524718"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"9204033713488730900":{"videoId":"9204033713488730900","title":"\u0007[Integral\u0007] of x/(1- x) dx: Fast u-Substitution & Simplify | Step-by-Step","cleanTitle":"Integral of x/(1- x) dx: Fast u-Substitution & Simplify | Step-by-Step","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9dbJyjgs-rs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9dbJyjgs-rs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":283,"text":"4:43","a11yText":"Süre 4 dakika 43 saniye","shortText":"4 dk."},"date":"8 kas 2025","modifyTime":1762596006000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9dbJyjgs-rs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9dbJyjgs-rs","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":283},"parentClipId":"9204033713488730900","href":"/preview/9204033713488730900?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/9204033713488730900?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3271055668124593592":{"videoId":"3271055668124593592","title":"Session:4 - Line \u0007[integrals\u0007] over piecewise \u0007[smooth\u0007] curves.","cleanTitle":"Session:4 - Line integrals over piecewise smooth curves.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MUY4sI2pZDY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MUY4sI2pZDY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDck9sZndTSjgwZ1k0ZVo2RDJQXy1Idw==","name":"Dr. Mathaholic","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dr.+Mathaholic","origUrl":"http://www.youtube.com/@DrMathaholic","a11yText":"Dr. Mathaholic. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":732,"text":"12:12","a11yText":"Süre 12 dakika 12 saniye","shortText":"12 dk."},"views":{"text":"6,7bin","a11yText":"6,7 bin izleme"},"date":"5 mayıs 2020","modifyTime":1588636800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MUY4sI2pZDY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MUY4sI2pZDY","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":732},"parentClipId":"3271055668124593592","href":"/preview/3271055668124593592?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/3271055668124593592?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12585580304877590548":{"videoId":"12585580304877590548","title":"\u0007[Smooth\u0007] \u0007[Integral\u0007] (\u0007[Smooth\u0007] Criminal - Polo G | AP Calculus AB Parody)","cleanTitle":"Smooth Integral (Smooth Criminal - Polo G | AP Calculus AB Parody)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9_16umTLKJQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9_16umTLKJQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR243Y2I2UUlDWF80RTFLWnB2TXV2dw==","name":"Integral Productions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Integral+Productions","origUrl":"http://www.youtube.com/@integralproductions2899","a11yText":"Integral Productions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":179,"text":"2:59","a11yText":"Süre 2 dakika 59 saniye","shortText":"2 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"6 haz 2022","modifyTime":1654473600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9_16umTLKJQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9_16umTLKJQ","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":179},"parentClipId":"12585580304877590548","href":"/preview/12585580304877590548?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/12585580304877590548?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7361687618854465916":{"videoId":"7361687618854465916","title":"definite \u0007[integral\u0007] of x (x² - 1) from 1 to 10 using substitution","cleanTitle":"definite integral of x (x² - 1) from 1 to 10 using substitution","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RCoTLeau7k0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RCoTLeau7k0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":202,"text":"3:22","a11yText":"Süre 3 dakika 22 saniye","shortText":"3 dk."},"date":"6 ağu 2025","modifyTime":1754438400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RCoTLeau7k0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RCoTLeau7k0","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":202},"parentClipId":"7361687618854465916","href":"/preview/7361687618854465916?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/7361687618854465916?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6530897090056799167":{"videoId":"6530897090056799167","title":"The \u0007[Smooth\u0007] \u0007[Integral\u0007]:)","cleanTitle":"The Smooth Integral:)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=btGWpSpHBTw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/btGWpSpHBTw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQnF6MTF2WDUza0xjUTFNOFRvS2JyQQ==","name":"Polar Pi","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Polar+Pi","origUrl":"http://www.youtube.com/@ChristGodinyouItrust","a11yText":"Polar Pi. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":184,"text":"3:04","a11yText":"Süre 3 dakika 4 saniye","shortText":"3 dk."},"date":"22 şub 2023","modifyTime":1677024000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/btGWpSpHBTw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=btGWpSpHBTw","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":184},"parentClipId":"6530897090056799167","href":"/preview/6530897090056799167?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/6530897090056799167?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10378004806149164144":{"videoId":"10378004806149164144","title":"\u0007[integral\u0007] 1/(x ln x) u substitution limits e e²","cleanTitle":"integral 1/(x ln x) u substitution limits e e²","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7CcyHf5bpL8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7CcyHf5bpL8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":138,"text":"2:18","a11yText":"Süre 2 dakika 18 saniye","shortText":"2 dk."},"date":"6 ağu 2025","modifyTime":1754438400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7CcyHf5bpL8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7CcyHf5bpL8","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":138},"parentClipId":"10378004806149164144","href":"/preview/10378004806149164144?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/10378004806149164144?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14966728311628119329":{"videoId":"14966728311628119329","title":"\u0007[Smooth\u0007] \u0007[Integral\u0007] / Billie Mean / Euler - Michael Fraction (Calculus Parody of Michael Jackson...","cleanTitle":"Smooth Integral / Billie Mean / Euler - Michael Fraction (Calculus Parody of Michael Jackson)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YYTEUHLBT88","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YYTEUHLBT88?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUUhiQkZRMVJMcEVKMGJCY3JhNVkwZw==","name":"Alex Shelton","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Alex+Shelton","origUrl":"http://www.youtube.com/@AlexShelton-wn9yd","a11yText":"Alex Shelton. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":514,"text":"8:34","a11yText":"Süre 8 dakika 34 saniye","shortText":"8 dk."},"views":{"text":"9,9bin","a11yText":"9,9 bin izleme"},"date":"31 mayıs 2024","modifyTime":1717113600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YYTEUHLBT88?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YYTEUHLBT88","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":514},"parentClipId":"14966728311628119329","href":"/preview/14966728311628119329?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/14966728311628119329?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8148380408805026382":{"videoId":"8148380408805026382","title":"\u0007[Integral\u0007] of x^5 / sqrt(1 + x^3) | Step-by-Step U-Substitution Explained","cleanTitle":"Integral of x^5 / sqrt(1 + x^3) | Step-by-Step U-Substitution Explained","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=amhcRIQ9bkc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/amhcRIQ9bkc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":291,"text":"4:51","a11yText":"Süre 4 dakika 51 saniye","shortText":"4 dk."},"date":"27 eki 2025","modifyTime":1761523200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/amhcRIQ9bkc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=amhcRIQ9bkc","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":291},"parentClipId":"8148380408805026382","href":"/preview/8148380408805026382?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/8148380408805026382?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16622868516710186467":{"videoId":"16622868516710186467","title":"\u0007[Integral\u0007] of 2 tan(x) / (1 + cos²(x)) Explained | Calculus Tutorial","cleanTitle":"Integral of 2 tan(x) / (1 + cos²(x)) Explained | Calculus Tutorial","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SnWFqaQSuWU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SnWFqaQSuWU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":250,"text":"4:10","a11yText":"Süre 4 dakika 10 saniye","shortText":"4 dk."},"date":"13 eyl 2025","modifyTime":1757721600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SnWFqaQSuWU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SnWFqaQSuWU","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":250},"parentClipId":"16622868516710186467","href":"/preview/16622868516710186467?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/16622868516710186467?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14149494705980546625":{"videoId":"14149494705980546625","title":"\u0007[Integral\u0007] of (tan x + tan³x) | Step-by-Step Simplified \u0007[Integration\u0007] | Trig Calculus Made Easy","cleanTitle":"Integral of (tan x + tan³x) | Step-by-Step Simplified Integration | Trig Calculus Made Easy","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MzPf465kamc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MzPf465kamc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":129,"text":"2:09","a11yText":"Süre 2 dakika 9 saniye","shortText":"2 dk."},"date":"8 tem 2025","modifyTime":1751932800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MzPf465kamc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MzPf465kamc","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":129},"parentClipId":"14149494705980546625","href":"/preview/14149494705980546625?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/14149494705980546625?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16679047037387707830":{"videoId":"16679047037387707830","title":"2. Calculus 2: Trig \u0007[Integral\u0007] sin(4x)/sin(x) | Step-by-Step Simplification","cleanTitle":"2. Calculus 2: Trig Integral sin(4x)/sin(x) | Step-by-Step Simplification","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=i3Ge6TMDjw8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/i3Ge6TMDjw8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":253,"text":"4:13","a11yText":"Süre 4 dakika 13 saniye","shortText":"4 dk."},"date":"10 eki 2025","modifyTime":1760094923000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/i3Ge6TMDjw8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=i3Ge6TMDjw8","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":253},"parentClipId":"16679047037387707830","href":"/preview/16679047037387707830?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/16679047037387707830?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4959902445381120245":{"videoId":"4959902445381120245","title":"\u0007[integral\u0007] of (4x - 1) / (2x + x) from 1 to 4","cleanTitle":"integral of (4x - 1) / (2x + x) from 1 to 4","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Rd_LXgH6kuQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Rd_LXgH6kuQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":275,"text":"4:35","a11yText":"Süre 4 dakika 35 saniye","shortText":"4 dk."},"date":"6 ağu 2025","modifyTime":1754438400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Rd_LXgH6kuQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Rd_LXgH6kuQ","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":275},"parentClipId":"4959902445381120245","href":"/preview/4959902445381120245?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/4959902445381120245?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6302413714726689944":{"videoId":"6302413714726689944","title":"\u0007[Integration\u0007] of 5 / x² from 2 to | Improper \u0007[Integral\u0007] Explained","cleanTitle":"Integration of 5 / x² from 2 to | Improper Integral Explained","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vcD6NBV2Yes","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vcD6NBV2Yes?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":150,"text":"2:30","a11yText":"Süre 2 dakika 30 saniye","shortText":"2 dk."},"date":"30 tem 2025","modifyTime":1753833600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vcD6NBV2Yes?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vcD6NBV2Yes","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":150},"parentClipId":"6302413714726689944","href":"/preview/6302413714726689944?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/6302413714726689944?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17768030027530579344":{"videoId":"17768030027530579344","title":"\u0007[Integration\u0007] of (x + 2)/(x + 1) dx | Simplify & Solve | Calculus 2","cleanTitle":"Integration of (x + 2)/(x + 1) dx | Simplify & Solve | Calculus 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fCR571lfAvE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fCR571lfAvE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":418,"text":"6:58","a11yText":"Süre 6 dakika 58 saniye","shortText":"6 dk."},"date":"15 eki 2025","modifyTime":1760549406000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fCR571lfAvE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fCR571lfAvE","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":418},"parentClipId":"17768030027530579344","href":"/preview/17768030027530579344?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/17768030027530579344?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4487819312805081225":{"videoId":"4487819312805081225","title":"\u0007[Integral\u0007] of sqrt(1 + sec x) – Step-by-Step Solution","cleanTitle":"Integral of sqrt(1 + sec x) – Step-by-Step Solution","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7w8gQUT_Oq8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7w8gQUT_Oq8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":383,"text":"6:23","a11yText":"Süre 6 dakika 23 saniye","shortText":"6 dk."},"date":"1 kas 2025","modifyTime":1762018221000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7w8gQUT_Oq8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7w8gQUT_Oq8","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":383},"parentClipId":"4487819312805081225","href":"/preview/4487819312805081225?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/4487819312805081225?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7697340183637159381":{"videoId":"7697340183637159381","title":"\u0007[Integration\u0007] Trick with Square Root | Solve ₄⁹ (x - 9)/(3 x + x) dx","cleanTitle":"Integration Trick with Square Root | Solve ₄⁹ (x - 9)/(3 x + x) dx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=t1QUGAkN6D8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/t1QUGAkN6D8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":323,"text":"5:23","a11yText":"Süre 5 dakika 23 saniye","shortText":"5 dk."},"date":"7 ağu 2025","modifyTime":1754524800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/t1QUGAkN6D8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=t1QUGAkN6D8","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":323},"parentClipId":"7697340183637159381","href":"/preview/7697340183637159381?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/7697340183637159381?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10550552082466536992":{"videoId":"10550552082466536992","title":"\u0007[Integration\u0007] of ln(x) / x² from 1 to | Improper \u0007[Integral\u0007] Tutorial","cleanTitle":"Integration of ln(x) / x² from 1 to | Improper Integral Tutorial","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bcYxtQZLkRQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bcYxtQZLkRQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":384,"text":"6:24","a11yText":"Süre 6 dakika 24 saniye","shortText":"6 dk."},"date":"14 ağu 2025","modifyTime":1755129600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bcYxtQZLkRQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bcYxtQZLkRQ","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":384},"parentClipId":"10550552082466536992","href":"/preview/10550552082466536992?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/10550552082466536992?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15310572957193524718":{"videoId":"15310572957193524718","title":"Calculus \u0007[Integral\u0007]: Solving ln(x³ + 1) dx Explained","cleanTitle":"Calculus Integral: Solving ln(x³ + 1) dx Explained","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=f2UxIeySNBI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/f2UxIeySNBI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVlmcmJ1aHU4TEltQ0VDeTlWbkpMZw==","name":"smooth integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=smooth+integrals","origUrl":"http://www.youtube.com/@smoothintegrals","a11yText":"smooth integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1010,"text":"16:50","a11yText":"Süre 16 dakika 50 saniye","shortText":"16 dk."},"date":"23 eyl 2025","modifyTime":1758585600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/f2UxIeySNBI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=f2UxIeySNBI","reqid":"1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL","duration":1010},"parentClipId":"15310572957193524718","href":"/preview/15310572957193524718?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","rawHref":"/video/preview/15310572957193524718?parent-reqid=1765307152033375-383658791693542359-balancer-l7leveler-kubr-yp-sas-76-BAL&text=smooth+integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"5383658791693542359776","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"smooth integrals","queryUriEscaped":"smooth%20integrals","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}