{"pages":{"search":{"query":"MathAdamSpiegler","originalQuery":"MathAdamSpiegler","serpid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","parentReqid":"","serpItems":[{"id":"2653876258772307840-0-0","type":"videoSnippet","props":{"videoId":"2653876258772307840"},"curPage":0},{"id":"16280424172318308118-0-1","type":"videoSnippet","props":{"videoId":"16280424172318308118"},"curPage":0},{"id":"11879983956357519632-0-2","type":"videoSnippet","props":{"videoId":"11879983956357519632"},"curPage":0},{"id":"5580576459781324959-0-3","type":"videoSnippet","props":{"videoId":"5580576459781324959"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE1hdGhBZGFtU3BpZWdsZXIK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","ui":"desktop","yuid":"9802845421769815486"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"3564563373913785606-0-5","type":"videoSnippet","props":{"videoId":"3564563373913785606"},"curPage":0},{"id":"10422093946727221636-0-6","type":"videoSnippet","props":{"videoId":"10422093946727221636"},"curPage":0},{"id":"10944545259433076639-0-7","type":"videoSnippet","props":{"videoId":"10944545259433076639"},"curPage":0},{"id":"8501280412947574443-0-8","type":"videoSnippet","props":{"videoId":"8501280412947574443"},"curPage":0},{"id":"12401692124092190516-0-9","type":"videoSnippet","props":{"videoId":"12401692124092190516"},"curPage":0},{"id":"9583629407263354334-0-10","type":"videoSnippet","props":{"videoId":"9583629407263354334"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE1hdGhBZGFtU3BpZWdsZXIK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","ui":"desktop","yuid":"9802845421769815486"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"8338739356549651598-0-12","type":"videoSnippet","props":{"videoId":"8338739356549651598"},"curPage":0},{"id":"11962927896750752197-0-13","type":"videoSnippet","props":{"videoId":"11962927896750752197"},"curPage":0},{"id":"8886576399207001489-0-14","type":"videoSnippet","props":{"videoId":"8886576399207001489"},"curPage":0},{"id":"3609282179603029377-0-15","type":"videoSnippet","props":{"videoId":"3609282179603029377"},"curPage":0},{"id":"16733626445907669566-0-16","type":"videoSnippet","props":{"videoId":"16733626445907669566"},"curPage":0},{"id":"3873375379787394354-0-17","type":"videoSnippet","props":{"videoId":"3873375379787394354"},"curPage":0},{"id":"8350084880997094111-0-18","type":"videoSnippet","props":{"videoId":"8350084880997094111"},"curPage":0},{"id":"13839153699414451484-0-19","type":"videoSnippet","props":{"videoId":"13839153699414451484"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE1hdGhBZGFtU3BpZWdsZXIK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","ui":"desktop","yuid":"9802845421769815486"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMathAdamSpiegler"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9736429516080110747315","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472350,0,2;1457616,0,62;1471438,0,38;1473742,0,63;1476204,0,72;1381081,0,22;1460955,0,64;1460712,0,17;1459297,0,33;1152685,0,60;1459323,0,59;1471624,0,53;50738,0,31;1470250,0,83;1373786,0,22;1466296,0,81;1476157,0,42;1478695,0,68;1467161,0,18;1464405,0,54;1349071,0,39;1279757,0,17;1470515,0,16;89019,0,73;88927,0,2;1404017,0,28;1471184,0,93;1357003,0,72;1478803,0,57;1145208,0,53;1189668,0,46;1175955,0,64;151171,0,93;1467836,0,83;1281084,0,38;287509,0,73;1447467,0,39;787997,0,51;1466396,0,70;1478788,0,10"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMathAdamSpiegler","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=MathAdamSpiegler","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=MathAdamSpiegler","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"MathAdamSpiegler: Yandex'te 358 video bulundu","description":"Результаты поиска по запросу \"MathAdamSpiegler\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"MathAdamSpiegler — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yf9cceb5c741c7e8455cd2f040d31267b","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472350,1457616,1471438,1473742,1476204,1381081,1460955,1460712,1459297,1152685,1459323,1471624,50738,1470250,1373786,1466296,1476157,1478695,1467161,1464405,1349071,1279757,1470515,89019,88927,1404017,1471184,1357003,1478803,1145208,1189668,1175955,151171,1467836,1281084,287509,1447467,787997,1466396,1478788","queryText":"MathAdamSpiegler","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9802845421769815486","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1478181,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769815493","tz":"America/Louisville","to_iso":"2026-01-30T18:24:53-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472350,1457616,1471438,1473742,1476204,1381081,1460955,1460712,1459297,1152685,1459323,1471624,50738,1470250,1373786,1466296,1476157,1478695,1467161,1464405,1349071,1279757,1470515,89019,88927,1404017,1471184,1357003,1478803,1145208,1189668,1175955,151171,1467836,1281084,287509,1447467,787997,1466396,1478788","queryText":"MathAdamSpiegler","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9802845421769815486","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9736429516080110747315","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":143,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"9802845421769815486","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1759.0__78afb7e0ef66aeda09c521d3b89f7cdbe661a72a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"2653876258772307840":{"videoId":"2653876258772307840","docid":"34-8-0-Z3C1F8AF9713C6DF9","description":"See Colab Notebook: https://colab.research.google.com/dri...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3659831/fa921588b69f56a3fd61340c81728e0e/564x318_1"},"target":"_self","position":"0","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVgFvbSv04j0","linkTemplate":"/video/preview/2653876258772307840?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Practice Example with Complex Eigenvalues and Similar Matrices","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VgFvbSv04j0\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFQoTMjY1Mzg3NjI1ODc3MjMwNzg0MFoTMjY1Mzg3NjI1ODc3MjMwNzg0MGquDRIBMBgAIkQaMAAKKWhocmx0a21oZXBlZWFyZ2hoVUNRUmJBV0tELXhheG5ET2d2TnFrMW1nEgIAESoQwg8PGg8_E90DggQkAYAEKyqLARABGniB8vr7B_8CAPLxBgT6BP8BCwz29_YAAAD4_f4DBQL_APUGBgEBAAAAAPv4Cv4AAAADAPQA_f4BAAYG_fr7AAAADQgHA_wAAAD3CvcN_wEAAOv2DAgDAAAABgAJAAAAAAAPGAoI_gAAAAwP_wIBAAAA_fz1DgAAAAAgAC0jf9g7OBNACUhOUAIqcxAAGmAUCAApByjr9SwF987kAf4H3_Lr4cUsAPUFAATm9rUjG_3l5BYAEdElFboAAAAcEOUWKgDgTvDS7PIQ2xDzwv7-7X_tBAQdDgzzxT376hHYFtgGIPgA7s4sFP3x1TcRGBIgAC2V5Uw7OBNACUhvUAIqrwYQDBqgBgAAVEIAAChCAABYQgAAYMIAACDBAADQQQAAlkIAAIA_AACgwQAAgEAAABhCAAAkwgAAFMIAAIBAAAAQQgAAUMEAAABBAABkwgAAPEIAACjCAABIwgAAuMEAAIzCAAAAQgAAUMIAAIDAAABQwQAAgMEAADxCAABAQAAAAMIAAOBBAADEwgAAQEEAANbCAABAwQAAgEAAAGhCAACAPwAAJEIAALhBAAAgwQAAAMEAAAjCAABgQQAAYMIAAEDAAABkQgAAcEEAAOhBAACmwgAA6MEAAKjBAAAIQgAA4EEAAIhBAADEwgAAoMAAABRCAAA0QgAA2EEAACTCAABkwgAACMIAAHBBAACGwgAA6MEAALDBAAA8wgAANMIAAJBCAACSQgAA0MEAACRCAAAswgAAgD8AAGzCAACowQAAFEIAABBBAADgwAAA6kIAAMBBAADQQQAAiMEAACxCAADgQAAA6MEAAPhBAACAwQAAIMEAAJBCAAAgwgAAIEEAACRCAAAIwgAAOMIAAIDAAACaQgAAEEEAABDCAADAQQAAhkIAAPDBAABwwgAAHEIAAJBBAAAIQgAAgL8AAGBCAAAIQgAAMEEAADjCAAAAwQAAcEEAAKhCAACAvwAAoMAAAADAAAAgwQAABMIAADzCAAAMQgAAKMIAADzCAABQQQAADEIAAKDBAADIQQAAyEEAAFDBAABUwgAAmEEAAGxCAAAAwQAAjEIAACBBAACEQgAA0MEAACTCAACAPwAAIEEAAHBBAACCwgAAAEIAABxCAAAAwgAAoEEAAJjBAABwwQAAmMEAAIBCAADYQQAAAEEAAJhBAACowQAAWMIAAMBAAADgwAAAOMIAABDCAAAkQgAAyEEAAMDAAADYQQAAoEAAACDCAAB4QgAAgkIAAOjBAAAAQAAAZEIAAEBAAACwwQAAXMIAAIA_AAAIQgAAKMIAAABBAAB8QgAA2MIAAIrCAAAgQQAAcMEAAEBCAACQwQAAQMIAAFDBAADIQQAAAEEAAHRCAABAwQAAUMEAACBBAAAAAAAAUEIAAAAAAABgQgAAwEEAAAAAIAA4E0AJSHVQASqPAhAAGoACAABMvgAAmL0AAKY-AADgPAAAuL0AAMY-AAAEvgAALb8AAIa-AABQPQAAcL0AACy-AAA8PgAAoj4AAIK-AABkvgAAbD4AAHA9AADWPgAADT8AAH8_AAC4PQAA2D0AAHw-AACOPgAAML0AAPg9AAAcvgAAtj4AAK4-AABAPAAAuL0AACw-AAD4PQAADD4AAMg9AAAwPQAAZL4AAIK-AAB8vgAAFL4AAOi9AAAsPgAA2L0AALi9AAAwPQAAND4AACy-AAAwvQAANL4AALo-AACIPQAAXD4AAKg9AACCvgAAcL0AAD0_AACOPgAA6D0AAAQ-AACovQAAiD0AANg9AAAEviAAOBNACUh8UAEqjwIQARqAAgAANL4AAIC7AAA8PgAAF78AAJg9AACAuwAAHD4AAOA8AAAUvgAAmD0AAJi9AADIvQAAqD0AALi9AADIPQAAUL0AAIA7AAA9PwAAQDwAAIY-AACYPQAAqL0AAFC9AACovQAAMD0AAHy-AABwvQAAED0AAIg9AADYPQAAEL0AACQ-AAAUvgAAUD0AACQ-AACovQAAjj4AAPg9AABkvgAAmL0AAOg9AAAsvgAA2L0AAKA8AABwPQAA4DwAAH-_AACgPAAAUL0AALi9AAAkPgAAED0AAJg9AABQPQAADL4AAOg9AABAPAAAML0AAEQ-AAAcPgAA2D0AABS-AAAsvgAAiL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=VgFvbSv04j0","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["2653876258772307840"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16280424172318308118":{"videoId":"16280424172318308118","docid":"34-3-16-Z70E20BA6F152B206","description":"See Colab Notebook: https://colab.research.google.com/dri...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4052553/289ad23fd82ead4c72bb65cfb466475e/564x318_1"},"target":"_self","position":"1","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DiX0DbeSYfgw","linkTemplate":"/video/preview/16280424172318308118?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: The Diagonalization Theorem (with an example)","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iX0DbeSYfgw\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFgoUMTYyODA0MjQxNzIzMTgzMDgxMThaFDE2MjgwNDI0MTcyMzE4MzA4MTE4aq4NEgEwGAAiRBowAAopaGhybHRrbWhlcGVlYXJnaGhVQ1FSYkFXS0QteGF4bkRPZ3ZOcWsxbWcSAgARKhDCDw8aDz8TqgWCBCQBgAQrKosBEAEaeIH6-voLA_0A8fzy_fsCAQEfAfX-FAECAPABAvz-AQAA8vwLCPsAAADk_QcK_QAAAP0J7gP2_QEAAAD_-gQAAAAP_PsG-wAAAA4a-gL9AQAA_PsKBAP_AAAFA_0EAAAAAAoICggAAAAAARkB9QAAAAAC9wYHAAAAACAALWDGyzs4E0AJSE5QAipzEAAaYNoRAC0AOinwCxLty_n79ePQ7hjizwIACtcA-QcO-TT60brf8wAMwCn_sAAAAFUMESUVAPVWAxjvMxDLLBgI_PHGf_0QyPwVKP3VHcjqC7ng9hMcBQAF4iX_P-7eHAH-KyAALTohOjs4E0AJSG9QAiqvBhAMGqAGAABAQQAAQEIAAFBCAACGwgAAAMAAADBBAACYQgAAAAAAAFDBAABQwQAA4MAAAOjBAAAgwgAAEMEAAPBBAAA0wgAAIEEAABDBAACCQgAATMIAABDCAAAIwgAAeMIAAABBAAAYwgAAoEAAAEDBAAD4wQAAREIAAMDBAAA8QgAAQEAAAK7CAAAwQQAA1MIAAFDBAACgQQAAeEIAABBCAAAoQgAAgD8AAADCAABAQQAAAMAAAODBAAA8wgAAIEEAAJZCAACwQQAAgEAAAJrCAACAQgAAHMIAAIBAAACQQQAA6MEAAI7CAACAwgAAiEEAAJ5CAADgQQAAhMIAAAzCAABgwgAAgL8AAADCAADQwQAAMEEAAEDCAADAwAAAnkIAABBCAAAAwAAAUEIAADTCAAAQwgAAhMIAAEjCAADAQQAAoEEAAKBAAAD-QgAA4MAAALBBAABgQQAAFEIAABhCAADQwQAAPEIAAIC_AABAwAAA5kIAAPDBAACoQQAAcEEAAGjCAAAgwQAAkMEAALZCAAAAAAAAAMEAAARCAAAMQgAA-MEAAGjCAAAkQgAAIEIAAERCAABwwQAAEEIAAMBAAADgwAAAwMEAAABAAADIQQAAKEIAAKBBAAAkwgAAAAAAAMBAAAAAwgAA8MEAAABCAAD4wQAATMIAABjCAABgQgAAgMAAALhBAADIwQAAUMEAAETCAADAQQAA0EEAALjBAACKQgAAIEEAAABBAADgwQAADMIAAABAAADYQQAABEIAAADCAADgQQAAWEIAAAjCAADAQQAAwMAAAEDAAAAAwgAACEIAAIC_AABAwQAAAEIAAKjBAACYwgAAiMEAAEDAAABMwgAAkMEAAPBBAAAQwQAAUMEAAEBBAACQwQAA4EAAAI5CAABAQgAA4MAAAABCAABgQgAAiMEAABBBAAAMwgAADMIAAOhBAABgwgAA6EEAAKBCAAAAwwAAuMEAAMhBAACAvwAAEEIAAEzCAAAMwgAA2MEAAGBCAADAwAAAEEIAABzCAACYwQAA8EEAACBBAAB0QgAAwEAAALBBAAC4QQAAyEEgADgTQAlIdVABKo8CEAAagAIAAIC7AACYvQAApj4AAOA8AAC2vgAAJD4AAES-AAAPvwAAHL4AAJg9AAAcvgAAHD4AAEQ-AAANPwAAJL4AAM6-AAB8PgAAoDwAABw-AAAXPwAAfz8AAHC9AACoPQAAoj4AANi9AAC4vQAA-D0AABS-AAD4PQAAyD0AAIi9AAB8vgAAFD4AAEC8AADovQAAuL0AADA9AACYvQAABL4AAIg9AAA8vgAAEL0AALI-AACAuwAAqL0AAKg9AAAQPQAATL4AAIA7AACYvQAA4DwAAAw-AACKPgAAUL0AAOq-AACAOwAAdz8AAJ4-AADIvQAABD4AAJi9AADIPQAAHD4AABy-IAA4E0AJSHxQASqPAhABGoACAAAcvgAAqL0AAOA8AAArvwAAcL0AAFA9AACIPQAADD4AACS-AABEPgAAQDwAAFC9AABwvQAAmL0AAFA9AAAQvQAAmD0AAC8_AADYPQAAuj4AAOi9AABwPQAAQLwAAPi9AACIvQAA-L0AAHA9AACAOwAAbD4AAKg9AACgvAAAJD4AACy-AAAcvgAAuD0AAKC8AACSPgAAsj4AAHS-AABQvQAABD4AAJi9AABMvgAA4DwAALg9AAA8PgAAf78AAFC9AACoPQAAUD0AADQ-AAAUvgAAqD0AAFA9AAD4PQAAiD0AAIg9AADYvQAAuD0AAFA9AABMPgAAEL0AAOi9AACIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=iX0DbeSYfgw","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["16280424172318308118"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11879983956357519632":{"videoId":"11879983956357519632","docid":"34-8-8-ZC61AFFE40B1A1980","description":"Link to Colab notebook to experiment on your own: https://colab.research.google.com/dri...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/999223/52b58653b9f3030f7665bbc56d633ba4/564x318_1"},"target":"_self","position":"2","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8cZJbVsIsTU","linkTemplate":"/video/preview/11879983956357519632?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Translating Graphics Using Homogeneous Coordinates","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8cZJbVsIsTU\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFgoUMTE4Nzk5ODM5NTYzNTc1MTk2MzJaFDExODc5OTgzOTU2MzU3NTE5NjMyaq4NEgEwGAAiRBowAAopaGhybHRrbWhlcGVlYXJnaGhVQ1FSYkFXS0QteGF4bkRPZ3ZOcWsxbWcSAgARKhDCDw8aDz8TyQOCBCQBgAQrKosBEAEaeIH59wcDBPsA8fr6Af8D_wEgAfX-FQECAOIC7_YD_AIA-fIVAgUAAAD-CPII-wAAAPED9_r8AAAAEQH3_AQAAAAf-QL0_QAAAA8b-gL9AQAA_PsLBQP_AAAHEwEA_wAAAPsOCP8DAAAABQkEBAAAAADqA_T1__8AACAALfyZxzs4E0AJSE5QAipzEAAaYAIUADnhIwjpCvbo4-f1CQzyCPDkzf4ABdkA4wkH9CcHBsH89wAe4BIUwwAAADIR5g8KAAJDC9jiKer5DAXF_hH0fxEHBxwQBu3lE_nzDOYK9AccCwAH5yX8ONPnOf4BCCAALRaJaTs4E0AJSG9QAiqvBhAMGqAGAAAQwQAAGEIAAJhBAABkwgAAoEAAAChCAACuQgAAkEEAAKDBAAA0wgAAYEEAAJDBAAC4wQAAcEEAAMBAAABwQQAA2MEAAILCAADoQQAAAAAAANDBAAC6wgAAYEEAAKhBAADAQAAAoEEAAABAAABswgAAIMEAAOBAAACgQAAAsEEAAN7CAAAgwgAAiMIAAABAAADgQAAALEIAACDBAABEwgAADEIAAIBAAACIQQAA0EEAAKhBAABQwgAAYEEAAGhCAABEQgAA-EEAAHzCAAC4wQAA4MEAAHBBAABkQgAAoMEAAIDCAAAgQQAAMMEAAJRCAAAAQQAAoMIAACzCAABIwgAAEEIAABDBAAAAAAAAgMEAAEjCAABAwQAANEIAAARCAAA8wgAAWEIAAMDAAABEwgAAQMEAAKjBAAAEQgAAQEIAACDBAAD-QgAAgMAAAERCAACAQgAAgEEAAAhCAACgwQAAZEIAAHDBAAAIQgAALEIAAJ7CAABcwgAA4MEAAMDCAACQwQAAAMAAAORCAABAQQAAdMIAACBBAAAMQgAAMMIAAIbCAABAQgAA-MEAAI5CAACYwQAAmkIAAIC_AADgwQAAqMEAALBBAACAPwAAQEAAAGxCAAAcwgAAPMIAAIC_AADAwAAAoMEAABhCAACoQQAAGMIAAIhBAAAEQgAAJMIAAJBBAAAgwQAAyMEAAGDCAAB8wgAAaEIAAIA_AADIQQAASEIAAEDAAABgwQAAUEEAAAjCAAAgwgAA8EEAAFzCAADoQQAAYEEAAIDCAACIQQAA6EEAALjBAACEwgAAyEEAAEBBAAAgwQAA-EEAABzCAAB8wgAAoEEAABRCAAAQwQAAgD8AAMhBAADYQQAAkEEAAAxCAADgQAAAAEIAAKBBAAAwQgAA4MEAABDCAAAAQQAA4MAAAKzCAACQwgAAKMIAABRCAAAwwgAATMIAAABAAACAwQAAEMEAAEDBAACgQAAAkEIAAJDBAABEwgAA2MEAAIpCAAAAwAAAAAAAAMjBAABwwQAAoMAAAFBCAABUQgAAcEEAALBBAABwQQAAYEEgADgTQAlIdVABKo8CEAAagAIAADS-AABQvQAAZD4AAAS-AAAwvQAADD4AAKA8AAAFvwAAqr4AAKg9AACgvAAAXD4AALg9AAAcPgAAmL0AALi9AAD2PgAAgDsAAOC8AAD-PgAAfz8AAEQ-AACgvAAATD4AANg9AACYvQAAcD0AAAy-AACSPgAAFD4AAIA7AAB0vgAA2D0AABC9AAA0PgAABL4AADC9AACovQAAUL0AAAy-AABsvgAAoDwAAGw-AADgvAAAmL0AAHA9AACAuwAANL4AAAw-AABAvAAAVD4AAKg9AAAkPgAALD4AAJq-AABwvQAAOT8AAHA9AABwPQAAoDwAABC9AAAUPgAAbD4AAEy-IAA4E0AJSHxQASqPAhABGoACAACovQAAyL0AAKi9AAAvvwAADL4AAIi9AAC4PQAAQLwAAHS-AAAUPgAAmL0AAEC8AABQvQAALL4AAKg9AAC4vQAATL4AACE_AAC4vQAAkj4AAIA7AAAUvgAAyL0AAIi9AAAwvQAAdL4AAEy-AACYvQAADD4AAEC8AAAQPQAAiD0AAIg9AAAMvgAAdD4AAKA8AACaPgAAgj4AAEy-AABQPQAAPD4AAEC8AAAUvgAAML0AAFA9AACovQAAf78AAIg9AADIPQAAJL4AAII-AABEvgAAmj4AAKA8AAAwvQAAUD0AAEC8AAAQvQAAuL0AADA9AACIPQAAZD4AAIi9AADgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=8cZJbVsIsTU","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["11879983956357519632"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5580576459781324959":{"videoId":"5580576459781324959","docid":"34-2-3-ZFD5A24F4ADAD725A","description":"See Colab Notebook: https://colab.research.google.com/dri...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4334458/bd9d7ce343b6b0afd07b99bd0de9cb66/564x318_1"},"target":"_self","position":"3","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKmgIFAf9IXk","linkTemplate":"/video/preview/5580576459781324959?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Guided Example of Diagonalizing a Symmetric Matrix","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KmgIFAf9IXk\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFQoTNTU4MDU3NjQ1OTc4MTMyNDk1OVoTNTU4MDU3NjQ1OTc4MTMyNDk1OWquDRIBMBgAIkQaMAAKKWhocmx0a21oZXBlZWFyZ2hoVUNRUmJBV0tELXhheG5ET2d2TnFrMW1nEgIAESoQwg8PGg8_E-UFggQkAYAEKyqLARABGniB9vD8AgP8APD9_A79Bf4BLAb5BwsFBgD1APTzAwL_APnyFQIFAAAA6QP7DP0AAAACAfHy_f4BAAAA__oEAAAAEQf-CfYAAAAcEv8A_gEAAPsHCAgD_wAAAAcPBQAAAAARDQUBAAAAAAQBA-0BAAAAAgL7DgAAAAAgAC1cRco7OBNACUhOUAIqcxAAGmDnGQAXCSP66B0W7-TpB_Pz2Avt_9YPAPHpABP2BOkhEOLT6AMAB8YpCckAAAAdBf0ZKADWPvzjARER1wYQA-z35n_zE-EcEg4CyS_m7gbr_PP3B_kAEdwcCzAD3xUJ_yAgAC0yRXE7OBNACUhvUAIqrwYQDBqgBgAAEEEAANhBAABcQgAAeMIAAAAAAAAAQAAAjEIAAATCAACoQQAAQEAAADDBAADAwAAAHMIAAAAAAADAQAAAEMEAAABBAAAMwgAAFEIAAAjCAACAwgAAaMIAAHTCAAAQQQAAbMIAAOBAAACowQAAkMEAAKhBAADgwAAAQMAAALhBAAC-wgAAoEEAAPbCAADIwQAAiEEAAFRCAACgQQAAkEEAAIC_AADQwQAAuMEAAKDAAADwQQAAmsIAAIDBAACgQgAAEMEAAIhBAACGwgAAwEAAAGDCAAAMQgAAyEEAABBBAACUwgAA0MEAAMBBAACAQgAAkEEAAMLCAACawgAAMMIAAKDAAAAcwgAAcMEAAEDAAACgwQAA-MEAALBCAABIQgAAZMIAAERCAACgwQAAkMEAABzCAAAIwgAAgEAAAGBBAADIwQAA_EIAAAAAAACIQQAAmEEAAABCAACAQQAANMIAAERCAAAAAAAAKMIAALBCAAAAwgAASEIAAEhCAAAcwgAAgMEAABDBAACaQgAAMEEAAIDAAADgwAAAQEIAADTCAABUwgAAPEIAAABCAADQQQAAEMEAAGBCAAAIQgAAgD8AAADCAAAAQQAAIEEAAFxCAAAsQgAADMIAAAjCAABQwQAA8MEAABTCAAAQQgAAMEEAAFjCAAAAQAAAQEIAAKjBAAAgQgAAgMAAAFDBAAA4wgAAwEAAAHRCAACgwAAAREIAAIhBAABoQgAAOMIAAODBAADgQAAAUMEAACBCAACCwgAAAEEAACRCAAAUwgAAiEEAALDBAACAPwAAZMIAAIxCAAAwQQAAkEEAAIhBAADAwAAAZMIAAMDAAACgwAAAYMIAAFzCAABwQQAAoEEAABDBAAA0QgAAIMEAALDBAACyQgAAgEIAAIC_AAAQQQAAeEIAAJjBAACgwQAAmsIAALjBAADYQQAA4MEAAKhBAABcQgAAssIAADTCAADgQAAAEMIAAARCAACAwQAAwMEAABzCAABAQgAAAMAAAFRCAAAQwgAAuMEAAIBAAABAQQAAlEIAAFBBAABAQAAAIEEAAHBBIAA4E0AJSHVQASqPAhAAGoACAABwvQAAJL4AAJI-AAAQvQAAUL0AAKY-AAAwvQAAAb8AAES-AACgvAAA2L0AAOA8AABUPgAAjj4AAGS-AABsvgAAdD4AABA9AACGPgAADz8AAH8_AABAvAAAQDwAALY-AAAQPQAA2L0AACw-AAAsvgAAhj4AADw-AACAuwAAgr4AAEA8AADgvAAARD4AAOC8AACgvAAAJL4AAHS-AABwvQAAmr4AAKg9AABEPgAAML0AAES-AABQPQAABD4AABS-AADIvQAAgDsAAKi9AACYPQAAgj4AADA9AACGvgAAEL0AAD0_AAAMPgAA4DwAANg9AADgPAAAgj4AADA9AADYvSAAOBNACUh8UAEqjwIQARqAAgAAuL0AAKg9AAAcPgAAI78AAFS-AACovQAArj4AAIA7AAAQvQAALD4AAIg9AAA0vgAA4DwAAAy-AADoPQAAmL0AAIg9AAAXPwAAqD0AANo-AABAvAAA4LwAABy-AACIvQAAEL0AAJq-AAC4PQAAuD0AAOg9AABAPAAA4LwAACw-AAAMvgAA2L0AAMg9AADgvAAAjj4AAK4-AACGvgAA6D0AAKg9AACIvQAAJL4AAKA8AABwPQAADD4AAH-_AABQPQAAQLwAAOC8AAAEPgAA4DwAADA9AACgvAAAUD0AAPg9AABAPAAAMD0AAKg9AABQPQAAuD0AAOC8AACAuwAAmD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=KmgIFAf9IXk","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["5580576459781324959"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3564563373913785606":{"videoId":"3564563373913785606","docid":"34-3-0-ZE738BA8D9E4E6F18","description":"See Colab Notebook: https://colab.research.google.com/dri...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3795426/9e1926b6a06537e4481c59ef797fd42d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/g7umNQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DGG0YJ3nUFH4","linkTemplate":"/video/preview/3564563373913785606?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: The Basis Theorem and Dimension of Null and Column Space of a Matrix","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GG0YJ3nUFH4\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFQoTMzU2NDU2MzM3MzkxMzc4NTYwNloTMzU2NDU2MzM3MzkxMzc4NTYwNmqHFxIBMBgAIkQaMAAKKWhocmx0a21oZXBlZWFyZ2hoVUNRUmJBV0tELXhheG5ET2d2TnFrMW1nEgIAESoQwg8PGg8_E4wEggQkAYAEKyqLARABGniB-wPzBwAAAOv2_gX5AgAA_gj2_Qn9_gDtCvAABQAAAPMACPz7AAAA-RD9_vsAAAAKB-7-Af0BAA0E-e4DAAAADQAEDv4AAAAOGfoC_gEAAP4IAwAD_wAADwAI-_8AAAD5Bv73_gAAAPwbAwUAAAAADAP7CgAAAAAgAC2aTNQ7OBNACUhOUAIqhAIQABrwAX8P-QDVFO4AEhTyAM397wGYCSX_IyT2AMPzCgDl5fAB4v7hAOb-3QDCDwsAwyUYAQXM2_8Y5v4AK-Td_wn66wHwDwwAM979ADjz7gAE9_IA-xU9AgbwFwAdIf8B-A0KARAJBAD78-oG9_XhBQjbNgL5Ef4CJvwgANHhEQLqEg4C9fvx_9kCDPwOAP0A7fIVA-vx6_z9H-L79yX0BCHq7gIU1QECGRfm_j4IHAr8CQL-5wLwBuLt4gP3OBANDBn1-gID8AT05QHxBwoH__PQ8f4F-_H9AhH4DwX58f0E-hP68fX7_esoCADk8xAI6wsH8CAALW0DLTs4E0AJSGFQAirPBxAAGsAHHQIDv0wQ2jw8uvY8yXeEutU15Dz78c28u9urvKUyID2T29s8isITPbRNWz22DhA8n-SWvhvYaj1KDU29xVWFPlQwb72bfyq8huMJvt8g9TysASq9FAdQvpN2fjyKmh69XUBcO-u4K7yNv-M8Cp0XPpObFbwRiq28JLoivQkMg71L6iS9XamyvcGcKr09HkS8HnD9PXeAq7vR7xi7RljJPbx-jL1FOzg7bus9PYDAnLtEqoO80s6PvecpobwQ3_C7RWRYPb2g6jxffI-6dk1tvL0Hw7yNkba7KQ9hvUA1-zv3dsu7C4ZpvdSqabrzfhC8ccjGPHGEFr3HKZ-8VRTPvc5D_Tvo-Kg8_c-7PXi5iD2rJoi8TzwHvQ15yj2HYOY7pG6nPP3SRzwWure8MbEZPqn1Izw7SJk86Y3JvOfC7Tzk7pi7L5G2PR_VhT0AeJ-8Tk04POds5rwpmO-7Xf8pPQy1wTw_dJy88ofVvKZpaz0Y9Lm8uTEiPUk9Fb2ZLqO7LpmpPbpXPD2dbjQ8eYoivIvxiruRjNy5U4IVPOimqL3bXAq8zniRPRtrGr3170A7thyOPZKXsbtAmZA7N9JDvVXCcrsCuky79P7fPbyiJb2ULZa7mHx9vR7GZD3dUAK8ZCe0OydTIju-gW68H43YOyt0GDv2uyg7n6a7PFH8s72XBps7C6ixPfHD97yYjPu5zJ9rOyrxSrw6joK7BeoDPbZHD70dhM67RUMLPfzJs7yHs3C7DynEuxrrMT1qJek53rmmPTtoG73aGcc5APLUvIaBHT3tJ524ceA6vS66Sz1yFsc35lyKPG0bhjx7e1o53SqjvFc9wL2RBh45QkPaPEbZkTxpN_o5cKgGvOOIWrxbkqi66fatvCU79r25vMw4161UPeCvE7ycmKy5_vKZPczVaruv1cQ4YonCvdr7Ob2QXZK4KFqTvQtx9rxuJq45q7OavE37QTxYq0O3UZQVPZR7a73iuHs5Ri7TvPYBEj1oC_E4jpTNPX2Smz2zoFQ3-lgLvfH1lT1pxvO4BpwlvIxq0b36U_c3h58EPWo9kj00IqS4oFDPvRXvhj3C0gI4A4cmPR7sA72eitI3irWTPJYjhD1sDYw4GYMYvTaKkbzOh6g3H58APqTkkL0V6Dq5o167PeYL9zvssfI3ytfvPK_l-rwjbDE3jkTDPJRnfj3mg4w2HZcMPUkPQ75UMU25yvRwPSLhKz7xy4o4lV8rPM-8jD3F_Aa53LJtvU6XKr2NP1g3ziuovPqpBzo9VeM3IAA4E0AJSG1QASpzEAAaYPr_ADnMQa_mGUjo-eLm993d5sLerAb_9tr_7wrm7QEftcjw6f8TzxnTmwAAADDdwQzpAMB_uM7oIBFL9MrG3TDjcPD-Fqe_DejFEPEv3dUSFRAwGQAQsMMzMynkU_4-QyAALff6ETs4E0AJSG9QAiqvBhAMGqAGAACIQgAAdEIAANBBAAAgQQAAAEIAAFRCAACWQgAA8EEAAFjCAABwwQAAkEEAAPjBAAAMwgAAAEEAAKZCAACAPwAAgD8AAMjCAAAMQgAAgMIAAFDBAABgQQAAoMAAAJBBAACgwQAAJMIAAFjCAADwwQAA5kIAAIDBAACgwQAAQMEAAPjCAABAQQAAJMIAAEBAAACIQQAAeEIAAHBBAADwQQAAwMAAANDBAACoQQAAYMEAACBBAAAcwgAAMEEAAPBBAABAQQAAmEEAAADDAADIwQAAcMEAAMDAAABMQgAAQEIAAMbCAABQwQAA4MAAABRCAABAwAAAgD8AAOjBAADowQAAoEAAABjCAACgwAAAgMEAAHzCAADYwQAApEIAAGxCAADgwQAAqEEAADDCAACAwAAAEMIAAATCAAAIQgAA2MEAAIDCAACqQgAAgEAAACRCAABcwgAAQMAAAHDBAACQwQAAUEIAAMjBAACAQAAAVEIAAEBAAAAAwgAAmMEAACTCAABAwgAAIMEAAHhCAACSwgAAoMEAAJJCAAA0QgAAIMEAABDCAACgQAAAIEEAAHRCAAC4wQAAHEIAAFBBAAAQwgAAAAAAALBBAAAgQQAAPEIAAIjCAADQwQAAEMEAALhBAADAQAAAmMIAAIC_AACQwgAA2MEAAGBBAACYwQAAmMEAAMBAAABAwgAAAEEAADjCAABwQQAAJEIAABjCAAB8QgAAQEIAAJBBAACAvwAAosIAANhBAAAcQgAAwEAAAOjBAAAwQgAA4MEAACjCAAAAAAAAAMEAAAAAAACAwAAAOEIAAGhCAACAPwAANEIAAOjBAAAQwgAAyMEAAKhBAADgwQAA4MEAABRCAABAQQAA8MEAAIDAAACgQAAAEEEAAFBBAAAwQQAAgL8AAADCAAAYQgAAEMEAAChCAAAIwgAAmEEAAKhCAAAIwgAAmEEAAExCAACGwgAAgMIAAGBCAADAwQAAEEIAAIDAAABkwgAAoEAAADxCAABQQQAAgEAAAOjBAACgwAAAmEEAAHBBAABQQgAAZMIAACRCAACQwQAAIMIgADgTQAlIdVABKo8CEAAagAIAAJ6-AAB8vgAAtj4AAFS-AAC4vQAALD4AAK6-AAArvwAATL4AAAQ-AAC4PQAAoLwAAIo-AABkPgAA-L0AAKa-AACaPgAAQDwAAJg9AACyPgAAfz8AAKg9AACAuwAApj4AAJg9AADYvQAATD4AAGS-AAC-PgAA2D0AAOC8AAAsvgAAUD0AADA9AABAPAAAcL0AAJg9AAAsvgAAQDwAAFS-AABsvgAAFL4AABQ-AABwvQAAML0AAIC7AAAkPgAAEL0AAKi9AABMvgAADD4AAOi9AACyPgAA2D0AALa-AAAQvQAAcT8AAPg9AACAuwAAuL0AANi9AADgPAAAuD0AAGy-IAA4E0AJSHxQASqPAhABGoACAADYvQAA6L0AAFQ-AAAfvwAAqL0AAKC8AADgPAAAdD4AAFC9AACIPQAAkr4AAJi9AAA0PgAAEL0AAJg9AACgvAAA6D0AADU_AABQPQAAxj4AAOC8AADgvAAAiL0AAPi9AABAvAAABL4AAII-AACgPAAAMD0AAEw-AAC4vQAAJD4AAFC9AAAsvgAAuL0AAJg9AAD4PQAAmj4AACy-AAAwPQAAoDwAACS-AABAPAAAQDwAAOg9AAAQvQAAf78AADC9AAB8vgAAED0AAHA9AACYPQAAFD4AAIg9AABwvQAAqD0AABA9AACIPQAAmD0AAFA9AAA8PgAAuL0AAOi9AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=GG0YJ3nUFH4","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["3564563373913785606"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"153248906"},"10422093946727221636":{"videoId":"10422093946727221636","docid":"34-0-4-ZA21C8B44716A56A0","description":"See Google Colab Notebook https://colab.research.google.com/dri...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2038455/6d6701048a2afde8812778ea023e8f11/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/PrApPwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmY93Y-fAySQ","linkTemplate":"/video/preview/10422093946727221636?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Finding an Orthonormal Basis for Col A","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mY93Y-fAySQ\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFgoUMTA0MjIwOTM5NDY3MjcyMjE2MzZaFDEwNDIyMDkzOTQ2NzI3MjIxNjM2aocXEgEwGAAiRBowAAopaGhybHRrbWhlcGVlYXJnaGhVQ1FSYkFXS0QteGF4bkRPZ3ZOcWsxbWcSAgARKhDCDw8aDz8TvwSCBCQBgAQrKosBEAEaeIEDAAALA_0A_PnzAPsF_wEeAvr_AwIDAPMS-gIHAv8A-Qb_BxAAAAADBOwABgAAAO_98f0CAAAAGQED__oAAAAa9vQJ_QAAAAkI_PcJ_wEB_PsKBAP_AAAP_gEIAAAAAAkCCP8CAAAAAxEBCAAAAAD3-v74AAAAACAALWf5zTs4E0AJSE5QAiqEAhAAGvABZhXi_-vn5QLZBMwApBzq_4EiCv4KDPIAsRITAc__7QH-F_QA6hLrAOURIgG6Ee7_MNjT_w3m7QE4y-f_DdfjAM8FFQAa7hABKgn3ANTe_f___jr__s4RABPE7QAMAAD8_woZ_esC7wPi9-UFIvwsAf8aFQUy8RcB4rIjAP7-8wgJ8dkAxgIZBfvlCv7i9i0H_OXoAQof6QAAHPMAEOPr_-zdDwAHK9f-Ov4RAvL3DPcQCPT5COz7CQMzFP_oKQP68_ckAtf7CfcYDAoHGuD-Adzz8QIZ9fULEwz4AP7-CPoE7v_16SwJAfwABxLc8_X6IAAt_yEdOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTocyD-9CeqMO5zMLr0U2pi9J095PQsRibtU15s9z5KRPK-49jv2lmK-BXiBPHk_DbwtC1Y-sIpcvUEtJr16Fy--CDwwPSmf1LynWYC-4tLiOAeaL72jiiy8fV-3uzlBwDvRHyo-6rAivVDCzLyRVkY8tI6qvJSAHb2YrWu9F-VDvbxJAr19ADc9-1wNvXU_pzrtr4g9g-4cvS7aa7v1Yi09WVSfPHG74TtDEXy9qEcEvZlq_7sP_I49_IwrPd8g9TxwOu68Olq4O1jf5byXV869oKkyvBD8ubx88UU9-wQ9OcWHYbu8myI9wAOovcM_sjt-xQq-TyAMvaJG3zu5Zrc9cxOwPb8bgTwmDHS9XUa7PUwsujyvCUm9FVE4PFZg7bvPfKM9uDJSPafQVDxWWpA8VXH-PCqTFrwBvZW8VIhsPTELVjmG4k49kP5yvUagVbycBKU8XQB1PKMngLzTtoY7oCZpPN3oyLwEonE93CMFvUErDTwEOeg9JwMWPdqI0LvFNUM9-FENvglvLLtXezi9L4f9vSqgZjpUZB49WFUAOu96RLxBlIk9bSUvvTtI_DpMule9UeeAvPkyLLwCyIo9OIyNvRTHZLspW-S9G_chPV6rkLsaVQG9i4EfPXUsJbxzB1s9A1PHPXIMwTnnB-S8aJePvZm1GLubG6g9x8mzO06oFjuHgG09kZSZvDzWGToH7uA9etweu_alDrpmVqU89tFpvbVsTjso4H86NHaDPX_jpbriW5g9uiSYvB2fezkMEhE9KlICux5HlTgbH3u7axaOPcJ0YDk9LO88uH4wvNjVxLf6_Qy9P0thvb9Xk7m4Q-A7iowzvE0kPLnFxIs8bFTxvFX2g7kS9UK9IhjnvXga6jc_Pmm5yQORPDnKArnCouI8BrigvB6xJLgTCUu9WdqOvO-NJbnEsGi9X-DiOizAkDlIdCq9e0MrPJW5tbdB8QM9cU_Bvdc4ezkp9LC8etCSPdE5SreAnJA9SMCtPXy-4jjByfa81oJIPaPtC7nD0-s8Zyb4vSIkJLg1dq485qzPPfUM2DagUM-9Fe-GPcLSAjjhNLM83GF4vTj3qrfvLXY8L3KqPMV_3Tg9Tke9MX9gPAnasTiSXRk-2U9QvazCP7mzG0c93dQROkeYDbd5Hjw9hf5TvKcomrbwuw69xxY9Pb_SszYm3JC8FjAxvkGgWrnK9HA9IuErPvHLijhwM0s9NLPLPdnTp7fnI5-9N8BxPO1kl7cPWIO8_OQjPS6xdzcgADgTQAlIbVABKnMQABpgI_4AM_tP9h0HDPQC6gkd1O7B0vOWCv_bv__kEPQJ2g-_pf4HACbwFgCeAAAALO3JFvcA1X_M0fEh-inurrLNMwFw99ok0tb5zakuARf58w0WQFtEAPy5uCMVA7dZ-TgiIAAtDLUSOzgTQAlIb1ACKq8GEAwaoAYAAODAAADIQQAAAEIAAK7CAAAQwQAAYEEAAJ5CAABgwQAAkMEAAJjBAABAwAAA8EEAAIDCAACIwQAAiEEAACTCAADoQQAAmMEAABBCAABAwgAA4MEAAFDCAACSwgAACMIAAOjBAABAQAAAUMEAAIjBAADYQQAAEMIAABBCAAAkQgAAMMIAALhBAAAAwwAA0MEAADxCAAAMQgAAqEEAAFxCAABQwQAAoMAAAODBAAAAQAAAgL8AAIzCAACoQQAAkEIAADBBAACgQAAARMIAAAxCAACWwgAAEEIAACDBAAAswgAAXMIAAPjBAACYQQAAbEIAAPBBAAAowgAAgsIAAHTCAAAIQgAAiMIAABzCAAAAQAAAcEEAAGDBAACCQgAA6EEAAKDBAAAMQgAAdMIAAPjBAAAIwgAAQMIAAJBBAAAEQgAAKMIAAP5CAAAUwgAAmEEAAOBBAADAQQAAJEIAAMjBAACYQQAAQMAAAAzCAACoQgAAFMIAADhCAACMQgAApMIAAODBAAD4wQAArkIAAMBBAABgwQAA0MEAAPhBAACEwgAAVMIAAIBCAAAcQgAAPEIAAIDAAACmQgAA6EEAAKBBAADQwQAAuEEAALBBAABAQQAANEIAAFDCAACAwAAAoEAAAEjCAABwwQAACEIAAHDBAABowgAAwMAAACxCAABAwQAAFEIAAEjCAACQwQAA0MEAAJhBAAAMQgAAgL8AAIZCAAAwQQAAEEEAANjBAACYwQAAcMEAAEBBAABgQgAA-MEAAIDBAAAQQgAAQMEAAADAAAAgQQAAyEEAAFjCAAAkQgAAgMEAAJDBAADAQQAAcEEAAHDCAAAAQAAA0MEAAJrCAABMwgAAqEEAAODAAAAkwgAAQEIAABDBAACgwQAANEIAACBCAABAQAAAXEIAAIhCAAAAQAAAQMAAADDCAAA4wgAAiMEAADDCAAD4QQAAEEIAAJbCAABwwQAA2MEAACDBAACAPwAA6MEAACDCAADYwQAAaEIAAEBBAACYQQAAmMEAAIBAAADQQQAAUEEAAGBCAABAwAAAcMEAAMhBAABAQSAAOBNACUh1UAEqjwIQABqAAgAAqL0AAI6-AACKPgAAXL4AAPi9AADIPQAAHL4AAPK-AAA0vgAAED0AAPg9AAAwvQAAgj4AAHQ-AADovQAAJL4AALo-AABAPAAAHD4AADw-AAB_PwAAgj4AANg9AACiPgAAQLwAABy-AABQPQAARL4AAAQ-AACgPAAAMD0AAEy-AAAQPQAAqL0AABQ-AAAwvQAABD4AAIi9AACKvgAALL4AACS-AADIPQAAhj4AAKC8AAD4vQAAiD0AANg9AACYvQAAVD4AADS-AACoPQAA4LwAAL4-AAAMPgAAdL4AAIi9AAAnPwAA4DwAAEC8AAA8PgAAEL0AAOg9AADoPQAADL4gADgTQAlIfFABKo8CEAEagAIAAMi9AACIPQAAfD4AACW_AADovQAAgDsAAMg9AABcPgAAcL0AABw-AAC4vQAALL4AAKi9AAAkvgAA4DwAAOC8AADoPQAAGT8AACQ-AACePgAABD4AAMg9AAAkvgAAcL0AAHC9AACIvQAAgLsAAFA9AADoPQAA6D0AAJi9AAAEPgAAyD0AAAy-AACAuwAAoDwAALY-AAAMPgAAdL4AAMg9AACgPAAA4LwAADC9AADgPAAAyD0AAAw-AAB_vwAAHD4AAKC8AACYPQAAcD0AAOC8AAAUPgAAoDwAAKg9AADIPQAAMD0AAFS-AACoPQAAiD0AAIg9AAAUvgAAuL0AADw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=mY93Y-fAySQ","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["10422093946727221636"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"874858809"},"10944545259433076639":{"videoId":"10944545259433076639","docid":"34-3-17-ZA2110B3BDEA21BFC","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/896028/66a27070653cb0e1625219d66fe88f3a/564x318_1"},"target":"_self","position":"7","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRqEOv38uv1I","linkTemplate":"/video/preview/10944545259433076639?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Inner Product on Polynomial Vector Space","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RqEOv38uv1I\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFgoUMTA5NDQ1NDUyNTk0MzMwNzY2MzlaFDEwOTQ0NTQ1MjU5NDMzMDc2NjM5aq4NEgEwGAAiRBowAAopaGhybHRrbWhlcGVlYXJnaGhVQ1FSYkFXS0QteGF4bkRPZ3ZOcWsxbWcSAgARKhDCDw8aDz8TzwSCBCQBgAQrKosBEAEaeIHwEQIICPcA7-_0-vwBAQEiAvT-FgECAOsL7gAFAAAA7_P_AQIAAAABAwj8_wAAAO0S9PvzAAEADAEA_-kA_wAK9QX4_QAAABAd-gP9AQAA3PgL_QIAAQAj9AcDAAAAAAzvBxP-__8A_ggG_AAAAAAAD_v1_wAAACAALVfouTs4E0AJSE5QAipzEAAaYAEgADv-HxXJP0bN8PH4Cgb6IdgA0vv_I-8ABhQHng0v9tMq7wD4pDjnqQAAADT2wRMGALxv9g2qHSUoQvj4Cg8vfxYq8gwcHPdIMQgB1LNF7Pwa5ADP_Q_yH_C0IgwfFyAALTJ0ITs4E0AJSG9QAiqvBhAMGqAGAABsQgAAskIAAChCAAC4QQAA4EEAAFhCAABwQgAAEMEAAPDBAAAAAAAAAMAAABTCAAAkwgAAgL8AAJhCAABAwgAAGEIAAMDCAACMQgAAqMIAABzCAAAAQQAAIMEAADRCAAD4wQAAAMIAAHzCAABQwgAAwEEAAKjBAADgQAAA-EEAANzCAAAgQQAAkMIAAIjBAABAwQAAXEIAAKhBAAAUQgAAIEEAAI7CAACQQQAAsMEAAATCAAAswgAAoMAAAIA_AACgwAAAQEIAAMzCAAAAAAAACMIAALDBAABAQAAATEIAAKrCAACgQAAACEIAAEBCAADgQAAA-MEAAAjCAAAAwQAALEIAABTCAACwwQAAmMEAAEjCAAAMwgAAsEIAAHhCAACQwQAAEEIAAEjCAADAwQAAKMIAAKjBAACAPwAAgMEAABTCAABMQgAAQMEAAABCAADgQAAAQEAAAKjBAAAAQQAAREIAACDBAACAwAAArkIAAFDBAADAwQAA2MEAAMjBAABgwQAAAMIAAIJCAAAIwgAAAMIAAHxCAACUQgAAKMIAALDBAACIQQAAMEEAAGBBAABEwgAAEMEAAIhBAAAowgAAMMEAANjBAADowQAAFEIAABTCAAAQwQAAgEAAAPBBAAA0wgAAnMIAAMDAAAB4wgAABMIAAABCAACQQQAAmEEAAIBBAACgwQAA4EAAAHDCAADAwQAAHEIAAEDBAACoQgAAqEEAAHBBAABAQAAAOMIAAMBBAAAAQAAAQMAAAAzCAAAwQgAAHEIAAJbCAACwQQAAQMAAAFxCAACAwQAAbEIAACBCAACAwQAAcEEAACjCAABQwgAAkMEAABDBAABYwgAADMIAAMhBAABwwQAAEEEAACBBAABAQQAAwMEAAOBBAACQQQAAcMEAAJjBAABgQQAAgEEAAARCAABMwgAAAAAAAL5CAAA8wgAAyEEAADhCAACqwgAANMIAAERCAABQwQAAMEIAAABBAAAAwgAAMMEAAIBBAABAQgAAIMEAAMDAAAC4QQAAiEEAABxCAACWQgAAHMIAANhBAAAQwgAAUMIgADgTQAlIdVABKo8CEAAagAIAAFC9AACgvAAA0j4AAAy-AAC4vQAADD4AAGS-AADivgAADL4AAPg9AACoPQAA2L0AAHQ-AACSPgAAQLwAANi9AABEPgAA4DwAAIY-AACGPgAAfz8AAHA9AABsPgAAJD4AAKi9AADYvQAAUD0AADC9AABEPgAAxj4AAIA7AADIPQAAmD0AABw-AACAOwAAqD0AAIg9AADIvQAA6L0AAPi9AACmvgAANL4AAEC8AAC4vQAA-L0AAFC9AABAvAAAPL4AAEy-AACovQAA0j4AAFC9AACiPgAAyL0AANi9AABQvQAAOT8AABw-AACAOwAAgDsAAMi9AAAsvgAA2D0AAIC7IAA4E0AJSHxQASqPAhABGoACAABsvgAAND4AAJg9AAAhvwAAQDwAAJi9AACAOwAAMD0AAKA8AAAcPgAAPL4AAES-AACIvQAAmL0AAIA7AABwvQAAuL0AADc_AABQPQAAnj4AAAw-AABUvgAAUD0AAAS-AACYvQAAuD0AAKi9AACgPAAAND4AAEw-AAC4vQAA-D0AADC9AACYvQAAmL0AAKC8AABUPgAAUL0AAKi9AAAQPQAAmD0AAOi9AACYPQAAoDwAAIi9AAB8PgAAf78AALi9AAAcvgAAFD4AAKC8AABwvQAABD4AABw-AAAwPQAAMD0AAEA8AAAcvgAAMD0AAAw-AACIPQAARL4AAJi9AABAPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=RqEOv38uv1I","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["10944545259433076639"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8501280412947574443":{"videoId":"8501280412947574443","docid":"34-10-15-ZE13CC6B8868DE259","description":"Link to Colab Notebook: https://colab.research.google.com/dri... 0:00 Introduction 1:30 If you disconnect, be sure you rerun first code cell 2:47 Adding, multiplying finding inverse of matrices...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3334903/a39524ff132a3345d190819d9d430cd9/564x318_1"},"target":"_self","position":"8","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dco2t5oejw1c","linkTemplate":"/video/preview/8501280412947574443?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Python Lab 4 Instructions","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=co2t5oejw1c\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFQoTODUwMTI4MDQxMjk0NzU3NDQ0M1oTODUwMTI4MDQxMjk0NzU3NDQ0M2quDRIBMBgAIkQaMAAKKWhocmx0a21oZXBlZWFyZ2hoVUNRUmJBV0tELXhheG5ET2d2TnFrMW1nEgIAESoQwg8PGg8_E8MEggQkAYAEKyqLARABGniB8fr8Bwj3AOT9-PP9_QQAJQj0BPIEBADvAwnwAwEAAPkGCQT4AQAA_gnyCPsAAADrBwQG7wEBABv7-AAEAAAAEgf-CfUAAAAeE_8A_QEAAPX4BhAE_wAAFvUR_P8AAAAJA_kIAAAAAAgR_PcBAAAAAw4EBAAAAAAgAC0ED7w7OBNACUhOUAIqcxAAGmD9DQAW6Asw3FEk9hQSEye5uikP6aTw_wXV_0QUFzEI-OKDHvsADt76C5wAAABHD9RCJAAAf-j_FUQDIv_p8d4G_nroGqUG2v8et2Xk4CfiDLr5URYA3Nf5F1rw3hwcVxwgAC3t7BI7OBNACUhvUAIqrwYQDBqgBgAAgEAAAIhCAADQQQAAgL8AAGBBAAAwQQAAbEIAAODAAABYwgAA2MEAANhBAACgwQAATMIAAADCAADQwQAAAMIAANBBAABgwgAA2EEAAKDBAADowQAAKMIAABDCAACYQQAAmMEAAMDAAABIwgAAlsIAAPhCAACAwAAAIMEAAEBAAADowgAAGEIAAADCAACQwQAA4EEAAFhCAAAAwAAA0EEAAADBAACgQAAAwMAAAHDCAAAQwQAAgMIAAHDBAAAAQAAAKEIAAIDAAABowgAA2EEAADBBAADgQAAAfEIAAOBAAACWwgAAaMIAALhBAAAUQgAA2EEAADDCAAA4wgAATMIAADBCAABIwgAAuMEAABjCAADAwQAAuMEAAJhCAAAgQgAAmMEAAPDBAACWwgAAgMEAAAzCAABAQQAAIEIAALhBAACAwAAA_EIAACTCAAAYQgAA8EEAAABBAABgQQAAyMEAALZCAACgQAAAgEAAAARCAADYwQAAuMEAAPDBAACSwgAAoEAAABxCAAAgQgAAAAAAACTCAACYQQAAFEIAAKDAAAAUwgAAUEEAAEDBAACeQgAA4MEAALBCAAC4wQAAcEEAAEBAAABcQgAA4EAAAIpCAABgQQAAMEEAAIDAAADAwAAAUMIAAADCAAAQwQAAFMIAAKBBAACgwAAASEIAAIDBAACIQQAABMIAAOjBAAC-wgAAYMEAAEDBAAAkwgAAwEEAAI5CAAAAAAAAsEEAAMBBAADgQQAA4MAAABBCAAAIwgAAyEIAAKBBAABcwgAAtEIAAMhBAAB8wgAAaMIAAAxCAADIwQAAEEEAAOhBAABgwQAAPMIAAIBAAAA4QgAAHMIAAKDAAAB0QgAAUMEAAFjCAAAwQQAAKMIAALjBAAAcQgAAAEAAAPDBAADgQAAAmkIAAIDAAAAAAAAA4MEAAJjBAAAwQgAAGMIAAAAAAAAYQgAATMIAALDBAAAgwgAAgL8AAEhCAACgwQAAkMEAABBBAAAAQQAAcEEAAFhCAAAkwgAAQMEAALBBAABwwQAALEIAAEDAAABAQAAAKEIAAAxCIAA4E0AJSHVQASqPAhAAGoACAADIvQAAoDwAAA0_AACAuwAABL4AALi9AAC4PQAAGb8AAAO_AAAUvgAAcD0AAIC7AACePgAAcL0AAMi9AAAbvwAAxj4AAKg9AADyPgAA9j4AAH8_AACgPAAAiD0AAL4-AADGPgAA_r4AAHw-AADgvAAAVD4AAGw-AAC4PQAALL4AAIY-AAAsPgAAmD0AABw-AABsPgAAqr4AADy-AACAOwAANL4AAFQ-AACAOwAAiL0AAJi9AACoPQAAmD0AALa-AACOvgAA6L0AABC9AACIPQAAZD4AADy-AADYPQAAoDwAABc_AABwPQAAFL4AAEA8AADoPQAApj4AAMg9AADYPSAAOBNACUh8UAEqjwIQARqAAgAAir4AALg9AABAvAAAHb8AAOi9AABMPgAAvj4AAKC8AAC4PQAAmj4AAFS-AAAEPgAAUL0AAAw-AADoPQAAgLsAAMi9AAA5PwAAyD0AADE_AAAQvQAA2L0AAAy-AABwPQAAgr4AAIa-AAAcPgAAiD0AAKg9AAAQPQAAcL0AAKg9AACIPQAAPL4AAFw-AAAwvQAA8j4AALg9AACCvgAA6D0AAHC9AADoPQAAoLwAAEC8AAAsPgAALD4AAH-_AAC4vQAADD4AAEA8AAAUPgAAoDwAAHA9AAA0PgAAkj4AAEw-AACgPAAArr4AAIo-AACOPgAAjj4AADQ-AADgvAAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=co2t5oejw1c","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8501280412947574443"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12401692124092190516":{"videoId":"12401692124092190516","docid":"34-9-2-ZF22D634E636AC87C","description":"See Colab Notebook: https://colab.research.google.com/dri...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/901673/66aabe0cdc54c9e4eadeeac388684ba8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/sYmsNQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlEpmIgGB0lg","linkTemplate":"/video/preview/12401692124092190516?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Similarity with Complex Eigenvalues","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lEpmIgGB0lg\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFgoUMTI0MDE2OTIxMjQwOTIxOTA1MTZaFDEyNDAxNjkyMTI0MDkyMTkwNTE2aocXEgEwGAAiRBowAAopaGhybHRrbWhlcGVlYXJnaGhVQ1FSYkFXS0QteGF4bkRPZ3ZOcWsxbWcSAgARKhDCDw8aDz8T_AKCBCQBgAQrKosBEAEaeIHuBfwFAf8A6vv4APkAAQALAO8B9v__APAB_wX2AQAA8QIP-gcAAAD-CPMH_AAAAP4J7gP2_gEA_QH58_QAAAAMAQwE9QAAAP0RAg_-AQAA9vkGDwT_AAAI-QL8_wAAABAZCwn-AAAA_Q_zAgEAAAD98voEAAAAACAALWoszzs4E0AJSE5QAiqEAhAAGvABfw_5AOEF9QEMB90AvRUBAI0fCf8ZIeUAw_MKANP_7wHxJ9kA1uHS__gJIQDVHRAALNzX_xHiFf9C5gkAHgT9Af0P_AER4QQBOgIT__MD3_8BHSX_H-8W_g727gAGCvD_FCD-_csA3gD2Et8BCNs2AgkCBwEm_CAA5-ER_fwKAATn99797e8MBwrs_wPdFxwB9gLy_PsT7f_Y9vYCEwTs_QHVC_4HJ9v-Nf8PAvT4C_jmIPAA8vbr-BMcHv8DEfv7Bg0V-vTlAfHxDxUHPukOCvABBPgTC_wPCAYDDP_tB_X0-gn_3g7xCeACDAjZ7Qv8IAAtbQMtOzgTQAlIYVACKs8HEAAawAe6o_e-MYOnPCJ8XjwcyD-9CeqMO5zMLr2726u8pTIgPZPb2zyKwhM9tE1bPbYOEDyf5Ja-G9hqPUoNTb3FVYU-VDBvvZt_KrwOMQ6-TQaRPEfoQrxPeJG-ZxVMPanmi7rNs009Rf1EvbYlvDzRHyo-6rAivVDCzLyzrna96z3wvCCAL72YrWu9F-VDvbxJAr3mlOA95ty3vLbQnzzr4LA9f3iMvHwVT7xu6z09gMCcu0Sqg7zIv8W8DkA0OhKOsLsd6ME9hvx-uepJjzy-Cro85RR4vLi4fLzrayK9_oOjPBb7Szu5ALS8ZU2RPUysZ7zI8PM8NABqvbyfyzsmNfS9fgMuPau6Aj3dtBk-PRbRPANg-rsURxo8VvCbPZXy9ztAK3a7qWP6vNl6BDy5ido9CesVPa4LhTtrc627XOM4PQOdJLwJZMA8z1l1PYVjsTzTwmA9quQtO5y3nLuEjgw9H4IqvJaVprwbFGi95qzPPNZcibw7dMU9BwEeva4UG7wiPis95eegPdi69brZiJa7S55hvZIFDrx5-708KTf2vAmHnrwhTFs9CJpFvcqEhLwtqmo9UhEjPEN9v7scIUi9r9yBPEjAjbtjdcA9fVEMvVpnIjpTEY2992RVuxCUmTpkJ7Q7J1MiO76BbryUpn87dtr_PHeIvTs0_hO9OOJEvUu-Bjt5E6I9JwEDu5DD3Lssuas7111qPHapkbt65Ko9I1-uvG9IgrlGZkk9qSqZvG-lkTt4JjQ8PKpQPAOvN7tNClg96Em-vKTuWjr-t5I8BlwBPdsdLDgWzM6806FzPetDbjrXEME8QH30O_k5MriLBl8807yjvT98QTiRob68a4MPu7lmuLqd-8Y8deENPGQSmLk89Si9KWR9vfgXn7ne3W-86taWPSjdLjhnfIQ8t1yivM1WGrhwvHa9YxkNPG6g6raF3rG9AnYfvfI1njniWxO9RDarPPq4MzdMqAA9x_Cdvf7uMDl1bh-9c5xbPV7LYjfnHzg9D--5PbRouTi4mBq9VeIVPd84wbjTzwg8ZjHRvT5LlzbnsWE97V9-PQhDILjK4QO-ENcePJf9TjeaVrO7ncMLvd3ovjdVhF07k8kJPSEyLTgz_Fc6dooVvb3kMDiSXRk-2U9QvazCP7lgZxQ9f80FvJkPILgR7y89gvxPu13qBDdXv8i8-RXGPK5pq7cdlww9SQ9DvlQxTbnK9HA9IuErPvHLijiXuwO80tPBPVFqybhLfo-9Wtk-vaR3fzbohqY8GpdgPFZAfDggADgTQAlIbVABKnMQABpgS_AAIew04w4cL-rE4BYbA8-m1gOlCf8J6v_7AQXoBwTwvAUbAC_YHA-dAAAAXPHBCgQA6X-_1f3-6fYB4J7iC_te8PpH5_MD2a0h2ObT0wfdOD9jAN6qzzgd-8lALQH5IAAtGiIXOzgTQAlIb1ACKq8GEAwaoAYAADhCAACCQgAAGEIAACDBAABcQgAAJEIAAIBCAABQwQAAEMEAAIhBAAAgQQAALMIAAKjBAADQwQAAZEIAAADBAACgQQAATMIAABxCAABQwgAA6MEAAEjCAABEwgAAYEEAAGjCAAAQQQAAuMEAAHzCAACwQgAAAAAAABDBAACQQQAA4MIAAMBBAACAwgAAIMEAAIBBAACcQgAAAEEAABRCAACAvwAAmMEAAABBAADIwQAAAMEAAJTCAACwwQAAJEIAAABBAADYQQAAvsIAAEDBAACgwAAAQEEAAHBBAABIQgAA2sIAAPDBAAAAQQAAOEIAAODAAAB8wgAAjsIAADTCAACIQQAAGMIAAFBBAACAPwAAVMIAAADCAADIQgAAukIAADjCAAAQQgAAbMIAAGDBAABAwgAA-MEAAKBAAACAwQAASMIAAPBCAAAAwAAAfEIAAIA_AACAPwAAwEAAANDBAADoQQAAYEEAALDBAACQQgAAGMIAAKBAAABAQAAA6MEAAGDBAAAwwQAAikIAANDBAACIwQAAPEIAAIZCAABgwgAABMIAALhBAACAQQAASEIAANDBAAAMQgAA8EEAAADCAABgQQAAAMAAAADBAABoQgAAOMIAAGDBAAAowgAAgMAAAAjCAABswgAAAMAAADTCAAA0wgAAUEEAAKBAAACYwQAA2EEAAEDBAABAQAAAnMIAAIA_AAAwQgAAHMIAAIpCAAAYQgAAGEIAAEBAAAAcwgAAoEEAAHBBAABAQAAAKMIAAAhCAADIQQAAeMIAABBCAABAwAAAgMAAAJDBAACEQgAAMEIAAIDAAAAEQgAA8MEAACDCAACgwAAAYEEAAPDBAADQwQAAFEIAAJhBAADgwAAAYEEAAAAAAAAwwQAAKEIAALBBAABwQQAAgMEAAOBBAAAQQQAAgEEAAJzCAACAwQAAhkIAAPDBAABwQQAAREIAAGjCAAA4wgAAgD8AALjBAAA8QgAA4EAAABDCAACIwQAABEIAADBBAAA0QgAAHMIAAIDBAADIQQAAwEEAAIpCAADQwQAAZEIAABDBAACgQCAAOBNACUh1UAEqjwIQABqAAgAATL4AAJi9AABsPgAAED0AAIi9AACWPgAAFD4AABm_AADYvQAAoLwAAKg9AAAEvgAA6D0AAGQ-AAAcvgAA-L0AAHw-AACoPQAAkj4AANo-AAB_PwAAuD0AAEC8AACGPgAAmD0AAEA8AAC4PQAAmL0AAL4-AACmPgAAcD0AAKi9AAAMPgAATD4AAMg9AACCPgAAMD0AAGS-AABcvgAALL4AAJK-AABAPAAAdD4AAOA8AABQvQAAQLwAADA9AAAwvQAAoLwAAJg9AADCPgAAJD4AAFw-AACYPQAAnr4AAOC8AAA5PwAAjj4AAPg9AAC4vQAABL4AALg9AAA8PgAAVL4gADgTQAlIfFABKo8CEAEagAIAAAy-AABAvAAAcD0AACu_AACYPQAA2D0AADQ-AADgvAAAHL4AAMg9AABQvQAAmL0AAKA8AADovQAAXD4AAHC9AABAvAAAIT8AAOi9AACaPgAAmL0AAKi9AAC4vQAAmL0AALg9AADYvQAAuL0AAKi9AACgPAAAUD0AAHC9AAAEPgAAoLwAABC9AAC4PQAAgLsAACw-AAA0PgAAHL4AAAy-AAAQPQAA2L0AADC9AADgPAAAQLwAAJi9AAB_vwAAQLwAAOC8AABAPAAAJD4AAKi9AABUPgAAoDwAAIK-AABQPQAAoDwAAOi9AAAEPgAABD4AACw-AAAQvQAAyL0AAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=lEpmIgGB0lg","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["12401692124092190516"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3205374746"},"9583629407263354334":{"videoId":"9583629407263354334","docid":"34-0-14-ZBFEA572508B8B6D9","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3468183/8efc45c157e20799f2011a8f54a51dde/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gDqkOgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWf2any7rumE","linkTemplate":"/video/preview/9583629407263354334?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Decomposing a Matrix into a Product of Elementary Matrices","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Wf2any7rumE\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFQoTOTU4MzYyOTQwNzI2MzM1NDMzNFoTOTU4MzYyOTQwNzI2MzM1NDMzNGqHFxIBMBgAIkQaMAAKKWhocmx0a21oZXBlZWFyZ2hoVUNRUmJBV0tELXhheG5ET2d2TnFrMW1nEgIAESoQwg8PGg8_E4MEggQkAYAEKyqLARABGniB_vTzAgL-APf9CP37BP8BHwH1_hQBAgAACvn09wT-APYBEwEBAAAA8AL3_gEAAAAGCPn7-f0BAAYG_Pr7AAAAEAb-CPYAAAAREfr4_gEAAPIPDgcDAAAACQoNCQAAAAD0_gQBAQAAAA0HEvwAAAAA_fz1DwD_AAAgAC3McNA7OBNACUhOUAIqhAIQABrwAX8E6v_l79AB3BHgALX-4_-tGwkAERXTAMP7IADB6-AB7RjfAOP92QDSDCcAvBgIADHX0v_60QIAOcrm_wHo2QDZ8gkAEskDAFET8wDTAOL_-hhFAhHRCAAd5-cA_RT7AP8KGv3y_OP6AAbhAyP7LQH_GhYFFvUhAvHIB__V6Q8CCebq_-8CDAL75Ar-yf4eAf3r-P8NBfP6AB3zAALo5wYB0A3-FT3q_zrkFgH5GgMF5AP_BNDu7gPqIhz-8RMF-AX8E_rl8vv0EgIDAyjo9wDN_vn-HwnqBw7-_vzv9wj__-vtAMsSBALy-AYH1fgD7SAALa6jGTs4E0AJSGFQAirPBxAAGsAHh2zYviRegz3j0bo7oBRyvdu6AD3z7v68KuAevgPuWT1zVY-8K6uEPWmIbz0PCV-79pZivgV4gTx5Pw28xVWFPlQwb72bfyq8ehcvvgg8MD0pn9S8FAdQvpN2fjyKmh69O0VdPZm6K7xd34c8_z5DPnd_BrgM60G9W68uPTda6Tv45129Vj_AvBf4Rb07eYm7d4TDPRP7Orwyb5s76-CwPX94jLx8FU-87cgCPSsSODyRNiO80s6PvecpobwQ3_C7L012PcaViT3C60Q8Lz_Duy-xiTtygpu8EXaVvQ8JX7ykJFq8mQ6dOl0uCTzjqFw7vJsiPcADqL3DP7I7Y7QevjYWe7t_YFg8uWa3PXMTsD2_G4E8GD5ivXa3fD0W3ys8ZckXvc44zTxtoAy8MGOqPaGRmTwmaaM86O6EvMclcz3pri06_XGxPHhEtT21V3o844IYPSOnqr3W3Je7hI4MPR-CKryWlaa8xEMTvT8Y3Txlm-W8ImWlPTE2Pr1o5zQ8YoL6PQjqTz2LYC08-gEZPbNWOb3l-WO7V3s4vS-H_b0qoGY6IrCYPRbGcTwju3e8thyOPZKXsbtAmZA7hR52vdCzGb3IaT68AsiKPTiMjb0Ux2S7UAKmvXofQj0EwUq78NWWO7cfNT1inc-705SjPXuOfj0B9eo7mTbSvLxazr0YnC86mxuoPcfJsztOqBY7_3UuPSrXpbwdPR879z-rPUMh3bsq-bu7zjUKO7-Njr22QdS6neqavJBDDj00XTq70JB7PaKvhbzja8-5zaHWPHhSlTw8ypc4Gx97u2sWjj3CdGA5OVgpPQjpKbzb9Wk5_LNVvXc9sr2FGzC4t7LNuWvOBTzNbLC5nQgJvPgCzrxxY-o1zCDDvdQNBL4IU4U5fB3CPPy7iDwNZoO5JkBjPTMq_DsozYM4dOeevczAN72axZW4bHakvWYPmbzcLa05SHQqvXtDKzyVubW3QfEDPXFPwb3XOHs5ER7Iu5F9UD3vHYw2aomlPRvFiD3Pr9A3FnFXOzSkpT3tNwK4EtG3uwz9iL1QZfo3zedcPUczmz3VLSW5oFDPvRXvhj3C0gI4AooHPJ85oL2zEZ23efS1PLjBGj2DgAK4VZB1vZCqfbvADLs4wqTYPTYqJr17tC25zukIPRQ1orzNYCS4bO5oPCkgkryHGKo3uMPsu_MFLT13_v-0JtyQvBYwMb5BoFq5yvRwPSLhKz7xy4o4YJqYPFua-z2Erf24XCivvd4SKr38ImM35LUXvR8TaT23YXI4IAA4E0AJSG1QASpzEAAaYPrvAELxOdH4JxDu8tLyGeXG_q1Px-3_0Nb_DQbZ3goCxM4ECwAIzh3coQAAADsJygYdANR-ot7TGR4KEtOv4xYUfyghJMHh_PTKFTME3t9U-P8TLAAi0Lw9NV-sI0cmOSAALdIHEjs4E0AJSG9QAiqvBhAMGqAGAACAwAAAVEIAAAxCAACIwgAAoMEAAMDAAACoQgAAAMIAAJjBAACIwQAADEIAAETCAACMwgAA4EAAAJhBAAAEwgAAwEEAAATCAAAsQgAAIMIAAIrCAABAwgAAGMIAAJhBAACgwQAAQEAAAIC_AABQwQAAXEIAAABBAACAQQAAQEIAAMDCAAAAQQAArMIAAMDBAAAUQgAAgEIAAABAAAD4QQAAAEAAAIBAAADgwAAAVMIAAEDAAACQwgAA4EAAAFRCAACAQQAAQEEAACTCAABYQgAAoMAAAGxCAADoQQAAFMIAAEDCAAD4wQAAAAAAAGRCAADIQQAAMMIAACDCAAAEwgAA2EEAACzCAABEwgAAEMEAAHBBAACgwAAASEIAAIRCAAAAwQAAuEEAAGzCAABwwQAARMIAALDBAAAMQgAATEIAAKDBAAD-QgAAAEAAAKBBAAAwQgAALEIAAOhBAAAAwQAAUEIAAJjBAAA0wgAAqkIAACTCAADoQQAA-EEAAMbCAADQwQAAUEEAAKpCAACIQQAAcMEAAGBBAAD4QQAA6MEAAJTCAACMQgAAAMAAAEBCAAAQwQAAfEIAAIBAAADgwAAAmMEAAOBBAACAvwAABEIAALBBAACgwQAAgL8AAADBAABwwgAA2MEAABhCAADgwQAAQMIAAMDAAABkQgAA2MEAAARCAACQwQAAcMEAAILCAABQQQAAJEIAALDBAAC0QgAAgL8AALBBAABAwQAAgEAAAFDBAACYwQAABEIAAGDCAAAQQgAAcEIAABTCAAAYQgAAwEAAALjBAABowgAAiEIAABjCAABwwQAAgMAAAMjBAACQwgAAAMIAAIC_AAAMwgAAkMEAAMBBAACAwQAA2MEAAHBBAAD4wQAAEMIAAIJCAAAgQgAA2MEAADxCAABkQgAAQEEAACzCAAAcwgAAVMIAAIjBAADgwQAADEIAALhBAAC6wgAAEMIAAPjBAABgQQAA4EEAAFzCAABcwgAAwMEAADRCAADgQAAAkEEAAATCAACAQAAAAAAAALhBAAAgQgAA4EEAAJBBAAAAQgAAaEIgADgTQAlIdVABKo8CEAAagAIAADA9AABAPAAArj4AACS-AAAwPQAAij4AAOi9AAArvwAAZL4AAKg9AACaPgAAyL0AANg9AAC6PgAAJL4AAOC8AABEPgAAcD0AANg9AADKPgAAfz8AAEA8AAC4PQAAPD4AAFA9AACgPAAA2D0AAI6-AADKPgAAfD4AAFA9AABQvQAAoLwAAEC8AABcPgAAQDwAADA9AABcvgAA6L0AAJa-AACevgAAkr4AAOC8AAAwvQAAHL4AAAS-AAAMPgAAdL4AAKi9AAAcvgAAVD4AAIg9AADIPQAAoDwAAIq-AAAQvQAAJz8AAJg9AAA8PgAAED0AAFC9AAAMPgAAND4AADS-IAA4E0AJSHxQASqPAhABGoACAAAQPQAAoLwAAAw-AAAJvwAAJL4AADC9AABsPgAAQLwAAOA8AABQPQAAyL0AAFy-AAD4PQAAJL4AAII-AAAQvQAA6D0AAC0_AADIPQAA7j4AAKA8AADovQAA-L0AAJi9AAAwPQAA2L0AALg9AACgPAAAUD0AAHA9AAD4vQAAPD4AAOC8AADovQAAcD0AAMg9AACIPQAAVD4AAAy-AABwPQAABD4AADA9AADgvAAAQLwAAIC7AADgPAAAf78AAAy-AACovQAA2L0AABC9AACAOwAA2L0AABA9AAAQPQAABD4AAIA7AABAvAAAmL0AAEQ-AADoPQAAqL0AAIA7AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Wf2any7rumE","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["9583629407263354334"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"7255695"},"8338739356549651598":{"videoId":"8338739356549651598","docid":"34-7-8-Z0598E961C05BB467","description":"See Colab Notebook: https://colab.research.google.com/dri...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4042254/4c0d6905f5d6a244b6cae0d306d4167b/564x318_1"},"target":"_self","position":"12","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7m14ZOXROi4","linkTemplate":"/video/preview/8338739356549651598?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Finding a Basis an Eigenspace of a Complex Eigenvalue","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7m14ZOXROi4\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFQoTODMzODczOTM1NjU0OTY1MTU5OFoTODMzODczOTM1NjU0OTY1MTU5OGquDRIBMBgAIkQaMAAKKWhocmx0a21oZXBlZWFyZ2hoVUNRUmJBV0tELXhheG5ET2d2TnFrMW1nEgIAESoQwg8PGg8_E-UDggQkAYAEKyqLARABGniB9v70AfwEAOwD-Ab4AgAAAQvv__f-_QD8AfsF_QX-APQJCgQJAAAADQj0_v0AAADy-ff8-gAAAA0CBv39AAAACAAEBPwAAAACC_gG_gEAAPb-AwQDAAAABgAIAAAAAAALDA76AAAAAP0O9AIAAAAA-_P7-QAAAAAgAC1QGeE7OBNACUhOUAIqcxAAGmAWGwAyEyj1DA0g9fnn_QD95eDp1MEZAO__APj39dsBJe7h5A0AEt0h-8QAAAAE8vcf_wDvRPbT0QINF_7xxuwf8H_3_fkiGAfovxbt_gzu9OgtGvYA9t0L_wsC0DfxExAgAC0QQWU7OBNACUhvUAIqrwYQDBqgBgAAQEIAAGBCAAAsQgAA-MEAAKBBAACAQQAAokIAAEBAAADgwAAAQEAAALBBAADowQAAPMIAAFBBAAAAQAAAMEEAAKDAAACYwgAAyEEAACzCAABowgAAQMAAAGjCAACwQQAAVMIAAKjBAABwwQAAHMIAAIxCAAAgwQAAEMIAAEBBAAD2wgAAIEEAALjCAAAwwQAA4MAAAEBCAACAPwAAuEEAAMhBAACAwQAAQMAAADDCAACwQQAAusIAAADBAADAQQAAQEEAAPBBAADCwgAAMMEAAIjBAACgQQAAKEIAADRCAADUwgAA4MAAAMhBAAAcQgAA2EEAAFTCAABkwgAAGMIAAFBBAABQwgAAQMIAAAjCAAAcwgAACMIAALZCAACKQgAAIMIAABhCAABowgAAcEEAABDCAACowQAA0EEAAEBBAAD4wQAAtkIAABBBAADwQQAAgMEAAPhBAAAQQQAABMIAADxCAAAAAAAAgMEAAKpCAADQwQAAQEEAANBBAADwwQAAkMEAABBBAACkQgAAwEAAALjBAAAQQgAAhEIAABjCAABQwgAAMEEAAFBBAADYQQAAAMEAAEBCAACwQQAAgD8AAHDBAACAQQAAkMEAAKJCAABwwQAAAMEAAADBAAAQwQAAEMIAAIzCAAD4QQAA6MEAABjCAACIQQAAAEIAAOjBAAAAAAAAwMAAABDCAABcwgAA-EEAAChCAAAgwQAAokIAAEhCAABwQgAAoMEAAMjBAABAQQAAoEAAAIBBAABcwgAAOEIAAKBBAAAAwgAAgEEAAHDBAABwwQAAAMIAAGhCAAAUQgAA2EEAABBCAAAcwgAARMIAAKDAAADgwAAAAMIAADTCAACAQgAAyEEAABzCAAAcQgAAgMAAACzCAACaQgAALEIAAJDBAADAwQAAWEIAAIC_AADAwQAAfMIAABBBAABMQgAAKMIAAMBBAAAoQgAAtMIAACzCAAAwQQAA6MEAAERCAADAQAAAKMIAAPjBAADQQQAAgEEAAFxCAABwwQAA4MAAAABAAAAQQQAAfEIAAKDAAAAoQgAAYEEAAJDBIAA4E0AJSHVQASqPAhAAGoACAAAsvgAATL4AAL4-AACOvgAAFL4AAKo-AADIvQAAJ78AAOi9AAC4vQAAZD4AAHy-AAB8PgAAZD4AAAS-AACuvgAAhj4AABA9AAB8PgAAXD4AAH8_AAAcPgAAVD4AAJY-AACovQAAHL4AAAQ-AACgvAAAXD4AACw-AADoPQAA6L0AABQ-AACKPgAAoDwAAAw-AAD4PQAATL4AAFy-AAAUvgAATL4AAEA8AACmPgAAML0AABC9AAAQPQAAgLsAADA9AABQPQAAUL0AAGw-AADoPQAAoj4AAOg9AACavgAAUL0AAFE_AAB8PgAAML0AAJi9AABMvgAAoDwAACQ-AAAEviAAOBNACUh8UAEqjwIQARqAAgAAFL4AANi9AABsPgAANb8AAIC7AACAuwAAuD0AAOA8AAAcvgAAHD4AAFC9AAC4vQAAMD0AAAy-AAC4PQAAEL0AAOA8AAAlPwAAPD4AAJo-AADgvAAA6D0AAAS-AADgvAAAML0AADS-AACIPQAAED0AABA9AAAQPQAAQLwAADw-AAAQPQAAQDwAAHA9AACAuwAA2j4AAMo-AACSvgAAiL0AAHA9AAAQvQAANL4AAIA7AACoPQAAoLwAAH-_AABwPQAAiD0AAIA7AAAUPgAA2L0AAIY-AADgPAAA-L0AANg9AAAwPQAAuL0AABQ-AADgPAAALD4AAFC9AABkvgAA6D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=7m14ZOXROi4","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["8338739356549651598"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11962927896750752197":{"videoId":"11962927896750752197","docid":"34-0-13-Z5322A7BA38214393","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3430042/1719b5319368de5e094a5b8126a6294e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/8_n6QwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpkjQ0PvsL68","linkTemplate":"/video/preview/11962927896750752197?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Proof that Similar Matrices Have the Same Eigenvalues","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pkjQ0PvsL68\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFgoUMTE5NjI5Mjc4OTY3NTA3NTIxOTdaFDExOTYyOTI3ODk2NzUwNzUyMTk3aocXEgEwGAAiRBowAAopaGhybHRrbWhlcGVlYXJnaGhVQ1FSYkFXS0QteGF4bkRPZ3ZOcWsxbWcSAgARKhDCDw8aDz8T5QKCBCQBgAQrKosBEAEaeIHy-vsH_wIA8vEGBPoE_wH9AvQG-P39AO0C_AQAAAAA6fwQBQQAAAD7BfX8_wAAAP4J7wL3_gAAFQT0APUAAAADAgsB_gAAAAAX9gf-AAAA-fENCAP_AAAF-gr8_wAAAAsMD_oAAAAADA__AgEAAAD69PIIAAAAACAALSN_2Ds4E0AJSE5QAiqEAhAAGvABfxMEA90M4ADeEOEAyRXi_4UhCv4bI-MAv_IKALASz__uFuEA8N7W_wkGMwC8Jfn_L9nV__DV7AA14PwAHOjwAOMDDQEnwPYBIg0LABT4-ADgCwr-JNYSABba1gIMAAD8HQQD_Nrm0QEaFNABFugoAvwXIv8n5Q4B5d8S_f_-BgXm99v9BRYNBOrcEvzbGB0B9gUAAwAGCfrnBPMB-dnz__zlA_sHKtn-FfkHCPf-8gTlA_8E_QHpAyYa_gH9_wP7--sW_vXoCP7w9BQEFd0NCPn2-v0I9QIFBPf-AvnzDQXv4AD32_73Bffk9gHG6v78IAAtBLoiOzgTQAlIYVACKs8HEAAawAfpYtO-ivAFPZB4wzyagpu9qbUXvAMFXr0U2pi9J095PQsRibsYmAU-gDPrO3-zvbuhSHe-c1a6PKQ2Mb3FVYU-VDBvvZt_KrzZQ0u-Q5J2Oyl_gr0UB1C-k3Z-PIqaHr3SSJU9_iLNvB7tCT0dAPE99dUVvfmeMb2zrna96z3wvCCAL71PCHw7ctJFvd-KRLx9ADc9-1wNvXU_pzrtr4g9g-4cvS7aa7v1JUA8h7-mvKBsirzMG1S79iUbvPUZBr2aP4Y96dVAPYTZ37uWGus7qpm1ux8shLspD2G9QDX7O_d2y7uNf587oY59Pf8JLrxi9Iw9nn7Qvb52XbttrOS9phEuPZROwTv1vCs-zSx4PPp6vjxPPAe9DXnKPYdg5jtShw88UBOivKBsirylS689ANuWPZlho7qZ4mA8Nek7PTmfEzz9cbE8eES1PbVXejz081A908APvbuSrrxQCDM9Cb8avCRQVLsbFGi95qzPPNZcibzttwY-UofPu7woVbxj1LU8TqI5Pew9WblFXKU8c7j2veQENzzO8ga9kDiKvZzLQ7wisJg9FsZxPCO7d7zcEc498ZP2Osr8UzmhEY27ubAkvODC9LrDPps9E481vSUkEjxaari9mzTyPBWrBrxuIqk8jKZOPZtR1rvEknY732-kPVxAwzrcqIS9hzQqvV9Wk7sDJ7s9TayCvN7bALs7Bl89eLcSPUHGs7r3P6s9QyHduyr5u7st5xc90ILrvN8MKzs1HjG9eIY_veA7nDqUQLQ94M1kveKHajlKoWc96QeaPPMaJzkb6qG9sluVPSzZmTh6ffc8Kh60upYYp7fLovC8W0IevjcF4znJ0Iw8WT_svPIqmzkUrQE9BMCdPCrwo7g-Qp296KpUvZaHTrnxQqE7dWB0PaW4bDn6WGY9cNWQPAwjYLhy9z69_ybvPN5GjLjRuny9J3U4vJg2VTkPd1q9LUb4PFwcFjhB8QM9cU_Bvdc4ezl5-am7pyXGPcSu_7g-Jg09I-CbPbDrHLh7kqo8L4JLPWEN77jTzwg8ZjHRvT5Llzbb0J49duOYPVAF9bhodTK-ZKQoPRfKTLcESP68t9OWvRhjLrac5ao7FhWxPNNV27dqaAO9en1XvRqV_zeSXRk-2U9QvazCP7m6lhy8SepOvVhMfbk6Weo8_wDOO4GmorWtJEO9DHNHPR7BFjfsA707fNQPvhf63LjK9HA9IuErPvHLijiYk2U7gAvSPZjkD7lgRqe9F4EQu5N02TfOK6i8-qkHOj1V4zcgADgTQAlIbVABKnMQABpgJgIAMP4qw9sB59fduA0g8_riqyi7Bf8TCv_39BLU_BMZwDIj_zLmL_OhAAAAMOXr6koA1XzxyPLs_wP82pbjBx16FhlD7fD_9d4d-Pz30THJ-Ax_AP_ktEAt18QQQzIcIAAtIgEZOzgTQAlIb1ACKq8GEAwaoAYAAIBCAACCQgAAlkIAANDBAADgQQAAYEIAAJhCAABAwQAAgMEAABBBAABwQQAAIMIAAATCAAAAwQAAlkIAALjBAADYQQAAisIAAIxCAAB8wgAAFMIAAMjBAAAYwgAAPEIAAJjBAACwwQAAVMIAAAjCAABQQgAAAMAAANDBAADwQQAA1sIAAABAAACOwgAAgEAAAIhBAACKQgAAQEAAAFRCAACgQAAA0MEAAABBAADgwQAAuMEAADDCAABwwQAAREIAAMhBAAAoQgAAuMIAAMDAAACIwQAAoEAAAAhCAAAgQgAAwsIAABBBAADIQQAAeEIAAKDAAAA4wgAAJMIAAOjBAAAMQgAATMIAAFDBAACowQAATMIAACTCAADOQgAAlkIAACzCAAAMQgAAPMIAAADBAAAMwgAA6MEAACBCAADAwAAALMIAAJxCAABQwQAAcEIAANDBAADQQQAAiMEAAJDBAADwQQAAsMEAAADBAACoQgAA4MEAAADAAAAQQQAAUMIAAKDBAACowQAAlkIAAPDBAABcwgAAPEIAADBCAABcwgAAQMIAAKBBAACQQQAA8EEAAKjBAAA0QgAAGEIAAADCAABAwQAAIMEAAODBAABYQgAAyMEAAKjBAADQwQAAAMAAAAjCAABEwgAAcEEAAADCAAA0wgAAsEEAABBBAAAAQAAAFEIAAABAAACAQQAAkMIAAMDAAAAsQgAA6MEAAJhCAAAAAAAATEIAAEBAAAAMwgAAIEEAAMhBAAAAQQAAMMIAACBCAAAoQgAAaMIAAHBBAABwwQAAMEEAAAzCAACGQgAAGEIAAEBAAACgQQAAEMIAAEjCAAAwwQAAAEEAABDCAAAQwgAAPEIAANBBAAAwwQAAgEEAAHDBAADYwQAAiEIAAJhBAACAvwAA4MAAAHBBAAAQwQAAwEAAAFDCAABAwAAAkkIAACDCAABAQQAAKEIAALTCAACEwgAAPEIAAIDAAAAUQgAAgL8AAETCAAAYwgAAgEEAAEDAAAAEQgAA0MEAAOBAAADQQQAA8EEAAFRCAACAwQAAeEIAAODAAACIwSAAOBNACUh1UAEqjwIQABqAAgAAMD0AAFA9AACuPgAAUL0AAKi9AACSPgAAEL0AAMK-AAA0vgAA4LwAAOC8AAA8vgAA6D0AADA9AACgvAAAyL0AACw-AADgPAAAfD4AAEw-AAB_PwAAQDwAAJg9AACOPgAABD4AAES-AACgPAAA6L0AAMo-AABUPgAAoLwAAEC8AAAwPQAAML0AAAQ-AABwvQAAgDsAAFy-AAB8vgAAir4AACy-AAAcvgAAoDwAAAy-AACAuwAAmL0AAKA8AACovQAAoLwAAEC8AAAEPgAAHD4AADA9AADIvQAARL4AAIA7AAALPwAAmD0AADw-AAAcPgAAQDwAAIg9AAAEPgAAML0gADgTQAlIfFABKo8CEAEagAIAABy-AABQPQAALD4AABe_AADgPAAAiL0AAHQ-AADgvAAAiL0AADA9AACgPAAABL4AAKA8AAC4vQAAND4AAFC9AABwvQAANT8AAFC9AABEPgAAiD0AAAS-AACovQAA6L0AADA9AACIvQAAiL0AAKA8AACIPQAAyD0AADC9AAAsPgAAXL4AAEA8AAAUPgAAoDwAAIY-AAAUPgAAZL4AACS-AAAMPgAAuL0AAOC8AADYPQAA4DwAAKC8AAB_vwAA4LwAAIA7AABQvQAAmD0AALg9AAAMPgAAgDsAAJi9AACoPQAAgDsAAFC9AAC4PQAA6D0AADQ-AACovQAAmL0AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=pkjQ0PvsL68","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["11962927896750752197"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"657061348"},"8886576399207001489":{"videoId":"8886576399207001489","docid":"34-0-1-ZF6C554F4FB1C456D","description":"See Colab Notebook https://colab.research.google.com/dri...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1783596/13249ee3b5565ba295261959a9f39f53/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/rzNIMwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpUypnuW85o0","linkTemplate":"/video/preview/8886576399207001489?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Making Long Term Predictions with Markov Chains","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pUypnuW85o0\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFQoTODg4NjU3NjM5OTIwNzAwMTQ4OVoTODg4NjU3NjM5OTIwNzAwMTQ4OWqHFxIBMBgAIkQaMAAKKWhocmx0a21oZXBlZWFyZ2hoVUNRUmJBV0tELXhheG5ET2d2TnFrMW1nEgIAESoQwg8PGg8_E-gCggQkAYAEKyqLARABGniB-wPzBwAAAPPzA_gIAQABAgwA__f__wD4BQz5AwP-APQKCwUJAAAACv33_AMAAADmAfAA-QIAABUE9AD1AAAAJwD9BvsAAAAJEPsO_gAAAAT9EgAD_wAAAP0J8_8AAAAGBfv2_v8AAAQBA_wAAAAA-_kBBAAAAAAgAC2aTNQ7OBNACUhOUAIqhAIQABrwAX_6BAPR-9L_CAXtALkV6wCQCSj_GyTiAKzwMQLQ8xQA7gbrANP7y__o5Rn-4xoa_zDY1P8P2wUAN8zn_xX-_AD9BgQBItwKAFH8_AHw493___45_xLfGwAUBv4BC-Tm_x4EA_za5eoD_fnW_Q7-OgEMBykDDPQOBwHnHf3XFAIB_Ojh_f3w8AQA6fr-y_4dAfIJ1_r3Gfb57CL-BA706wDr5Qn19ibsAjAVEgUEHPsA1xTqBPPd0v8JGRAE-Qr7-w8WCATm8_v0Evv8DRrU8wQk4QT6IAcAAxL98wgMAQL16PoC98Ip-gXh8hEJ5AT_AyAALa6gHzs4E0AJSGFQAirPBxAAGsAHK4TtvjcLxTuzbLm7yXeEutU15Dz78c28u9urvKUyID2T29s86lGCPBE-b7wH9ci8cja1vt6ecT3sWYS6LQtWPrCKXL1BLSa93PQXvn7UNT2qYg084Lttvl6Klj0WuUy8bLDwPAproTsO2aO60R8qPuqwIr1Qwsy8qarIu7JdJr1fwQy9839dvYGGDb0dkYy6-A29PSj5h7zZPTk9007tPXVADb2daR29vE-PPSvWhT07n0u8136nvQv9Xbx3S3K8uy-yPRY8-zylBRq7Q8c9OrjZKb3ZWp-8wyZXPI_7dj3nomw5fbHXvW5SbD1pp2a8rkTBOgqdVzxcDT88hneEvUdULT3fmbu7_c-7PXi5iD2rJoi8bD4uPMXF0T3_5qo8Vu-COmtuOzwOgvE6l-YmPiX8Nz3SywM7wtQbvbNhLT1vHj28Y2A9PQ8uyD19-e48IzKXPQzlCT1dZEg7ssuBPGoEgT3JDIq8NjwePMulDD3hPEG8z5pkPfZRXL176647c8aGPcD4gz04rvO7AV8bPKCpsrxCzCW8U4IVPOimqL3bXAq8imSePSAuFD14Zry6E8oMPZgkhbyYQrG7x3lJvHVnmjrNGyu79P7fPbyiJb2ULZa7vYqMvBSQOz1SNyO8rYEyvbdWxTz-MPy7OXhLvLpn3Ttvk906_kHJPFsMjr0d32Y7C6ixPfHD97yYjPu5I5olPQDTiL1Ef4w5WrNaPT12kb3qhti6ppbSPJPH9LvelkA70G-pPIuK-jsxm9860UjKPQvqgLyO7eC4MnVXveVSiz0qty05rm7rvKbwID0Llp652j_qPAlG77xybWq6BdP6u_hOgb0J-ZG59O-jO4_9rLygCmU5W2v_O4PAyry1KSo5s8Ugu1FAxL1vPew4O0xBO3MCBzxpyyK5y6nTPFBoHzxuiaK4kE3SvUP2i7w0XEa5ZNiXvbk_Tb2Fvns5FZXovDfh3jvlKi-43wMPPcCwPL3QoBO4p70XPVZswjy1l0U5VW0HPiczDj7R4ee4uEclvBeC3D0mHeU3EtG3uwz9iL1QZfo39Oi8PEOjJT2MF9u3dz2HvaTDwzyAr8I4359XPdHHYb3ud6o4sTSwPF47Rz25eEA4YV72vP1P2TyU4lE4weMrPtylaLwHiXS5iAIsPSM-AT1TFOY3poaRPCNjWr30foo3u4ilPM7IOz1FHIW3JtyQvBYwMb5BoFq5yvRwPSLhKz7xy4o47cSbPEVJyD3uUgq53H6evM_abb2MNb43v8gXPLPvmj1sAz04IAA4E0AJSG1QASpzEAAaYBIAADjVXw4B9yn50QPb-PfX5rojq_j_HN7_EgUA7hv84asf-AAEwk74mAAAAGHxz-FFANR_7sjpTAD3QsLaAAQHWQ0ZDtfELwEXN-wQxQoJ_AZBGgBEs8o1Sxz1NlUV6yAALRFfFTs4E0AJSG9QAiqvBhAMGqAGAAAkQgAAYEIAADRCAABcwgAAcMEAAGBCAACUQgAA4MEAAMDBAABgwQAAkEEAAOjBAAAcwgAAEEEAANBBAAAwwQAAgL8AAFTCAAD4QQAAwMEAADDCAACgwQAA4MEAADBCAABAwQAAAMAAALjBAAAgwgAAQEIAAIjBAACgQQAAiEEAAPTCAAAQQQAAKMIAANhBAACAQAAApEIAAPhBAABwQQAAsEEAAADBAAAQQQAAAMIAABBBAAA4wgAA0EEAADxCAACgQQAAFEIAAJLCAAC4QQAAwMAAADBCAACIQQAAAMEAAGTCAAAIwgAAmEEAAJZCAADgQQAAhsIAAMDBAAAUwgAAgD8AABjCAAAAQAAA0EEAAGDCAACgQAAAZEIAAGRCAAC4wQAAGEIAABDCAADgwAAAZMIAABTCAABYQgAAPEIAAJjBAADWQgAAqMEAADBBAACAwQAA8EEAAODAAAAYwgAAZEIAAABAAACAwgAAiEIAABjCAAAAQQAAqEEAAFjCAACwwQAAiEEAAKxCAADowQAAsMEAAExCAAAcQgAAMMEAAGjCAAAgQgAAgL8AAJ5CAACgwQAAQEIAACBBAABAwQAAYMEAAKhBAACAPwAAkEEAAODAAACgwQAAJEIAACDBAAA8wgAA4MEAACBCAACIwQAAUMIAACDBAABgQgAATMIAACBBAADowQAAAMAAALjCAAAUQgAAWEIAADTCAACIQgAAsEEAAABCAADIwQAAAMEAAGBBAABAwAAA2EEAABzCAABkQgAAVEIAADDCAABQQQAAQEEAABDCAACgwgAAXEIAAPjBAADwwQAAsEEAAPDBAACswgAAQMIAAABBAAAAwgAA6EEAADRCAAAMQgAAsMEAAABBAACAwQAAkMEAANhBAACAQQAAYMEAABDBAAAIQgAAAAAAAODBAADQwQAAEMEAAEhCAAB8wgAA2EEAABhCAAAAwwAA8MEAAIhBAACAwAAAGEIAAJbCAABswgAAqMEAAERCAACoQQAASEIAABDCAABAwQAAAEAAAGBBAABYQgAAAEEAAGhCAABwQQAAMEIgADgTQAlIdVABKo8CEAAagAIAAAw-AABwvQAAgj4AABy-AABEvgAAiD0AAIi9AAAbvwAAJL4AAEw-AABUPgAATD4AAOA8AADePgAAbL4AAPa-AABkPgAAiD0AACQ-AAAJPwAAfz8AAOg9AACAuwAApj4AAHC9AABEvgAA4DwAAGS-AAAUPgAAsj4AAKi9AADgvAAAuD0AABC9AADIvQAAZL4AAAQ-AAAsvgAAhr4AABQ-AACWvgAAEL0AAPg9AACgvAAALL4AAJg9AAAUPgAAoLwAABA9AACIvQAAkj4AAEw-AACiPgAAfD4AAIK-AAAQvQAAaT8AADQ-AABwPQAA2L0AAJi9AACgvAAAHD4AAIK-IAA4E0AJSHxQASqPAhABGoACAACIvQAAqL0AABC9AAAnvwAAMD0AAHA9AACAuwAA4LwAAMi9AAAcPgAAML0AALi9AAAUvgAAdL4AAGQ-AABwvQAAiD0AACU_AACAuwAAzj4AAHC9AACgvAAAEL0AAEC8AABQPQAAQLwAAMi9AABwvQAAXD4AAFA9AACIvQAAmD0AAFA9AAB0vgAAFD4AAAw-AAAMPgAALD4AAES-AAAwPQAAED0AAIA7AABQvQAAEL0AABC9AAC4PQAAf78AAKC8AACgvAAAcL0AAIi9AACavgAAiD0AABC9AACAOwAAMD0AAHA9AABUvgAAcL0AAPg9AABQPQAAQLwAAKg9AAAsPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=pUypnuW85o0","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["8886576399207001489"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2906144148"},"3609282179603029377":{"videoId":"3609282179603029377","docid":"34-3-3-ZF93AA13019AD2AC0","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3691966/bb1b43500e9b487b1327b5273a898cd9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pBj9RgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOXLalScAMl0","linkTemplate":"/video/preview/3609282179603029377?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Proof that Eigenvectors of Distinct Eigenvalues are Linearly Independent","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OXLalScAMl0\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFQoTMzYwOTI4MjE3OTYwMzAyOTM3N1oTMzYwOTI4MjE3OTYwMzAyOTM3N2qHFxIBMBgAIkQaMAAKKWhocmx0a21oZXBlZWFyZ2hoVUNRUmJBV0tELXhheG5ET2d2TnFrMW1nEgIAESoQwg8PGg8_E_sDggQkAYAEKyqLARABGniB_fz9Dv4CAPH7__8IAv8A8AP8Cfr-_gD1BgL_BwL_AOwJDgP-AAAA_RP69AQAAAD-Ce8C9_4AAAYF_fr7AAAADAELBPUAAAAMDe8C_wAAAPgB_AED_wAABgAIAAAAAAACAxP8_wAAAP8GBf0AAAAA__b-B_z2_gAgAC3TpNo7OBNACUhOUAIqhAIQABrwAXcE7P_TFe0ADyniAM8f-ACBAAL_JSb2AMLr9AC_980ABB3jANno5QHvDw4AvCX5_y7a1f8C6hUAN-rq_wDuEgDhBiEBMs8PAUcUDwHyEOf_7QkjAATiDAAV88v__RP7ABL-_wPk9fQB9RPdAQnZOAL5ASIFEwshA9v6H_7__gYF5vfc_QcHDwfb2gkA-R8YBAcF7v36Jgj85wTzAQ306wAN2wv8LRDnATH9AQTz9Pn47BH_B_UA9P4ZEAkOCQ4FAwrqFgID3vL64fwTDRXeDQjt-f3---oECA3-_vzm9Rnv8fT7_ego9__i8hEI1hID9iAALb9PJDs4E0AJSGFQAirPBxAAGsAHx6D7vkaxQT3Rmvo8qFTJvJjgFD0n3Gu9-DM8vIdLMz3EwZS7PtDqPZnO8zydh1G7BFQ4vpahorsESL68teGQProRNr0aiTA9dXT8vS8Tmj0LAhC9t7IkvikVwzxE0GK8jzI3Ou-cPL34cbQ8HQDxPfXVFb35njG9s652ves98LwggC-9MuPxu7FX87zJlv66jjazPBmPUjyhui867a-IPYPuHL0u2mu7zvYNPXOL1Lzf0bG7zBtUu_YlG7z1GQa98OfKOx-DVT3ij4c8xHk4vLJMv7uD-OE7KQ9hvUA1-zv3dsu7qMoyPX8U9TyJPG68ZUOdPXc1tL2QdjK9JjX0vX4DLj2rugI93bQZPj0W0TwDYPq7xmGqvatbnT3u1Jo7iFfjvA9Hl7xnLBi8LP6lPOdAxT2paKw86Y3JvOfC7Tzk7pi7oFRWPKuaGz1w1ju8UIQau432g71FwpK8UZgBPRaKVL3-SZe8jZuavXOVOD3s-4u8ESqyPRogKDt6UBK7wYvjPNLscDznGa-5RVylPHO49r3kBDc8zvIGvZA4ir2cy0O83cF-Pby7JD2Ie5G89gWpPcG80bxvfPG7kS4yO6KU9Ty3_uk72ULQPZQU2L0iEQm4ziaWvfqerDy14TC7cMGIPAeVnbzwcBq8Eo40PCbKOT3Qcuq78HiZvWt2Lr1EHvs73_nlPU2UjLt5K-A6FMgxPR7ykD23kOK5bHt7PU3gsTyripk6GuTJPNeevjwlmCQ7Cg2Ku4lIKLyChcG5oZ3TPVGBmL2XnVE5mcCIPfN23zzFB4q3rDzhvWlDVD2VW7I4H-dnPeujGTyfdY-33SqjvFc9wL2RBh459NIePSA197wAwl446MpWPGpcSTygN5E5bd1SvWNcszt5B4K5OJagOgL-3zzgxUi3sPOwPRPffTsTLJ-3q_sRvdaKmzwv4zi4xLBovV_g4joswJA5CBeMvR0mlrvbbbG3TKgAPcfwnb3-7jA5CvITveOdvT2VU9W4B2onPR9CBj2ecSa4Fx-wPEughz04M8e4BpwlvIxq0b36U_c3KFgtPasPij1WFJq4aHUyvmSkKD0Xyky3BEj-vLfTlr0YYy62fOGEPDf8sLpszNQ2LHkhvRwPgb33Zbk39wEoPnBh3b3xZ7-5d-kGtw3TKL26Uh83cwghPRzt2TvNAag3zJrYvOO1YT2Q36G3YQZ5PfM6Er5L56m4yvRwPSLhKz7xy4o4l7sDvNLTwT1Rasm4VdfGvbuZUbz5mlu3NCj_vIVHuLrBYj44IAA4E0AJSG1QASpzEAAaYDvxAEDtJPTxDS_k2rn_9g3iF9wa8O__87X_3_r06AMA0bgMHP8usxvoqAAAACTwAgUlAN5z5ATlEusCAPLKz_oUfxMqM9IRLxGx7xgGy9Il1z0PbwAV5q4RSe6cDykdGCAALYLgHjs4E0AJSG9QAiqvBhAMGqAGAAB0QgAAhEIAAHxCAADYQQAA0EEAAEhCAACEQgAAgEEAAKjBAADgwAAAoEAAAPDBAACgwQAAgEAAAOBBAAAQwQAAUEEAAJDCAADAQQAAPMIAAIjBAABAwAAAFMIAADBBAACMwgAAoMAAACzCAAAAwgAArEIAAADBAABEwgAAEEEAAOLCAACQQQAAlsIAADDBAABAQAAAQEIAAODAAABwQQAAwMAAADjCAAAAwQAAEMIAAODBAABMwgAA4MAAAIBBAABAwQAA-EEAANDCAABAQAAAQMAAABBBAAAMQgAAjEIAAL7CAACwwQAAREIAADxCAAAAAAAAKMIAAFTCAADQwQAAmEEAACzCAADgwQAAwMEAALjBAAAEwgAAzkIAAKRCAAA0wgAAkEEAAGzCAACgQAAAFMIAAABAAAAYQgAAMMEAAFzCAACqQgAAkMEAAAxCAABAwQAAEEEAAAAAAADIwQAAMEIAAABBAABgwQAAtEIAAMjBAACAvwAA0EEAAODBAADgwAAAYMEAABhCAACQwQAA8MEAADxCAACCQgAAkMEAACjCAAAQQQAAIEEAANBBAAAkwgAA-EEAAAxCAAAUwgAA4MAAAJhBAADowQAAlEIAANjBAABQwQAAwMEAAIDBAADQwQAAiMIAAPBBAACQwgAABMIAAOBAAAAgQgAAUEEAALhBAAAAwQAAMMEAAHjCAACAvwAAEEIAAGBBAACuQgAASEIAAAhCAADgQQAAOMIAAJBBAADIQQAAwEAAAFTCAABIQgAAAEIAAHjCAADQQQAAiMEAAODAAACgQAAAXEIAAPBBAABQwQAAiEEAABTCAAAgwgAAQEAAABBBAAAwwgAAQMIAADRCAAAAAAAA6MEAAMhBAABAwQAAFMIAAIJCAADQQQAAgEAAABjCAAAcQgAA8EEAAIBAAACCwgAAEEEAAJhCAADwwQAAoEEAAGBCAADEwgAAbMIAADBBAAAgwgAAsEEAADBCAAAAwgAAEMIAAJBBAAAQQQAATEIAAODAAACAPwAAQEEAABBBAACqQgAAAMEAAAhCAADAwAAA8MEgADgTQAlIdVABKo8CEAAagAIAAIg9AACYPQAA2j4AADA9AAAQvQAAdD4AAPi9AAABvwAAML0AABC9AABwPQAAmL0AAMg9AACSPgAAyL0AAOi9AAAkPgAAED0AACQ-AABcPgAAfz8AAAS-AADIPQAAoj4AAEA8AADovQAAuD0AAIi9AACSPgAAlj4AAIA7AAAUvgAAML0AAIg9AADgvAAAJD4AAIg9AAAcvgAAir4AAGS-AAAMvgAAhr4AAEA8AABQPQAAPL4AACy-AAB0PgAATL4AAJi9AAC4vQAALD4AAIg9AAA8PgAADL4AAIK-AACAOwAABT8AAAw-AACYvQAA6D0AABC9AACIvQAARD4AAEC8IAA4E0AJSHxQASqPAhABGoACAAAkvgAAMD0AAAQ-AAAxvwAAEL0AAJi9AABsPgAAEL0AAPi9AAA8PgAAQDwAAKi9AADgPAAAQDwAADQ-AACIvQAAFL4AADE_AAAQvQAAdD4AAIA7AAAEvgAADL4AAMi9AACAOwAAuL0AAKA8AADgPAAAgDsAABQ-AABQvQAAyD0AAMi9AABwvQAAiD0AAIC7AAAkPgAAFD4AADS-AADovQAAcD0AAKi9AABQvQAABD4AAIA7AADovQAAf78AAKA8AAC4PQAA4LwAAKg9AAAwPQAABD4AADA9AACYvQAAuD0AAIA7AABAPAAAFD4AAHA9AABkPgAAQDwAAFC9AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=OXLalScAMl0","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["3609282179603029377"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1159817704"},"16733626445907669566":{"videoId":"16733626445907669566","docid":"34-10-2-Z32F4FC974356A3F8","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1714005/3e32570e97bc1dc0b134fcd57493b9d4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/w1ifNQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DiE88GyfWbv4","linkTemplate":"/video/preview/16733626445907669566?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Given Col A Find a Possible Matrix A","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iE88GyfWbv4\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFgoUMTY3MzM2MjY0NDU5MDc2Njk1NjZaFDE2NzMzNjI2NDQ1OTA3NjY5NTY2aocXEgEwGAAiRBowAAopaGhybHRrbWhlcGVlYXJnaGhVQ1FSYkFXS0QteGF4bkRPZ3ZOcWsxbWcSAgARKhDCDw8aDz8TsAKCBCQBgAQrKosBEAEaeIH-9PMCAv4A9fT7AvkE_wEQDfoCCf8AAOAO9QQD_AIA9_wKCwkAAADxD_cH_AAAAP4J7gP2_gEA9gsAAgUAAAAPA_7__AAAABER-vj-AQAAAwIHAQP_AAAABw8FAAAAAAD_BAEEAQAABgwG_AAAAAD-A_0A-_T-ACAALcxw0Ds4E0AJSE5QAiqEAhAAGvABfxfwAN_36QHg9-3_yyH4AJUUDP8dJeEAxhEiAdHd7ADwB8kA4_3ZAO4QDwDSDQkAMtfS__DeEf853fwAJNXvAe8uCwA2yxABLfwXAdMA4v_6GEUCB-4ZABTy3f8HDO7-Ax4X_QD_7ADh9-UFD_48AQLrJ_wz8BgB7uAq_fcJ9P33-Mj-7QP-BPPY_wbpByQBC_3YABUSCPr2KvMEEOLq_wHPDf4NEtIAQvj1ACH0FgDmEgT66uTx-hUgIv7oKgP68_clAuHF9_vsIQoDRcAE_O8JBQofCeoI_hcD_Sfk-vTi5_YK-Bf5AL_sAgnhCPXtIAAt77kYOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTpT5FW9Ud6HPIviMLwyANS9YSYgPUKl2zz-Ddo9Xy1SPJz047xs7FK-d2RRPQMqF73FVYU-VDBvvZt_Krx1dPy9LxOaPQsCEL0x6iq-unDWOkESEb07PUo8QRguPBhjOzxUUwI-3Es6vXbMELwkuiK9CQyDvUvqJL1D5_W9f7YfvVoiAb1nPQI8ABIZvKYHBzwgB7o9gpE3vYiynLzO9g09c4vUvN_RsbvSzo-95ymhvBDf8Lv3qY89gM1evGo39jtKuIu9rTLTvEdQArxogEG9a5mxvP6co7udon48l0F5Oumnbry7u6k9kiSIvXIoWbqt-QG-VKWSPCHR3zstN8I9uUZVPfiunDwmDHS9XUa7PUwsujxShw88UBOivKBsirxkk9w9bv1PPGcxzDzxAee5aUq8PNrKB7z9cbE8eES1PbVXejz-H_E8fP5qvVwYzrzPPpA9XPr8PCofwrwbFGi95qzPPNZcibw6ETM9SkqVvNSxkDvCZL89SIcMPecR6btFXKU8c7j2veQENzxh3qM8hjzivVlJcbsYsCQ9MR3fPFWFyDsiiuk9_fsnvcH-a7wK28-8KnAVvE980rsCyIo9OIyNvRTHZLvsyYK93igoPaHANzs0kYi99KZiPX5m2rvLmOe8Wg25PeyMiDu40gY9CFbVvT66Errf-eU9TZSMu3kr4DpRbUs9YdULu7aGbztiL1Q9KaPAvL93I7uCC2g8Hci6vPPEGjwnvQ-9HSCYPARMiTtq3oE9UWZovQIWhDnVCP08vb31PCKsjrkzxZy843-cPb_uWjfB0hC8_ZMuPL2rizlq9iO7752nvWJI3Li4Q-A7iowzvE0kPLliqs88VjDouqkjXDgS9UK9IhjnvXga6je6ZWq71928vO4Byrh4npM9brjZPP2onbiDN6-96PbSvOnHjbdxTzy9f9U2vDSgvzgTiDI87UqmPCghqDhar4M9AY_DvabRWjnjb3I5yb-gPbn9JziWdmo8T0dWPU3MPrj2RzM9pjRxPQrtsbiaBxA93jjJvQg0-zYt97g8D4qMPam9irhodTK-ZKQoPRfKTLdu1FQ8tESdvDPnADj1uO88EnYAPRKDvjj6sCO9KPCxu9BzxDiSXRk-2U9QvazCP7lLLzs9o9SEvQPscri77YK8l-ahvfo4_7ebS1u9kjynPW1wgThhBnk98zoSvkvnqbjK9HA9IuErPvHLijhPyw89Th_mPIc1t7hgRqe9F4EQu5N02TcLMU28rSHnvIMYyzcgADgTQAlIbVABKnMQABpg8PQANQFO4g8WG9bD2-4A_PfYxyrUAv_ZxP8RJOHqAhDfsTQD_xO8N86jAAAAJuP5BwoAzn-46gQnIwsZvNrYAx14KTIkvsst9r8bSiC33FcCEQ8xABPXuSMeLcVOLv0iIAAtu1gWOzgTQAlIb1ACKq8GEAwaoAYAADhCAAC4QQAAdEIAAJDCAACAwAAAwEEAAIZCAACAQAAAsMEAAMBAAACQQQAAEMIAAHDCAADAQQAALEIAALjBAADAQAAAXMIAAFhCAAAowgAAKMIAACjCAACuwgAAQEIAAEDCAADAwAAAwEAAAIBAAACAQQAAEEEAAHDBAACgwAAAjMIAAJhBAAAAwwAAEMEAAAAAAACQQgAAQEEAAEBCAACAQQAAiMEAAFDBAACowQAAIEIAADjCAABAQAAApkIAAAhCAAAcQgAApMIAAPDBAABgwgAAQEIAADBBAAAUQgAArsIAAJjBAAAQQgAAOEIAAKBBAABAwgAAPMIAAGzCAACgwAAAhMIAALjBAAAAwAAAhsIAABDCAAB8QgAAkkIAADTCAABoQgAA-MEAAATCAABYwgAAYMIAAABBAABAQAAAAMEAALBCAAAwQQAAoEEAAODAAACMQgAAAAAAAAzCAAAIQgAAMMEAABBBAACSQgAA6MEAAMBAAAAYQgAALMIAANjBAACAwQAAlkIAAAhCAAAkwgAALEIAAEBCAAAEwgAAqsIAAPhBAACoQQAASEIAAJDBAABMQgAAuEEAANhBAAAkwgAAcMEAALBBAACCQgAAUMEAAMjBAAAAwQAAwMAAALjBAABgwQAAIEEAABzCAAAUwgAAcEEAAEBAAAAMwgAAgD8AADDBAACowQAAQMIAAABBAACAQgAAQMAAAHRCAACgQQAAbEIAAFDBAACMwgAAUEEAAFBBAAAwQgAAgsIAAABBAADAQQAAgMEAAODAAAAAwQAAAMAAAKjBAABAQgAAEEIAAKhBAACAQAAAsMEAADzCAACowQAAAMIAACTCAAAkwgAAFEIAALhBAABAQAAA4EEAADBBAAAQQQAAlEIAAGhCAABAwgAAcMEAAEBCAACIwQAAsMEAADjCAABgwQAAkEEAAODBAACAPwAAVEIAAPLCAAAowgAAgD8AAIDAAABQQgAACMIAAEDCAAAQwQAAIEEAAHDBAADwQQAAsMEAAGDBAACAQAAAmEEAAIRCAAAAAAAACEIAAGBBAADgwCAAOBNACUh1UAEqjwIQABqAAgAAbD4AADS-AADCPgAAJL4AAHC9AAA8PgAAFL4AAAG_AAAsvgAAgLsAACw-AAA8vgAAjj4AAFw-AACOvgAAgDsAAJI-AACoPQAAPD4AAGQ-AAB_PwAA6D0AAMg9AAAkPgAAoDwAAOi9AABEPgAAhr4AAEQ-AAAEPgAAiD0AANi9AADgvAAAgDsAAAQ-AAAQvQAA4DwAADS-AACSvgAAsr4AAHS-AABwvQAAUD0AAIi9AACKvgAALL4AAMg9AADgvAAAiD0AAIi9AAAUPgAA2D0AANg9AADgPAAAcL0AAJi9AAAlPwAAMD0AADw-AACgPAAAqL0AALi9AADIPQAABL4gADgTQAlIfFABKo8CEAEagAIAAEA8AAAwPQAAoj4AACm_AADovQAAQDwAAKI-AADoPQAAXD4AABQ-AABQPQAA6L0AABw-AAD4vQAAoDwAAKC8AABQPQAALz8AAHC9AACSPgAAVL4AAI6-AACIvQAAmL0AADA9AACYvQAAyD0AAHA9AAAUPgAAED0AALi9AAA8PgAAXL4AADA9AAAEPgAAQDwAAKo-AACGPgAAfL4AAIA7AAAUPgAAUL0AALi9AADgPAAAML0AAHC9AAB_vwAAdD4AAHC9AABQPQAAgLsAALg9AAAsPgAAoLwAAIC7AAC4PQAAoDwAAPi9AABAvAAAoDwAADQ-AACGvgAABL4AAAw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=iE88GyfWbv4","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["16733626445907669566"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2416585208"},"3873375379787394354":{"videoId":"3873375379787394354","docid":"34-6-6-Z150B9AA526287658","description":"0:00 - Overall picture of MoM Estimation, Slide 1 3:41 - kth Theoretical Moments, Slide 2 7:55 - Computing Theoretical and Sample Moments, Slide 3...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3378280/79c2f99e8f75b06c152d0e8f88a23f9e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/tJuXJgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D06bIQUxFS2g","linkTemplate":"/video/preview/3873375379787394354?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to the Method of Moments Estimator","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=06bIQUxFS2g\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFQoTMzg3MzM3NTM3OTc4NzM5NDM1NFoTMzg3MzM3NTM3OTc4NzM5NDM1NGqSFxIBMBgAIkQaMAAKKWhocmx0a21oZXBlZWFyZ2hoVUNRUmJBV0tELXhheG5ET2d2TnFrMW1nEgIAESoQwg8PGg8_E5sGggQkAYAEKyqLARABGniB_An1AfsFAPUCCwACBP4B_Qj4_fj-_QDz_QH19gEAAPL79vr_AAAA_w0ACfsAAAAABAn_-_4BAAYD_QEEAAAAGAL9APgAAAAGA_YB_wEAAPz1C_wCAAAACgX9_QAAAAD-CwgE-v8AAAYNCgkAAAAAB_v-CQAAAAAgAC1gPeE7OBNACUhOUAIqhAIQABrwAX8A7wLEGeb_EhPyANId-QCbCCT_Byn0AM7sJADHA-YAHRn2AfHh2f_0-CH_1Sb-_z7j8f4Nzvj_MtHq__4H7gDfDhIBMt_9ACXjAwD_9Nf_6voe_Q_XBwAU3doCFfb_ARgSA_687uX-Df_bAhXqJQL_FxME__kN_vLrCwH1GAj_7-Pf_gj0-wDy4__73hYbAQD3AgYBEgL76QT0AQ317QAG8_36DCDyBCTyBAbt7fgF5x_xAAX38fwZHhIH-vz3AwUKEArw_vX68vUSBBTgDAgL7xD7CPYCBQP4_gIJ5An85PD6-OwU9ATrEf0Dyuz-_CAALX2cMDs4E0AJSGFQAirPBxAAGsAHL_3rvgpiBT3d1P47HMg_vQnqjDuczC69FNqYvSdPeT0LEYm70v_SPWkqdT1UlAW8oUh3vnNWujykNjG9xVWFPlQwb72bfyq8huMJvt8g9TysASq99aFrvoTTBz10NcO7zbNNPUX9RL22Jbw8wX6-PfL3wb0XrW28s652ves98LwggC-9K4jBvMMXHL1JW-a8fQA3PftcDb11P6c6bEhXPbHs-LxUhpa89SVAPIe_prygbIq8zBtUu_YlG7z1GQa9uy-yPRY8-zylBRq7lhrrO6qZtbsfLIS7JgWRvfxnkzvYnaw7qMoyPX8U9TyJPG682MIHPUTHmb3yO7K8OUK2vaRmlD1PsL883WA4PimmXD3jGz46A3NZvQ3mmj0vYy-8mscKu1iTgr2u9YW8HzxkPT7jRz3QAdE7lsUOPYGZmj3_x0-7qh5GuoCBgD1U02Q8ddadPH-5-zwoSbK8sgN4POujuLwNz4G8hwRivTeuej3-Nnq8ESqyPRogKDt6UBK7ggT_O6zR4TztLUC8RVylPHO49r3kBDc8XE2ovLlyUb1vVrO8J7ZnPYjO27tKiKi8ZfBhPWlRxLw_dP86NfvyPBbFhjxGKT47A8EtPey8cr2XuEG4c9nIvWIzez0J7cm7OnlsPHzzdjwu1ia8xJJ2O99vpD1cQMM68Z5jvV12jr2J1ca56wHTPajRmjx5OOQ7IALYPGj9Nz2XuY47RPO1PZYibzley_k6ppbSPJPH9LvelkA772WsvFhtI70sTxw7PmFEPecDfb0nlr24SC8vPRvUfrwCxga5Cr9PvSYe0D2AIzm5kG30PLLoR71t68C5rS-3Ov0S8b28I4k58913u9iTBrymSiO6-D2FPTBfFroUmwU45YySvZO5A73jfZ65bnHovMH7rz1T7ry4t0ROPal7A7l7tyi4nZubvN5ubjwPvQi4cU88vX_VNrw0oL84vH0RvfUnNj3h9bo4auNjPZbLa72LqTc5zq_BPEmTzD3fRIe4ACMDPQ7b1j0-T4w3MC4RvKibWj1jZvq4088IPGYx0b0-S5c2HaGgPTSgXj0DScK4yuEDvhDXHjyX_U43YUz-u9SYtb0ztII2plyGPcOb9Tw5waS3M_xXOnaKFb295DA4weMrPtylaLwHiXS5icK4vLyu37w_zpu2eR48PYX-U7ynKJq2rSRDvQxzRz0ewRY37AO9O3zUD74X-ty4yvRwPSLhKz7xy4o461zsvKqkpD0Bi8S4XCivvd4SKr38ImM3gRFqPC34Ibzka_43IAA4E0AJSG1QASpzEAAaYB0AABj2FNXOASzl1-DDFuTtLuAl6sIA7dUAFhjQ3P4Tzq8oCf8r_BPasAAAAAMF5f0kAPhu797DMv4OA9zV3ykTfzsQF_H37xTDABkny94H_MsjSwAu7KRDJA-1LCg_MSAALR-4JDs4E0AJSG9QAiqvBhAMGqAGAABIQgAAiEEAAIhCAACgwQAAmEEAAABCAACMQgAAIMEAAMBAAACIQQAA-EEAABDCAAAwwQAAMMEAAIA_AABQQQAAoEEAAFTCAADYQQAAmMEAAAzCAAC4wQAAcMIAALhBAACMwgAA0MEAALDBAADowQAAXEIAACDBAADwwQAAyEEAANbCAABQwQAAysIAAOBAAACgQAAAJEIAAKDAAADgQQAAiEEAALjBAADAwAAAcMEAABhCAACmwgAAUMEAABhCAADAQAAA8EEAAIjCAADAwQAAuMEAAEBCAACAQAAAkEIAALzCAACgwQAA-EEAAFRCAAAgQQAAlMIAAIzCAAA0wgAAGEIAAHTCAACAQAAAqMEAADDCAAAwwgAAokIAAIBCAACowgAAOEIAANjBAAAQQQAAWMIAAPDBAADAQAAA4MAAAMDBAACsQgAAQMEAABhCAACQwQAA8EEAAKDAAAAUwgAAFEIAAIjBAADgwAAAqkIAAGzCAAAMQgAAgEIAALjBAAAUwgAAAMEAAIBCAADAwQAAEMIAADBBAACoQgAAAAAAAGTCAACgQQAAAAAAAHBBAAAgwQAAREIAAFhCAABQwQAAYMEAAIA_AABgwQAAeEIAAIC_AABAQAAANMIAAPjBAABAwQAAMMIAAIA_AACgwAAAAMIAAMhBAAAAQQAAwMAAAEDAAACYQQAAkMEAAIrCAAAAwAAAikIAAHBBAACgQgAAsEEAACRCAADYwQAAHMIAABBBAABwwQAAEEEAAKbCAADIQQAAgEEAABzCAADYQQAAAMIAAGBBAAC4wQAAPEIAANBBAACwQQAAKEIAAJjBAAB0wgAAgL8AAEDAAAAkwgAAiMIAAOBAAAAMQgAAwMAAADRCAAAwwQAATMIAAChCAAAoQgAAQMAAABDBAAAoQgAAyMEAAATCAACOwgAAyEEAACBCAAAIwgAAmEEAAEBBAACuwgAAdMIAAKDAAAAcwgAADEIAAMjBAABUwgAAgsIAAMBBAAC4QQAAgEIAAADBAABQQQAAsEEAADBBAACYQgAAwEAAAABCAAAgwQAAwMAgADgTQAlIdVABKo8CEAAagAIAAJi9AACYPQAAdD4AAIA7AAAwvQAAmL0AAFC9AADGvgAA0r4AAIC7AACAuwAAmL0AABA9AADIPQAAqD0AAHy-AABsPgAAgDsAAIA7AADKPgAAfz8AAIA7AABwvQAAmD0AAEy-AABkvgAAUL0AAMg9AACIPQAAED0AAIg9AAAQvQAAmL0AAKg9AACIPQAAoDwAADw-AAA8vgAAHL4AADy-AACGvgAAEL0AAKg9AACIvQAAgLsAALi9AAAEPgAAqL0AAEA8AABcvgAAmL0AAIA7AAAUPgAAXD4AAFy-AABAPAAAGT8AABC9AAAUPgAAXD4AAOi9AABQPQAALD4AAGQ-IAA4E0AJSHxQASqPAhABGoACAABMvgAAcL0AAAQ-AAAbvwAAiD0AACQ-AAB0PgAAgDsAABw-AAC4PQAA2L0AAFy-AADKPgAA4LwAAAw-AACAuwAAkj4AAE8_AABkvgAArj4AAAy-AAC4vQAAVD4AAEA8AAAMPgAAQLwAAFw-AABMPgAA4DwAAHA9AABQPQAADD4AAJa-AACAuwAA-D0AAEC8AAAcPgAAsj4AAFS-AACIvQAAij4AAGS-AABAvAAAQDwAAKC8AABQvQAAf78AAOg9AADKvgAA2D0AAPg9AAAQPQAAoLwAALg9AABQvQAAHD4AAKC8AABsPgAAyD0AAHC9AABEPgAAFL4AABC9AADIvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=06bIQUxFS2g","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["3873375379787394354"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2998833392"},"8350084880997094111":{"videoId":"8350084880997094111","docid":"34-9-13-Z9D230B25FF870136","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2111387/05ce04a3c12b4d690ee927d7a3d4aed5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/iPE0RwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCSHrE30IqT0","linkTemplate":"/video/preview/8350084880997094111?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MATH 3191: Inner Product on Continuous Functions","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CSHrE30IqT0\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFQoTODM1MDA4NDg4MDk5NzA5NDExMVoTODM1MDA4NDg4MDk5NzA5NDExMWrVEBIBMBgAIkQaMAAKKWhocmx0a21oZXBlZWFyZ2hoVUNRUmJBV0tELXhheG5ET2d2TnFrMW1nEgIAESoQwg8PGg8_E_sDggQkAYAEKyqLARABGniB-wPzBwAAAPYBAfn7AQABHQL6_wMCAwDtBPz4BQAAAPECD_oHAAAA8AL3_gEAAADxBewK_gAAAAsBAP_sAP8AEwAFBPwAAAAPDf0DEv4BAfIHAg4E_wAAH_YGAwAAAAAQDAUBAAAAABYI_QEAAAAAAwwDBAAAAAAgAC2aTNQ7OBNACUhOUAIqhAIQABrwAX_6BAPaGgQA4yHxANIVBACDIQr-GyTiAM7jEQHBA-MADx7xAe_w5gDiIyUBuib5_zDY1P_x3xD_Itnx_wkHAQDsHBgAM80PATLwCAD_89P_8QwV_yfO7AED7N0AC_P5ABP-_gPGANsAGxXPAS_XJAEGICoJFfUfAvj4Hf_iAgoB5fbb_QoA9gn75Qr-6B0IAO7qA_n0-Pr5xAD2_xXl__4c7A_0CyTw9Q0IEwX3_vIE4w7z9xAB4AERI_8I9ALn-QT8Evrz9P795vgHACvUEAL65_b9-eQSCQHd9P_x8gvzzgX5A9ol_QTc5gMC1vgD7iAALa6gHzs4E0AJSGFQAirPBxAAGsAHuqP3vjGDpzwifF48moKbvam1F7wDBV69zKWXvXGq9Tw9PJU8n9ajPSHw9jxF9py8oUh3vnNWujykNjG9xVWFPlQwb72bfyq8ehcvvgg8MD0pn9S84Lttvl6Klj0WuUy8165fPY7Krb1PiuA8HQDxPfXVFb35njG9b4sIvUNHB7oj2Bi9Vj_AvBf4Rb07eYm75PuNPWfc77zjXeQ66-CwPX94jLx8FU-8IFKAumbWlDvshNe8ypQFPY2iAj27s5u8D_yOPfyMKz3fIPU8Sg8eu23FvrzCUY086_azvda-JTxV18a7ByRhPDHQtTwApjG82MIHPUTHmb3yO7K8JjX0vX4DLj2rugI99bwrPs0seDz6er48_Ouuu-4eZT2IA7I8FXUFvJ_EjLwxlDi8HzxkPT7jRz3QAdE76XYAPTBiBD0bB8U7qh5GuoCBgD1U02Q89PNQPdPAD727kq68UZgBPRaKVL3-SZe8jZuavXOVOD3s-4u8ESqyPRogKDt6UBK7hBwIPMO2Kj2CChw8cArrPEXvub32R-W5x4NtvVcQjr2dt1a8IrCYPRbGcTwju3e89gWpPcG80bxvfPG7qrVVvOZQ0DxP0GQ7wz6bPROPNb0lJBI8UAKmvXofQj0EwUq7kQsOPSHTtTzOnAG8Qj0iPC1xaT1Z6aQ7MdBVvYuZTr3m-P45ow3GPZavyzpgbr07YzEAPVddhzx0Ygs7euSqPSNfrrxvSIK5ggtoPB3IurzzxBo81u4LvBUb6Tk2eiw6k2KRPaaBP72Dk6y54h1gPdRrabzxbVG7X61_vS7isD0JAjo5IwVgPaxcAby3mRk4XFQLvZwV8b3cnnU5nDW4vP3SRzwvJHW6h-T_PO67_Tzynac5Y3RqveAZaL1Zb_23C9chvBxvfD2Mway4kfhwPbvv2DzVj084nEROvSrhiTyH-sY4UZ9kvWaJqbyZ8Vc5yeE4vSLYPT1odDG4UZQVPZR7a73iuHs5efmpu6clxj3Erv-4ACMDPQ7b1j0-T4w3W8gMvIuvgT03bjq5sRODPLaxs70Vqek4oyCIPbajcz0w3qi4aHUyvmSkKD0Xyky3joi1OtnKcL3_CWc3ldclPGIRYz1kB8A4QqFUPKnlHb2ejao4weMrPtylaLwHiXS52d3Nuzlkg7z2PrW3UroPPUTQYrwRYw44rSRDvQxzRz0ewRY3va8FPaVJCb6tnoW4yvRwPSLhKz7xy4o4uhOsvHLcuT10MBi5XCivvd4SKr38ImM3lRGyvGUwqzyLFY82IAA4E0AJSG1QASpzEAAaYC3xADTjCSjr-FPh_dzgJvfa4dtK2Nb__fH_6CwD58cZ375X5_8f9RvgpAAAAB4s2xgwAO1_1uzTHgczDLfSBfQqcjs1HtzjDfXy6TUo2sI_yhkfPwAB47AWSu2pUjEb-CAALRILGDs4E0AJSG9QAiqPAhAAGoACAACgvAAA2L0AAK4-AACGvgAAUL0AAKY-AACYvQAA7r4AABS-AABMPgAAuD0AAIC7AACGPgAApj4AANi9AACAOwAAqj4AAEC8AAB0PgAA-j4AAH8_AADoPQAA6D0AAKI-AAD4vQAAQLwAAFw-AAAkvgAAHD4AAIY-AACIvQAA4LwAACw-AABAvAAAXD4AALi9AAAQPQAADL4AABS-AACgPAAAgr4AAKi9AACWPgAADD4AAHA9AABAvAAAHL4AALa-AADYvQAAcL0AAIo-AADoPQAAvj4AAFQ-AAAEvgAAoLwAAB8_AABUPgAAQLwAABA9AABAPAAALD4AAKg9AAB0viAAOBNACUh8UAEqjwIQARqAAgAARL4AAOA8AAAMvgAAL78AAFC9AAAEvgAAfD4AACy-AAAQvQAAPD4AAIA7AAAwvQAA6L0AAAy-AAAkPgAAqL0AANi9AAARPwAAMD0AAOY-AADgPAAAoLwAAJi9AACYvQAAEL0AAOC8AAAMvgAAQLwAACw-AACgPAAAuL0AABQ-AACAuwAAor4AAOA8AAAQPQAAbD4AAMg9AADYvQAAED0AAAQ-AAAwvQAAHL4AAHA9AACYPQAABD4AAH-_AABEvgAAmD0AADA9AAD4PQAALL4AAIA7AACgPAAAUD0AALg9AACgvAAAir4AADA9AADIPQAA-D0AAIg9AACgPAAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=CSHrE30IqT0","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["8350084880997094111"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"980901698"},"13839153699414451484":{"videoId":"13839153699414451484","docid":"34-9-2-Z363D4258955FA02E","description":"0:00 - Introduction/Attendance (skip!) 7:30 - Course Overview and Canvas Tour 30:40 - What Is a Differential Equation 36:50 - Question 1 Worksheet 01 44:31 - Questions 2-3 Worksheet 01 1:00:53...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/219053/678c372509da583e72782d38dec121ef/564x318_1"},"target":"_self","position":"19","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dtey9riO2gwA","linkTemplate":"/video/preview/13839153699414451484?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Math 3200: Zoom Aug 17 - Reading Differential Equations","related_orig_text":"MathAdamSpiegler","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathAdamSpiegler\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tey9riO2gwA\",\"src\":\"serp\",\"rvb\":\"EqwDChMyNjUzODc2MjU4NzcyMzA3ODQwChQxNjI4MDQyNDE3MjMxODMwODExOAoUMTE4Nzk5ODM5NTYzNTc1MTk2MzIKEzU1ODA1NzY0NTk3ODEzMjQ5NTkKEzM1NjQ1NjMzNzM5MTM3ODU2MDYKFDEwNDIyMDkzOTQ2NzI3MjIxNjM2ChQxMDk0NDU0NTI1OTQzMzA3NjYzOQoTODUwMTI4MDQxMjk0NzU3NDQ0MwoUMTI0MDE2OTIxMjQwOTIxOTA1MTYKEzk1ODM2Mjk0MDcyNjMzNTQzMzQKEzgzMzg3MzkzNTY1NDk2NTE1OTgKFDExOTYyOTI3ODk2NzUwNzUyMTk3ChM4ODg2NTc2Mzk5MjA3MDAxNDg5ChMzNjA5MjgyMTc5NjAzMDI5Mzc3ChQxNjczMzYyNjQ0NTkwNzY2OTU2NgoTMzg3MzM3NTM3OTc4NzM5NDM1NAoTODM1MDA4NDg4MDk5NzA5NDExMQoUMTM4MzkxNTM2OTk0MTQ0NTE0ODQKEzM0MDA0MzY3MTIxMzEwMzM1MTcKEzY5Mzg2MTg3NTMzNjA2NjQxOTIaFgoUMTM4MzkxNTM2OTk0MTQ0NTE0ODRaFDEzODM5MTUzNjk5NDE0NDUxNDg0aq4NEgEwGAAiRBowAAopaGhybHRrbWhlcGVlYXJnaGhVQ1FSYkFXS0QteGF4bkRPZ3ZOcWsxbWcSAgARKhDCDw8aDz8TuiCCBCQBgAQrKosBEAEaeIH6_vvzCvMA_AAOEfcL-wMfAAEL8wMCAOr7CPkI_wAA5fH7_Pv-AAD4E_z9-gAAAAQB-Abw_QEAERD9_fYAAAAGDQUI9QAAABkH_wD-AQAA7vv7BAP_AAAd-wPy_wAAABEB6___AP8BCBANCwAAAAAY__UQAAAAACAALWxBtTs4E0AJSE5QAipzEAAaYDkJACwwIjQkOSTc6vv3CubdDLvupyD_2dD_G_X28ucc-6gM4wAtyiP5qAAAACbJFRAcAAR0K9WzRQkU39zUvxYbf8guwA3eCAvcIBzlExnr6ic_OADmBAwv4yC_RvomRiAALXgjHTs4E0AJSG9QAiqvBhAMGqAGAADgQQAAFEIAACBCAACQwQAAQEIAAJhBAAA0QgAAwEEAACjCAAAQwQAAuEEAACzCAAA8wgAAgEAAAI5CAACYwQAAEEEAADTCAAAAwAAAgMIAAABAAAAwQgAAKEIAAEBBAABAQAAAMMIAAODBAABQwgAAxkIAAJBBAAAIQgAAQEAAAMrCAADgwAAAJMIAAIDBAACgwAAApEIAAABCAAB4QgAA2MEAAFDBAACIQQAA-EEAAKhBAADwwQAAAMAAAMBAAAAYQgAAoEEAAPzCAABwQgAA4EAAAMBAAABgQgAAhkIAAM7CAADgQAAAFMIAAOBAAACAPwAAoMEAAKBAAAAIwgAA4MAAAIjBAACgQQAAmMEAAJLCAAAQwQAArkIAAKZCAABowgAAOEIAAOjBAACgwQAA6MEAAOjBAAD4QQAAoEAAAJ7CAAAsQgAAyMEAACRCAAAMwgAAcEEAAKBAAAAAQQAApEIAAIA_AACAPwAAEEIAACDBAACewgAAgMEAADjCAACIwQAAgL8AAExCAACcwgAAAMEAAIpCAAAsQgAAgMEAAKDBAADoQQAAwMEAAGhCAACOwgAAgEAAAIA_AACowQAAQMAAADDCAAAcQgAAmEEAAIjCAAAQwQAAUMEAAPBBAABAQQAAwMEAAADCAADQwQAAAAAAAMhBAAAAQAAABMIAAGTCAAAkwgAAUEEAAFzCAACIQQAA2EEAAIDAAACWQgAAaEIAAHDBAACAwQAAzMIAAIBBAACAPwAAQEAAAIBAAACAwAAA4MEAAIbCAADgQAAA4EAAAEBAAACgwAAAwMAAABhCAACwQQAADEIAAJDBAAAYwgAAyMEAAKhBAACAwQAA2MEAAKhBAADYQQAAQMEAAIDCAAAQQQAAQMAAAABCAABAwAAANEIAAMLCAAAEQgAAgMEAABxCAAAIwgAAMMEAAHxCAAB4wgAAAEIAAPBBAAAQwgAAlMIAACRCAAA8wgAAPEIAAIDCAACUwgAAwEAAADBBAACoQQAAMMEAADTCAACgQQAAcEEAAIhBAADAQAAArsIAAFDBAAAMwgAAqMEgADgTQAlIdVABKo8CEAAagAIAAIi9AACIvQAAfD4AAKC8AACCPgAAuj4AADS-AAAXvwAA4DwAAOi9AAA8vgAAkr4AADw-AADgPAAABL4AAAy-AACGPgAAgDsAABA9AADaPgAAfz8AABA9AAA8PgAAUL0AAAy-AAAUvgAAjj4AAKA8AABwvQAAFD4AAJI-AAAwPQAAMD0AANg9AADoPQAAkj4AAFA9AAAQvQAAkr4AAGy-AADCvgAAML0AAIo-AACgvAAALD4AAEC8AAAQvQAAyL0AACy-AAAwPQAANL4AACy-AAAQPQAA6D0AAKi9AACIvQAACz8AAAQ-AAB0vgAAPD4AABy-AAAcPgAADD4AAII-IAA4E0AJSHxQASqPAhABGoACAACivgAAgLsAAJg9AABdvwAAED0AAEA8AACqPgAAQDwAAI4-AAB8vgAA4LwAAHC9AACCvgAAML0AAOg9AACIPQAAgDsAACU_AADYvQAAAT8AAAS-AABcvgAARL4AAMi9AACYvQAAhr4AABw-AABAvAAAyD0AACQ-AABwPQAAFD4AAES-AABQvQAAgj4AAIC7AACYvQAAQLwAAJ6-AACSPgAAmD0AACy-AADgPAAABD4AAJa-AAAwPQAAf78AAOC8AACAuwAABL4AANi9AACoPQAAFL4AAOC8AACmPgAARD4AAKC8AACYPQAAND4AAKA8AABQPQAAnr4AAHC9AAD4PSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=tey9riO2gwA","parent-reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13839153699414451484"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"2653876258772307840":{"videoId":"2653876258772307840","title":"MATH 3191: Practice Example with Complex Eigenvalues and Similar Matrices","cleanTitle":"MATH 3191: Practice Example with Complex Eigenvalues and Similar Matrices","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VgFvbSv04j0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VgFvbSv04j0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":477,"text":"7:57","a11yText":"Süre 7 dakika 57 saniye","shortText":"7 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"24 mar 2022","modifyTime":1648080000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VgFvbSv04j0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VgFvbSv04j0","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":477},"parentClipId":"2653876258772307840","href":"/preview/2653876258772307840?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/2653876258772307840?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16280424172318308118":{"videoId":"16280424172318308118","title":"MATH 3191: The Diagonalization Theorem (with an example)","cleanTitle":"MATH 3191: The Diagonalization Theorem (with an example)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=iX0DbeSYfgw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iX0DbeSYfgw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":682,"text":"11:22","a11yText":"Süre 11 dakika 22 saniye","shortText":"11 dk."},"date":"24 mar 2022","modifyTime":1648080000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iX0DbeSYfgw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iX0DbeSYfgw","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":682},"parentClipId":"16280424172318308118","href":"/preview/16280424172318308118?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/16280424172318308118?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11879983956357519632":{"videoId":"11879983956357519632","title":"MATH 3191: Translating Graphics Using Homogeneous Coordinates","cleanTitle":"MATH 3191: Translating Graphics Using Homogeneous Coordinates","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8cZJbVsIsTU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8cZJbVsIsTU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":457,"text":"7:37","a11yText":"Süre 7 dakika 37 saniye","shortText":"7 dk."},"date":"12 şub 2022","modifyTime":1644624000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8cZJbVsIsTU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8cZJbVsIsTU","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":457},"parentClipId":"11879983956357519632","href":"/preview/11879983956357519632?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/11879983956357519632?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5580576459781324959":{"videoId":"5580576459781324959","title":"MATH 3191: Guided Example of Diagonalizing a Symmetric Matrix","cleanTitle":"MATH 3191: Guided Example of Diagonalizing a Symmetric Matrix","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KmgIFAf9IXk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KmgIFAf9IXk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":741,"text":"12:21","a11yText":"Süre 12 dakika 21 saniye","shortText":"12 dk."},"date":"17 nis 2022","modifyTime":1650153600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KmgIFAf9IXk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KmgIFAf9IXk","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":741},"parentClipId":"5580576459781324959","href":"/preview/5580576459781324959?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/5580576459781324959?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3564563373913785606":{"videoId":"3564563373913785606","title":"MATH 3191: The Basis Theorem and Dimension of Null and Column Space of a Matrix","cleanTitle":"MATH 3191: The Basis Theorem and Dimension of Null and Column Space of a Matrix","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GG0YJ3nUFH4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GG0YJ3nUFH4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":524,"text":"8:44","a11yText":"Süre 8 dakika 44 saniye","shortText":"8 dk."},"date":"6 mar 2022","modifyTime":1646524800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GG0YJ3nUFH4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GG0YJ3nUFH4","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":524},"parentClipId":"3564563373913785606","href":"/preview/3564563373913785606?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/3564563373913785606?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10422093946727221636":{"videoId":"10422093946727221636","title":"MATH 3191: Finding an Orthonormal Basis for Col A","cleanTitle":"MATH 3191: Finding an Orthonormal Basis for Col A","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mY93Y-fAySQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mY93Y-fAySQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":575,"text":"9:35","a11yText":"Süre 9 dakika 35 saniye","shortText":"9 dk."},"views":{"text":"26,8bin","a11yText":"26,8 bin izleme"},"date":"10 nis 2022","modifyTime":1649548800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mY93Y-fAySQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mY93Y-fAySQ","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":575},"parentClipId":"10422093946727221636","href":"/preview/10422093946727221636?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/10422093946727221636?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10944545259433076639":{"videoId":"10944545259433076639","title":"MATH 3191: Inner Product on Polynomial Vector Space","cleanTitle":"MATH 3191: Inner Product on Polynomial Vector Space","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RqEOv38uv1I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RqEOv38uv1I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":591,"text":"9:51","a11yText":"Süre 9 dakika 51 saniye","shortText":"9 dk."},"views":{"text":"3,6bin","a11yText":"3,6 bin izleme"},"date":"17 nis 2022","modifyTime":1650153600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RqEOv38uv1I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RqEOv38uv1I","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":591},"parentClipId":"10944545259433076639","href":"/preview/10944545259433076639?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/10944545259433076639?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8501280412947574443":{"videoId":"8501280412947574443","title":"MATH 3191: Python Lab 4 Instructions","cleanTitle":"MATH 3191: Python Lab 4 Instructions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=co2t5oejw1c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/co2t5oejw1c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":579,"text":"9:39","a11yText":"Süre 9 dakika 39 saniye","shortText":"9 dk."},"date":"7 şub 2022","modifyTime":1644192000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/co2t5oejw1c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=co2t5oejw1c","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":579},"parentClipId":"8501280412947574443","href":"/preview/8501280412947574443?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/8501280412947574443?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12401692124092190516":{"videoId":"12401692124092190516","title":"MATH 3191: Similarity with Complex Eigenvalues","cleanTitle":"MATH 3191: Similarity with Complex Eigenvalues","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lEpmIgGB0lg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lEpmIgGB0lg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":380,"text":"6:20","a11yText":"Süre 6 dakika 20 saniye","shortText":"6 dk."},"date":"24 mar 2022","modifyTime":1648080000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lEpmIgGB0lg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lEpmIgGB0lg","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":380},"parentClipId":"12401692124092190516","href":"/preview/12401692124092190516?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/12401692124092190516?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9583629407263354334":{"videoId":"9583629407263354334","title":"MATH 3191: Decomposing a Matrix into a Product of Elementary Matrices","cleanTitle":"MATH 3191: Decomposing a Matrix into a Product of Elementary Matrices","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Wf2any7rumE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Wf2any7rumE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":515,"text":"8:35","a11yText":"Süre 8 dakika 35 saniye","shortText":"8 dk."},"views":{"text":"5,8bin","a11yText":"5,8 bin izleme"},"date":"30 oca 2022","modifyTime":1643500800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Wf2any7rumE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Wf2any7rumE","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":515},"parentClipId":"9583629407263354334","href":"/preview/9583629407263354334?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/9583629407263354334?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8338739356549651598":{"videoId":"8338739356549651598","title":"MATH 3191: Finding a Basis an Eigenspace of a Complex Eigenvalue","cleanTitle":"MATH 3191: Finding a Basis an Eigenspace of a Complex Eigenvalue","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7m14ZOXROi4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7m14ZOXROi4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":485,"text":"8:05","a11yText":"Süre 8 dakika 5 saniye","shortText":"8 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"24 mar 2022","modifyTime":1648080000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7m14ZOXROi4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7m14ZOXROi4","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":485},"parentClipId":"8338739356549651598","href":"/preview/8338739356549651598?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/8338739356549651598?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11962927896750752197":{"videoId":"11962927896750752197","title":"MATH 3191: Proof that Similar Matrices Have the Same Eigenvalues","cleanTitle":"MATH 3191: Proof that Similar Matrices Have the Same Eigenvalues","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pkjQ0PvsL68","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pkjQ0PvsL68?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":357,"text":"5:57","a11yText":"Süre 5 dakika 57 saniye","shortText":"5 dk."},"views":{"text":"13,3bin","a11yText":"13,3 bin izleme"},"date":"13 mar 2022","modifyTime":1647129600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pkjQ0PvsL68?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pkjQ0PvsL68","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":357},"parentClipId":"11962927896750752197","href":"/preview/11962927896750752197?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/11962927896750752197?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8886576399207001489":{"videoId":"8886576399207001489","title":"MATH 3191: Making Long Term Predictions with Markov Chains","cleanTitle":"MATH 3191: Making Long Term Predictions with Markov Chains","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pUypnuW85o0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pUypnuW85o0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":360,"text":"6:00","a11yText":"Süre 6 dakika","shortText":"6 dk."},"views":{"text":"8,2bin","a11yText":"8,2 bin izleme"},"date":"24 mar 2022","modifyTime":1648080000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pUypnuW85o0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pUypnuW85o0","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":360},"parentClipId":"8886576399207001489","href":"/preview/8886576399207001489?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/8886576399207001489?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3609282179603029377":{"videoId":"3609282179603029377","title":"MATH 3191: Proof that Eigenvectors of Distinct Eigenvalues are Linearly Independent","cleanTitle":"MATH 3191: Proof that Eigenvectors of Distinct Eigenvalues are Linearly Independent","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OXLalScAMl0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OXLalScAMl0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":507,"text":"8:27","a11yText":"Süre 8 dakika 27 saniye","shortText":"8 dk."},"views":{"text":"11,9bin","a11yText":"11,9 bin izleme"},"date":"6 mar 2022","modifyTime":1646524800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OXLalScAMl0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OXLalScAMl0","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":507},"parentClipId":"3609282179603029377","href":"/preview/3609282179603029377?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/3609282179603029377?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16733626445907669566":{"videoId":"16733626445907669566","title":"MATH 3191: Given Col A Find a Possible Matrix A","cleanTitle":"MATH 3191: Given Col A Find a Possible Matrix A","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=iE88GyfWbv4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iE88GyfWbv4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":304,"text":"5:04","a11yText":"Süre 5 dakika 4 saniye","shortText":"5 dk."},"views":{"text":"2,1bin","a11yText":"2,1 bin izleme"},"date":"27 şub 2022","modifyTime":1645920000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iE88GyfWbv4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iE88GyfWbv4","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":304},"parentClipId":"16733626445907669566","href":"/preview/16733626445907669566?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/16733626445907669566?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3873375379787394354":{"videoId":"3873375379787394354","title":"Introduction to the Method of Moments Estimator","cleanTitle":"Introduction to the Method of Moments Estimator","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=06bIQUxFS2g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/06bIQUxFS2g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":795,"text":"13:15","a11yText":"Süre 13 dakika 15 saniye","shortText":"13 dk."},"views":{"text":"29,2bin","a11yText":"29,2 bin izleme"},"date":"2 nis 2021","modifyTime":1617321600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/06bIQUxFS2g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=06bIQUxFS2g","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":795},"parentClipId":"3873375379787394354","href":"/preview/3873375379787394354?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/3873375379787394354?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8350084880997094111":{"videoId":"8350084880997094111","title":"MATH 3191: Inner Product on Continuous Functions","cleanTitle":"MATH 3191: Inner Product on Continuous Functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CSHrE30IqT0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CSHrE30IqT0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":507,"text":"8:27","a11yText":"Süre 8 dakika 27 saniye","shortText":"8 dk."},"views":{"text":"4,2bin","a11yText":"4,2 bin izleme"},"date":"17 nis 2022","modifyTime":1650153600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CSHrE30IqT0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CSHrE30IqT0","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":507},"parentClipId":"8350084880997094111","href":"/preview/8350084880997094111?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/8350084880997094111?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13839153699414451484":{"videoId":"13839153699414451484","title":"Math 3200: Zoom Aug 17 - Reading Differential Equations","cleanTitle":"Math 3200: Zoom Aug 17 - Reading Differential Equations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tey9riO2gwA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tey9riO2gwA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUVJiQVdLRC14YXhuRE9ndk5xazFtZw==","name":"MathAdamSpiegler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathAdamSpiegler","origUrl":"http://www.youtube.com/@mathadamspiegler6463","a11yText":"MathAdamSpiegler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4154,"text":"1:09:14","a11yText":"Süre 1 saat 9 dakika 14 saniye","shortText":"1 sa. 9 dk."},"date":"18 ağu 2020","modifyTime":1597708800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tey9riO2gwA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tey9riO2gwA","reqid":"1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL","duration":4154},"parentClipId":"13839153699414451484","href":"/preview/13839153699414451484?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","rawHref":"/video/preview/13839153699414451484?parent-reqid=1769815493328132-17973642951608011074-balancer-l7leveler-kubr-yp-klg-315-BAL&text=MathAdamSpiegler","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9736429516080110747315","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"MathAdamSpiegler","queryUriEscaped":"MathAdamSpiegler","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}