{"pages":{"search":{"query":"MathPod","originalQuery":"MathPod","serpid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","parentReqid":"","serpItems":[{"id":"455741171451916760-0-0","type":"videoSnippet","props":{"videoId":"455741171451916760"},"curPage":0},{"id":"15436830548806815131-0-1","type":"videoSnippet","props":{"videoId":"15436830548806815131"},"curPage":0},{"id":"4001828616843278853-0-2","type":"videoSnippet","props":{"videoId":"4001828616843278853"},"curPage":0},{"id":"4539564197509348371-0-3","type":"videoSnippet","props":{"videoId":"4539564197509348371"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE1hdGhQb2QK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","ui":"desktop","yuid":"5506276101769479740"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"17372014448767605186-0-5","type":"videoSnippet","props":{"videoId":"17372014448767605186"},"curPage":0},{"id":"9776884393033231408-0-6","type":"videoSnippet","props":{"videoId":"9776884393033231408"},"curPage":0},{"id":"8676765850758613245-0-7","type":"videoSnippet","props":{"videoId":"8676765850758613245"},"curPage":0},{"id":"16335766288097340229-0-8","type":"videoSnippet","props":{"videoId":"16335766288097340229"},"curPage":0},{"id":"6688661299649937457-0-9","type":"videoSnippet","props":{"videoId":"6688661299649937457"},"curPage":0},{"id":"9952998091361659310-0-10","type":"videoSnippet","props":{"videoId":"9952998091361659310"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE1hdGhQb2QK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","ui":"desktop","yuid":"5506276101769479740"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"6324684100304861377-0-12","type":"videoSnippet","props":{"videoId":"6324684100304861377"},"curPage":0},{"id":"12872513650132361043-0-13","type":"videoSnippet","props":{"videoId":"12872513650132361043"},"curPage":0},{"id":"14031134107130370164-0-14","type":"videoSnippet","props":{"videoId":"14031134107130370164"},"curPage":0},{"id":"8159220707031112307-0-15","type":"videoSnippet","props":{"videoId":"8159220707031112307"},"curPage":0},{"id":"17897524586469138321-0-16","type":"videoSnippet","props":{"videoId":"17897524586469138321"},"curPage":0},{"id":"7012273611243830616-0-17","type":"videoSnippet","props":{"videoId":"7012273611243830616"},"curPage":0},{"id":"5907570783520883052-0-18","type":"videoSnippet","props":{"videoId":"5907570783520883052"},"curPage":0},{"id":"9776418811693863935-0-19","type":"videoSnippet","props":{"videoId":"9776418811693863935"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE1hdGhQb2QK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","ui":"desktop","yuid":"5506276101769479740"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMathPod"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"2230269801889672959473","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1466868,0,24;1457620,0,49;124067,0,65;1450255,0,84;1460717,0,50;1464561,0,91;1459297,0,31;1152684,0,54;1456929,0,0;1472029,0,54;1471623,0,3;1471379,0,35;1469990,0,20;1464523,0,39;1455766,0,58;1463532,0,58;1466295,0,15;1465947,0,48;1470858,0,33;1467148,0,45;1464403,0,22;1349038,0,96;1471919,0,76;1439206,0,83;1474027,0,31;1404017,0,92;1467158,0,52;1469426,0,74;912217,0,75;1002327,0,69;1396453,0,66;63006,0,33;45974,0,73;151171,0,25;128380,0,9;1281084,0,69;287509,0,49;1447467,0,37;1231503,0,90;1466397,0,57"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMathPod","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=MathPod","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=MathPod","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"MathPod: Yandex'te 498 video bulundu","description":"Результаты поиска по запросу \"MathPod\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"MathPod — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y2ef5c93bc6ae0b10fe284ac12cb3eeed","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1457620,124067,1450255,1460717,1464561,1459297,1152684,1456929,1472029,1471623,1471379,1469990,1464523,1455766,1463532,1466295,1465947,1470858,1467148,1464403,1349038,1471919,1439206,1474027,1404017,1467158,1469426,912217,1002327,1396453,63006,45974,151171,128380,1281084,287509,1447467,1231503,1466397","queryText":"MathPod","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5506276101769479740","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769479964","tz":"America/Louisville","to_iso":"2026-01-26T21:12:44-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1457620,124067,1450255,1460717,1464561,1459297,1152684,1456929,1472029,1471623,1471379,1469990,1464523,1455766,1463532,1466295,1465947,1470858,1467148,1464403,1349038,1471919,1439206,1474027,1404017,1467158,1469426,912217,1002327,1396453,63006,45974,151171,128380,1281084,287509,1447467,1231503,1466397","queryText":"MathPod","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5506276101769479740","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"2230269801889672959473","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":156,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"5506276101769479740","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"455741171451916760":{"videoId":"455741171451916760","docid":"34-11-2-ZC92E046E303F4389","description":"This video is an introductory video for the course Discrete Mathematical Structures. For complete Course : • Discrete Mathematical Structure...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3310346/0cc6a5e4fbddd0b217414b860faa885d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/T1EHyAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dh43uWcch-mE","linkTemplate":"/video/preview/455741171451916760?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Logic | Part 1| Discrete Math Structure","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=h43uWcch-mE\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhQKEjQ1NTc0MTE3MTQ1MTkxNjc2MFoSNDU1NzQxMTcxNDUxOTE2NzYwaocXEgEwGAAiRBowAAopaGhjaXlpcGdrYnRqcGppaGhVQ1MyczVpSnhXclV5NXhFckpoaTdhSncSAgARKhDCDw8aDz8T7ASCBCQBgAQrKosBEAEaeIHuBfwFAf8A9P4KDQIH_AELAO8B9v__APwF-fwHBf4A9PcD__cAAAD6EPD_AwAAAP339wL6_gAAAgUICAUAAAAWDPL5AAAAABMSBgr-AQAA9PH_AQP_AAAJBRD8_wAAAAUU9Aj-AAAACRcG_gAAAAABBAb-_wAAACAALWoszzs4E0AJSE5QAiqEAhAAGvABf_v0Ab0c4v8NG8b_ygwpAYIiCv4cJOIAtxUBAaX16AAUDuYB4tHu__fiHgDRDiUAPPbN_wPLFP8uD_YAKwUoAeYqJgEZ7R8CLwIHAOTz1gDmE-v_IOwFABbZ1QMMAAD8-_wSAOsC7wPeC9cBHOoVAg_jEwMD9f4F8B8Y-tMmCv_t39v-_yAS-unbEvztFDcBCvwW_AAGCfrU9fUCCv7XARrk__32Ifz4EeQCB-Pp-vb7AA31EAHfARQfIf7m7foKEPgbCfv-7wThKQ73NewP_MUKDP0d1v3-HRj_AvbaAPzx8Ajx1vUICOrxBf31DfQJIAAtY8sdOzgTQAlIYVACKs8HEAAawAe6o_e-MYOnPCJ8XjzEaw29gQZdOk7TZzz19HE9bg9nPbOJ3TwfgT-8TSzVPI1S17uf5Ja-G9hqPUoNTb1nYpo-TjqbvBrvWDx1dPy9LxOaPQsCEL0VN06-rTTpvGU6T7yazLg8vjmCvX_DHzx1DOO8irONvRUwJjyq_4291oOzvdSd57xD5_W9f7YfvVoiAb1GAJE9YcyxvQU2B72UlAU95zjduRm7EDyjMrC7DI43vTn1nLzYNU67G3R4PBShR7wDwcI9N0oovML4q7vcVX68_dc-vcogsbrfCQy9zylQObaOHrwRFlu7V1x8PeMkI71fjJI9ThE7vHHBvrz5oAe-9BqbPS-BgDv9z7s9eLmIPasmiLz866677h5lPYgDsjwQp4g94MhRumRU37qh2wY9C-iqPeeRfbvfdRE7eAwvPdUPAD3t7gM8Fy8UPHijhTwHKdg9_1nzvKCJsLzxSJs60a5CPImSNbzDCpy9STXHPCQpirsb7V09bxS0PFVMQToNJcm8tno4PZgU_rkzu9O8hCOtvdQO5zhC2F-8gN91PJ3yB7wLEnY93aF2O1uJbbvpCwE-qCCaPCilOTksSPO8ukawPN4W0TvnooY8T2WHvDYCEDw208i9fJQ2PC5zG7z-LNa8YVygvPO-O7yno029aYVuPUOKBTspxKs7J-uhvWwGeju7JT497KS-vLar57vrNzM9MWdRPcZx-ToF6gM9tkcPvR2EzrvQKUg7ky0cvfUHUjuMoUc6lrk0vRwKybiZtA49_7MGvv9MbzkQZ3Q93VmwPXymvzlO_VK9VymYvCyxATjmXIo8bRuGPHt7Wjn8s1W9dz2yvYUbMLilFV88hvmMPd_3Jzk4k4A9NMSMPWu50LgfYqi9PpB-O2WfyrnfNOC6w06sPeoJFbgWjbA9m5KHvJ58mTiARxS9uWA6vK9z4LjVU5C8Qi08vTTRazdhZmm8Na0-PQDuibhDuUO9ck1BvXMQfDcKgLG8JxfjPWJgkrnJW0m964gJPHOvr7hiRwg9AvjhuwRxULaaBxA93jjJvQg0-zZGl5q7aXGGvHfMcTjK4QO-ENcePJf9TjcV7QC9v9mgO3hZAbfz7kO9ZBUgvduGF7hqoq47UigLPAKYWTiSXRk-2U9QvazCP7kgcmS9ntkpvQQrf7gylO68uvi7vTYXJrjR3T-9rm6rPBKB17c_jsY9K94IvocitLjK9HA9IuErPvHLijiSqBy9R1UzPeavfLjnI5-9N8BxPO1kl7cuxA89HB0Bve2mqbcgADgTQAlIbVABKnMQABpgEvsAEesgIs4eUuLJ2dMf-OMM2Rvg6f_j0v_xLtP8_f8BwgQG_xqw9v6rAAAAL_jkKSQA63Tn9MYxyQPxrPzxDx5_6Bgg4gr8HqEK_PfWC-slGglOABTdqzYl3LIg-xoEIAAtIgcmOzgTQAlIb1ACKq8GEAwaoAYAAJBBAADgwAAAMEIAAIDBAABgwQAAUEEAAEhCAAAQwgAAYEEAAMBAAADQQQAABMIAABjCAACYwQAAuEEAAFjCAABgQQAAmMEAAEBAAABEwgAAyMEAAKBAAAAAwQAABEIAAHjCAAAQQgAAfMIAAJzCAACAQQAAmMEAAIC_AACAQAAAGMIAACzCAABQwQAANEIAAAzCAAC6QgAAFEIAAGBCAACgwAAAqEEAAKxCAACQQQAASEIAACzCAABAwAAAYMEAAPBCAAAkQgAAuMEAACBBAADowQAAQEIAAIhBAACIwQAA_MIAAJbCAAAMwgAANEIAADxCAACQwQAAyMEAAMzCAABgwQAAxMIAAIDBAADowgAAKMIAAHDCAAC0QgAAhEIAAITCAAAIwgAAZEIAANbCAABQwQAA8MEAAFRCAAAgQQAA4MEAAIxCAADAwQAA4EEAABBCAADYQQAAMEEAAERCAAAcQgAAwEAAACjCAACmQgAAuMEAAMLCAABMQgAAbMIAAIDAAACIQQAAjkIAANDBAABkwgAAiEIAAEBAAAAcwgAAeMIAANhBAADAwQAAgL8AAIDBAABIQgAAcEEAALhBAABQwQAAAMIAAKBAAADQQQAAQMEAAFDBAABwwQAA2MEAAODBAAAcwgAAGMIAAMBBAACoQQAAQMAAALDBAAAEwgAAQMIAAOjBAAAAwAAAoMEAABDCAAD4QQAAAMEAANDBAADwQQAAhMIAACDCAAAEwgAAwEEAAPDBAADgQQAAQMEAAFBBAADwQQAAUMEAAJhBAABcQgAAwEAAAARCAAAAQAAAsMEAAADAAACAvwAAIMEAADTCAAAEwgAACMIAADxCAACAwAAAAMEAAPBBAAAkwgAAAMIAADBBAAAAAAAA6EEAAIC_AADwwQAAAEEAAGhCAABQwQAA8EEAAIC_AAAAQQAA-MEAADDCAABwwQAA6EEAAAjCAABwwQAAoMEAAJBBAACYQQAAwsIAAODAAADIQQAAgEEAAJjBAACAwQAAAMIAAHDBAABAwQAAoMEAAPhBAABgwQAA8EEAAMjBAAAgQSAAOBNACUh1UAEqjwIQABqAAgAAfL4AAIg9AACmPgAA-D0AAOC8AAAlPwAAND4AADO_AADevgAA4DwAAIi9AACuvgAAQDwAABA9AABAvAAAoDwAAMI-AACAOwAAqj4AAAk_AAB_PwAAyL0AAFQ-AAAQvQAAQDwAAAS-AAAsPgAAuD0AAKA8AAD6PgAAjj4AAFC9AADgvAAAkj4AAOi9AAAkPgAAEL0AAFy-AABsvgAALL4AACy-AAB8vgAA6j4AAIA7AABMvgAAML0AADC9AACivgAAsr4AAMi9AAAUPgAAmL0AAFw-AACovQAAoDwAAEA8AABPPwAAoLwAAHA9AAC4PQAA6D0AAI4-AABkPgAAUD0gADgTQAlIfFABKo8CEAEagAIAAEy-AABsPgAAJL4AAB-_AAAkvgAAQLwAAFw-AAAQvQAAQDwAABw-AACgPAAA6L0AAAy-AAAEvgAARD4AAHC9AACAuwAACT8AAFy-AADKPgAAUD0AAKi9AADYvQAA-L0AAIC7AADIvQAAcL0AAIg9AAAkvgAAoDwAAHA9AABwPQAAgDsAABA9AABEPgAAEL0AAJg9AACCPgAARL4AAJg9AABcPgAAFL4AAIC7AADgPAAAmL0AAEA8AAB_vwAAED0AADS-AAAwvQAA-D0AAOA8AACYPQAAqD0AAHA9AADYPQAAEL0AAAQ-AABwPQAAcD0AAEC8AACoPQAAiD0AABQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=h43uWcch-mE","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["455741171451916760"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1372886827"},"15436830548806815131":{"videoId":"15436830548806815131","docid":"34-9-17-Z7E374694BEA801AF","description":"This video is about Optimality and Feasibility Criteria used in the simplex method, here I have proved a theorem giving these criteria and also an expression which we call as z(j)-c(j) is derived.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2986509/296b8d89661985f8f07b7d0ae22620cc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MP5SKAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DH3CPlsoEyHI","linkTemplate":"/video/preview/15436830548806815131?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematics Behind Simplex Method |Part-8| Optimality and Feasibility Criteria","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=H3CPlsoEyHI\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhYKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxWhQxNTQzNjgzMDU0ODgwNjgxNTEzMWq1DxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E-0IggQkAYAEKyqLARABGniB9vv7-_sFAPUJDgkEBf0BC_77CPf__wD2B_z__wL_AAL7BPwDAQAAAPz4Cv4AAAD9-PgC-_4AAAj9_v0DAAAAGAL9APgAAAAEBP71_wEAAP3_AgYD_wAADwP58_8AAAD4Cgb7-_8AAPAL_AUAAAAACwP8CQAAAAAgAC1ZkeI7OBNACUhOUAIqhAIQABrwAX8RE_7b9q4BwxPhAOgd-QGkLyX__DXRALn76AC6A-AA9f34AeYU0v8kGxf_tBPs_ybr1__1rvYAK9YO_zH7BgDm5-EBL-fsAC4AMAEX9vcB2g8c__fe7P722dD-HxrEAC75AQHnD9QBHhfJAhnlLgPnDzUBKO0AAdyu_QHc-_wC9erv-wwA9Qrgx_b71wUjAgzMEv4QBgj05ATxAe0AB_nt8Ar_DhPPAP7h_gHtJPED7_j9BQnq-wkc_gr87_nfCuXhH__sCAr638wD-CDuBffG_d39_ODyCgf6DgP2xAkHB_fo8eXu7_r7IfP_3wj07CAALR1GEDs4E0AJSGFQAipzEAAaYAPzABz8_u3qNBvy3tDOCNvsK9YEyv3_AfH_CS3w_fro-9g0EgAZ2SroswAAACbr2xb6APVoseXiFhUHJaLK5hYkf_8DBb_2FdbP9xf6-PosCRQ2SwDNAa8eQf-5Je8qFSAALRMqLzs4E0AJSG9QAiqvBhAMGqAGAACAQAAAcEEAAAzCAABAwAAAAAAAAIBBAABkQgAAyMEAAIBAAAAIwgAAAMEAAGDBAABowgAAwMAAALZCAADAQAAAJMIAACDCAAAQwQAAXMIAAADAAAA4wgAAUEIAAJhBAAAkQgAAIMEAADDBAADgwQAAgEEAANDBAAA8wgAAsEEAAITCAABQQQAA-MEAAFjCAAAEQgAAcEIAAKDBAADAQAAATEIAAMhBAABYQgAACEIAAIBBAABUwgAANMIAAHDBAACWQgAABEIAACTCAACAwQAA-EEAACxCAABQQgAAoEIAANbCAAAAwAAAcMIAAAxCAAAwQQAALMIAAKBAAADQwQAASEIAAFBCAADAQAAAyMEAAIRCAAAowgAAgEIAADhCAAB4wgAABEIAAABBAABcwgAAqMEAAAjCAAAAwQAAwEAAAIrCAAB4QgAAAMEAACBCAABgQQAAIMIAABRCAAB4QgAAiEIAADjCAAAYQgAAUEIAAIA_AABYwgAAYMEAANLCAADAQAAAAMEAAERCAACAwAAANMIAAKRCAABoQgAAbMIAABTCAABgwQAAOMIAADRCAACgwQAAPEIAAMhBAACgwQAAsMEAAKBBAABQwQAAgMAAAFTCAAAwwgAA6MEAABDCAAAIwgAAaMIAABTCAAAwwgAAgL8AAJhBAADAQAAAQMIAABDCAADQwQAAUEEAAJDBAAAowgAAMEIAANDBAAAAAAAAdEIAABhCAAAgwgAAvsIAAIBBAABAwAAAwEEAAADAAACOQgAAYMEAAEjCAADowQAA6EEAAMBBAABgQQAAmkIAAIZCAACQQQAAoEAAABBCAAAMwgAAssIAADDCAAAIQgAAsMEAAJBBAAAkwgAAAEAAAKhBAAAcQgAAREIAALBBAAAAQQAAiEEAADzCAADoQQAACMIAAFDBAACIwgAA8EEAAABAAACAQAAA0EEAAMBAAADAQAAAoEAAADBBAAA0QgAAmkIAAKhBAAA0wgAAAEEAAIBBAACQwQAAFMIAAGDCAADIQQAA2MEAAGRCAADwwQAAwMEAAADBAACuwgAAcMEgADgTQAlIdVABKo8CEAAagAIAAFS-AACavgAAUD0AAOC8AACovQAAuj4AAII-AAA5vwAAXL4AAOi9AABEPgAAir4AADQ-AACYPQAApr4AAMi9AACWPgAAgLsAAK4-AAAdPwAAfz8AABw-AABQPQAAlj4AABy-AAAwvQAAiD0AAAS-AAAEPgAAoDwAAFQ-AACivgAAiL0AADA9AAAcPgAAmD0AAJI-AACOvgAAkr4AAOA8AAC2vgAAfD4AADw-AAAUPgAAXL4AAKo-AAC2PgAAsr4AAEC8AADSvgAAyL0AAJg9AACmPgAAqj4AAMi9AABwvQAAQz8AAOA8AACoPQAAoLwAAIa-AACqPgAAmL0AAJK-IAA4E0AJSHxQASqPAhABGoACAACYvQAAmD0AADC9AAAdvwAAhr4AAGQ-AACOPgAAND4AAKi9AAA8PgAAUL0AADy-AABwvQAARL4AANg9AABAPAAALD4AACs_AADYvQAA6j4AAKA8AABQvQAAyL0AABy-AACYPQAAED0AAKi9AAAEPgAAJL4AALi9AABwvQAAqD0AAFA9AACavgAAFD4AABC9AADIPQAAJD4AAAy-AACYPQAAPD4AAFy-AAC4vQAAmL0AAIA7AAAwvQAAf78AAPi9AAB8vgAA-D0AACQ-AACIPQAARL4AALg9AAD4PQAAiD0AAJi9AAA0PgAAMD0AABw-AAAUPgAAQDwAABw-AAAMPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=H3CPlsoEyHI","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15436830548806815131"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4001828616843278853":{"videoId":"4001828616843278853","docid":"34-1-3-Z74AFC378C47EAC56","description":"This video is about Mathematical Induction-First and Second Principle...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2124883/93da324c72b4594714fc0186bb99a575/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kfXWKAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DsraSn2MPCfU","linkTemplate":"/video/preview/4001828616843278853?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematical Induction-First and Second Principle","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sraSn2MPCfU\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhUKEzQwMDE4Mjg2MTY4NDMyNzg4NTNaEzQwMDE4Mjg2MTY4NDMyNzg4NTNqtQ8SATAYACJEGjAACiloaGNpeWlwZ2tidGpwamloaFVDUzJzNWlKeFdyVXk1eEVySmhpN2FKdxICABEqEMIPDxoPPxOpBYIEJAGABCsqiwEQARp4gf7-AQj7BQD7_gL_AwT-AQkI__j3AAAACP7_-f0C_wDvAAX_DQAAAA8BAPsEAAAA9_78B_X_AQAUBPUA9gAAAA4D_v_9AAAAFAcC9v4BAAD9_AkEA_8AABEJCAH_AAAA-AoG-_v_AAD_CAMLAAAAAAAAAgYAAAAAIAAteaDiOzgTQAlITlACKoQCEAAa8AF_-_QB0PvS_-zvzQHaIysBrCsi__0w1QDYBvgBrhLN_-QH9AD477P_BxsSAMsB8P8P4NEAA8sU_yDE9_8Y4QAB6vQLACvp7gA4Eir_ERDcAc8fGv745xAAFtnVAxkZ4AAK8xH6CPvcAe4DxgIX5yoC6g4wAf_5Dv3c2vcC3uP_A-3f2_75APME4sz3_Pf1I_4WwQkDFBEI-tgS9P0LAwT-89gh_wMY5QX72PYE5f0C-vPfAvoC8977JwISAcj54v_-1xT25Qf8-Nnv-_xE8v78zv76_g7tAhEpCfj5AM75ARPe7QLo8PH7-x70_9zz9fogAC1jyx07OBNACUhhUAIqcxAAGmAl_gAiHkMCxvlL0uUJ3f8A1BT2Qt7X_9PR__8Hw9kO_83E6jj_8cwj1aQAAAA7DNtOFwDGevXo2zUSAAPVtd4UDH8FJBed4wPy4cz-DgEXUwza9CAA6eTCOA_spFI2HysgAC1qPRg7OBNACUhvUAIqrwYQDBqgBgAAgL8AAAjCAAAAAAAAQEAAALhBAACAwQAASEIAAEBBAAAEwgAAgMEAAADAAABAwAAAqMIAACTCAAAAQgAATEIAAABBAACAPwAAUMEAAATCAAAEQgAAgMAAACBCAABcQgAAcEEAAJDBAAAEwgAAwMEAAFxCAAAMQgAAEMIAAFDCAABUwgAAiEEAANjBAACKwgAATEIAAOBBAADAQAAAyEEAAKBAAABUQgAAsEEAAHRCAADwwQAANMIAAOBBAAAYwgAAIEIAAHBBAAAQwgAA0MEAAKjBAACoQQAAyEEAAFBBAACEwgAAOMIAAIDCAACMQgAAcMEAACTCAAAAwgAApsIAAFRCAAAgwQAAqEEAACzCAADAQQAAcMIAAHhCAACAwQAAgD8AAGRCAABwQQAASMIAAKDBAABIwgAACEIAAADBAACYQQAAJEIAAHzCAACgwQAA0EEAAATCAAD-QgAACMIAAEBAAADwwQAAAEEAAJBCAACowQAAgsIAABjCAADMwgAAgkIAAIBAAACYQQAAIEEAAJjBAACQQgAAYEIAADTCAACUwgAAoEAAALhBAAAQwQAA6EEAABBCAAAIQgAAkMEAAIBBAAAAwAAADEIAAJhBAACAwQAAAMIAAATCAAC4QQAAcMEAAOBAAACwwQAAqMEAABRCAAB8wgAAPMIAALjBAAAEwgAAHMIAAFBBAACYwQAAgMEAAFhCAACQwQAAcEEAAEhCAAAswgAAwMAAAJjCAADQQQAAAEIAAEBBAAD4wQAABEIAAIDAAACAwgAAsMEAANBBAABQQgAAQEAAALBBAAAMQgAAUEEAABBBAABwQQAAmsIAAJzCAADIwQAAoMAAANDBAACQwQAAQMEAAPjBAAAswgAAYEEAAIhBAACQQgAAeEIAAKhBAABwwQAA_kIAAEDAAACowQAAoMAAADjCAADAwQAAFMIAAFBBAAAQQQAAMEEAAMBAAADawgAAUMEAALZCAADAQQAAMMIAAABAAABQwQAAcEEAAIzCAAA8wgAAQMAAALhBAABAwAAAVEIAANDBAACAvwAAhsIAAFBBIAA4E0AJSHVQASqPAhAAGoACAACePgAA2L0AAIY-AACIPQAAZL4AAOg9AABcvgAAA78AAJq-AACGPgAA-D0AAAy-AABUPgAAPD4AAIK-AAAQvQAAgDsAAFA9AABkPgAA_j4AAH8_AADIvQAAgDsAAMg9AAAQPQAAiD0AADy-AABMvgAA6D0AAGQ-AACAOwAANL4AAFC9AABkPgAAMD0AAAw-AACgPAAAwr4AAKa-AABEvgAAZL4AANi9AAAQPQAA2L0AADy-AAB8vgAAcD0AAFC9AACgPAAAlr4AAJi9AAAwvQAAlj4AAHQ-AACevgAAoDwAABE_AACgvAAAcD0AACQ-AADIvQAAcD0AACQ-AAAwvSAAOBNACUh8UAEqjwIQARqAAgAANL4AADC9AADgvAAAJ78AAIC7AABAPAAAXD4AAIA7AABQvQAA-D0AAFC9AAAEvgAAgDsAAFC9AACoPQAAEL0AACQ-AAAJPwAAmL0AAN4-AADovQAA-D0AAAy-AADovQAAUD0AAKi9AAAQPQAA2L0AAOC8AABEPgAAQLwAABQ-AACAuwAAyL0AAIg9AADovQAAgLsAAMg9AAAMvgAADD4AADA9AABwvQAAEL0AAFA9AAA8vgAAML0AAH-_AADgPAAAHL4AADA9AAAsPgAAED0AAAQ-AACYPQAAiD0AADA9AACgPAAAML0AAIC7AABAPAAAcD0AABC9AACAOwAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=sraSn2MPCfU","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4001828616843278853"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4539564197509348371":{"videoId":"4539564197509348371","docid":"34-4-3-ZA4717A6BFDC35FEE","description":"This video is second video on Logic, Here I presented Connectives (OR, AND, XOR,.. operations) & Truth Tables, for the course Discrete Mathematical Structures. For complete Course : • Discrete...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4578966/33d001f21739db7631949f8bcc21468c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pK4HyAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DblFuDLHyUfM","linkTemplate":"/video/preview/4539564197509348371?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Logic | Part 2 | Discrete Math Structure","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=blFuDLHyUfM\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhUKEzQ1Mzk1NjQxOTc1MDkzNDgzNzFaEzQ1Mzk1NjQxOTc1MDkzNDgzNzFqhxcSATAYACJEGjAACiloaGNpeWlwZ2tidGpwamloaFVDUzJzNWlKeFdyVXk1eEVySmhpN2FKdxICABEqEMIPDxoPPxPsDIIEJAGABCsqiwEQARp4gfQI-wf9AwD7_P8PAQj7AgsA8AH2__8A_AX6_QYE_gD19wP_9wAAAPoP8f8DAAAA_fj4Avv-AAAKBQAIBAAAABER_vb8AAAAEhEGCf4BAAD8-AL_Av8AAAYACAAAAAAA-gv4Av4AAAABFwH2AAAAAAEEBv7_AAAAIAAtIz_cOzgTQAlITlACKoQCEAAa8AF_EwQD7ALhAd4Q4QDbEBQBkgkn_-og1wDQC-oAxOziAfcL-wDl_tsA_Q4QAKsRCwES3LsCDtwFADbN6P9Fz_7_-gD6ACnq7gAzJRcA_gXq_94OGf8Y6vf__czhAAgK1f4M-QP7_ODhAe8DxwIO_jkB9PcSATDxFgHgt_0B7wT6Avzo4f4CD-4J--YJ_u0UNQEcz_7-DAXz-tIu4wMAD_UJ5PAV__s25_sd8_cFBfz7_t7R-wYF9gYDAwgZAtET7f70-CMC1zYA_ef4BwAWCQT85QD4Bf3k9AkwBwQB8PgI__D0-_3b_vcF5x_9BuUi-vIgAC0EuiI7OBNACUhhUAIqzwcQABrAB9nM4b4mv2q8GfsWvAoHzL1XDxS8NIUOvcyll71xqvU8PTyVPKYO8j2V9DC8ZMlnuhToM77779w8WdOGvP29dD6SVEu9A7HsPHV0_L0vE5o9CwIQvbeyJL4pFcM8RNBivIJEibx1K4q9_CtYu7J1mj2ly9G8LegBvAGcxbt9_sG7oJJuvdxqGTr1EVi9E3xYvRt_hzzXN5u9rqliu52FeD28PpC7igU-vKMysLsMjje9OfWcvE8kc7y4ghw9Wg2JvHVmLD2mi8M8_3SoPFPQ7b0fMkC9kdeevPkpU70EAwg8b7l6PGNebDw7Dg09LU7rvNjCBz1Ex5m98juyvLHhSb4ukvY8TwidPKj8Cz6lg5U9JI6GvNJXm73dSFQ9GvQtu7sqUD36jUC8v---Os98oz24MlI9p9BUPMhtarvMkZk7riKKO41KJT3WIyg9LPOWPFuVlD3qDqi9MDCGvOeBWT0yFSg7ux3rvCpZib0ldDi7prXMuqpzFj0Enio9fPTEOyGNLzyqR5o8vM9xPMU1Qz34UQ2-CW8su3NawbxVvUG9-g56u-fMUT24oIg9WX0evG786T1M5K29K3Opu59uBby5wXU8aigcPG2kkTxeyHm9H6w1O1pquL2bNPI8FasGvNi_xrzE3lU8f_ExvK9meLwtN5I9nlUPO2wB57swR--9P5qguvUrXT1zET89sJXpuvubaz32C1Y9DisnupWNjT3qN5i9hVVvOmnMP73QYzS9yI-dui6JWL3d6TO99I2muu50nD2s4s29Kv-9Obcp_Tp_ukY9NfpOOdbsp73g-3Y8-TskOchKgrzZg4O7uCLEOcui8LxbQh6-NwXjOX-M1DwkwvU8Mx-8ubE0UD1kM4E9TRQ0OSXWOL0YzES9Hx_MOb1hkbzHq2K8wJHFuBR8rj0rwo094GRlOEy8CL26UJG5MhlBubSw5bvbeyK9gBzwOB80Fj3xr-88mgOJOOy5r7vFwZq9E4B2ORe-eT1_VK49OTHVOGtpybw6d7s8isLDt_ZHMz2mNHE9Cu2xuKr5BT0fDjK9weG_N22pYz2oNOI8sUW0uKBQz70V74Y9wtICOBJoj7tOg728dTKItsKG57yzoMu8TX9fuPcoszt6MRk92XrcOMHjKz7cpWi8B4l0uVxJAb3K3tK9FyIEuXX19LxZ3eq9DSPxNZtLW72SPKc9bXCBOIYQIT1cd9O93vObt8r0cD0i4Ss-8cuKODmhC73REIQ95dPVuG4Djb0naa49v_cWN85mGr0P7s68kCQ_tyAAOBNACUhtUAEqcxAAGmAO-wAhCCIO5CE_9tDc1Afn5w7r_dzn_93TAAYt3gAP8e_T-v3_Cr4V8bYAAAAoB-UkFQDgY-vg5knkDwm03ucKI3_yDibTFAPs2A0mCvH_6iEI5lgAD-LBOSPsuB7xCwUgAC3YUDo7OBNACUhvUAIqrwYQDBqgBgAAQEEAAODAAAAwQgAAYMEAAGDBAAAwQQAASEIAAPjBAAAAQQAAwEAAAARCAAAwwgAAHMIAAIDBAAC4QQAAisIAAIhBAACwwQAAEMEAAEzCAADYwQAAoEAAABDBAADYQQAAeMIAAARCAACGwgAAmsIAAJBBAACAwQAAAMAAAABBAAAowgAAUMIAAIjBAAAoQgAADMIAALRCAAAcQgAAUEIAAIDAAADIQQAAmEIAANhBAABIQgAAEMIAAGDBAACYwQAA_EIAADRCAAAAwgAAIEEAAADCAAA8QgAA0EEAAIjBAAD-wgAAjsIAABjCAAAwQgAAMEIAACDBAACwwQAA0MIAAADBAAC4wgAAkMEAANTCAAAEwgAAZMIAAKZCAACAQgAAgMIAACzCAABsQgAAzMIAABDBAADowQAAfEIAAEDAAAAcwgAAeEIAAJjBAADIQQAAIEIAALhBAABAQQAAZEIAAARCAAAAwAAAIMIAAJBCAACQwQAA0MIAADRCAABYwgAAAMAAAIBBAACUQgAADMIAAGDCAACIQgAAUEEAADzCAABcwgAAsEEAAJjBAACAQAAAUMEAAGRCAADgQAAAYEEAAIDBAADwwQAAoEAAALhBAACQwQAAiMEAAIjBAADQwQAAwMEAABzCAABcwgAAUEEAALBBAABAQAAAYMEAAOjBAAA8wgAAEMIAAKBAAACAwQAABMIAACRCAACAwAAABMIAANhBAABIwgAATMIAABDCAADYQQAAiMEAAOBBAACAwQAAQEEAAMBBAACAwQAAgEEAAGBCAAAgQQAABEIAAEBAAADQwQAAgL8AAMDAAABAwAAAWMIAAOjBAADowQAASEIAAADAAACAwAAAFEIAAAzCAADIwQAAEEEAAKhBAACwQQAAAMEAAAjCAACAwAAAbEIAAEDBAAAgQgAAoEAAAFBBAADAwQAAIMIAAIDAAAAgQgAA8MEAAHDBAACowQAAQEEAAIhBAADKwgAAQMAAAAxCAACgQQAAwMEAAKjBAAAAwgAAIMEAACDBAADQwQAAoEEAAKDBAADIQQAAIMIAAABAIAA4E0AJSHVQASqPAhAAGoACAAA8vgAAED0AAJI-AABQPQAAcL0AABs_AABkPgAAQb8AAN6-AABQPQAAMD0AAKq-AABwvQAAHD4AABC9AAAkvgAA4j4AAOA8AAC-PgAAEz8AAH8_AABMvgAA-D0AAIi9AACgvAAAcL0AAKg9AADgPAAAHD4AAPo-AACGPgAAgLsAAFA9AACCPgAAML0AAEw-AADIvQAA6L0AAGS-AACIvQAANL4AANi9AAB0PgAAgLsAALi9AACgvAAAUD0AAES-AAB0vgAAgLsAAAQ-AACAOwAAij4AAEC8AAAQvQAAUD0AAEE_AAD4PQAAUD0AAOA8AAAQvQAARD4AAGw-AAAUPiAAOBNACUh8UAEqjwIQARqAAgAAFL4AAAw-AACGvgAAK78AACS-AAAwvQAAVD4AALi9AADgvAAAPD4AANg9AADIvQAANL4AACS-AAAsPgAAiL0AADC9AAD6PgAAbL4AAM4-AADgPAAA4LwAAOi9AAAEvgAAgDsAAKC8AAAEvgAAUD0AAAS-AABAvAAAiD0AANg9AACgvAAAML0AAAQ-AAAwvQAADD4AAKo-AABEvgAAQLwAAHw-AAAMvgAA2L0AAEA8AADgvAAAUD0AAH-_AAAQvQAA2L0AAJi9AADYPQAAML0AALg9AAAQPQAAQDwAAMg9AADgvAAAqD0AAKg9AAAwPQAAQDwAANg9AAAQPQAAHD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=blFuDLHyUfM","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4539564197509348371"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3710929712"},"17372014448767605186":{"videoId":"17372014448767605186","docid":"34-6-6-Z25033EB0FF87CF2B","description":"This video is about greatest common divisor (gcd) of two integers a and b (not both zero), and about the concept of writing gcd as linear combinations of a and b. Divisibility |Part 1...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4321713/4d02848c902de19d7d9617f039c1355d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gyNUKgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_agxMnKikxk","linkTemplate":"/video/preview/17372014448767605186?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Divisibility |Part 3| Greatest Common Divisor","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_agxMnKikxk\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhYKFDE3MzcyMDE0NDQ4NzY3NjA1MTg2WhQxNzM3MjAxNDQ0ODc2NzYwNTE4NmqHFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E5AGggQkAYAEKyqLARABGniBBAvzAQAAAPf9CP37BP8B8PwABPv__wD-CwQP_wX-AOn8EAUEAAAA-v0JBQAAAADi-QD2_gMAABf3-_n0AAAAEPr1AfUAAAAD9Ab8DgABAQf47fkC_wAABPv-9v8AAAD2_BP8_wAAAAQBA_wAAAAACAkBFAAAAAAgAC14HNU7OBNACUhOUAIqhAIQABrwAX_o9AHYDtwAyPbUANg4GQKlLiX__DXRAMcCDwCM6NP__hjzAPgJw_8NCBf_3f_t_zTV0P_1r_YANe0A_xf-_ADrC_sANtnYACgaHP8f8eIB3yIu_QbvCQIY1tEDCAzt_vr8EwDx_OH69BbYARnlLQPk-S4E__gQ_dvJDQHH-PgH69zY_QAe8_zN0e764PUxB_jAGAEe-Qz72S30Avb69v0b4BEC-jzk-gLt-QDx9g326tjw-fwB5gQeJBYJ3w7vA_L2JwLs4fH46Of7_Enx_vzACg39D-wCEhEJCf4N3foDCM7t8eXu9Q_mFfwE5Rne8iAALTw7ETs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6CgfMvVcPFLw0hQ69zKWXvXGq9Tw9PJU8p834PewkrLy1hhe97DPHvfpysDyIvTC9_b10PpJUS70Dsew8dXT8vS8Tmj0LAhC9iQsQvjZqrrrOj_k7al0TPEZ8J70gcw67oDTEPabVUL0R_9Y5b4sIvUNHB7oj2Bi9mK1rvRflQ728SQK9ZTsbvFf0Xb2f2mM6C1UbPeSf_Ls41Na7NDzHPHADk731XTa8XR5GvBAGnjxhmS294Z-tPJ_a6jx5qM-4RCC9vbRgPb1b1Uc58g1AvbftO71aQmM86gd1Pb-ExDux1Qq9YvSMPZ5-0L2-dl27seFJvi6S9jxPCJ08RgrlPaOWIDxTze470lebvd1IVD0a9C27f2VKPb_R87z_zKC8YCETPRvcgT1OiM47xBA0PQRe3jtn_008CWTAPM9ZdT2FY7E8W5WUPeoOqL0wMIa8UAgzPQm_GrwkUFS7fJ10vTbCDD2ifdc5GimlPDjuGT2ZW6m7IY0vPKpHmjy8z3E8RVylPHO49r3kBDc8x4NtvVcQjr2dt1a8PRVGPeprpzx6BkO8bvzpPUzkrb0rc6m7N9JDvVXCcrsCuky7Dj4DPec6yL0vM2w83gLpvZiThjzp5Ji6rYEyvbdWxTz-MPy7fTuuu7Wlzj0-auG6P0GcO1ckFr4imgq6eROiPScBA7uQw9y7TBGaPUh9Yz06hV652scqPSFLNb2Atri7m9zUvPNNJL3-XBc7iKZHvVdgg710_2c43WGTPbuXC76lDmg5XS-iPUSidTys0Ic4izy0vX01UT04Hxg4Pz8EvHEoEbyqCjK6y6LwvFtCHr43BeM5A4vBOcGYIz0hy9O4qGcLPUMpkD1tYoM5L1DyvahcnL1DgL-3lw2hvEj1wjz0CJq4gxPRPSHz9bswSxA41zTKvGwA_Lv3a6-4vRiKvNnUVLyQe0M4yCiqvOWiED0Mp5A4TKgAPcfwnb3-7jA5n_FxO6XYAT6orjG5HmZUvXrSeLxultK4YIksPTBXED0SDCo3xzdqPSBfgr12-co2NYCCPVewjTzl86u2tJAQvtiMoj2ZewS3ZXOwvMs8A7xNimK4Xr5QvDi96jtKVrG4FvPYPEq_szxlhZW3kl0ZPtlPUL2swj-5ClwIveLDkb08pVi4SJZCvSwRw73BzI-4m0tbvZI8pz1tcIE4va8FPaVJCb6tnoW4yvRwPSLhKz7xy4o4-k_tOux1wTyL7aC4Wu3GvQ8UMz1o2_s3vUAfveudG7yDUDg3IAA4E0AJSG1QASpzEAAaYDH8ABkQ3fMQKQ3r0coCIRvaASzTxuf_-c8A_iHizR8V9bXxI_8KyAn1sgAAACTJEh8OAA9lAfvsDRDFEMrBlfwJf_EjEM7bPA0K9ukg4Of3GhclVADyB68hMgraGeQs_SAALUF3LDs4E0AJSG9QAiqvBhAMGqAGAADIQQAAQMEAAGRCAAAgwgAAXEIAABBBAAC2QgAAoMAAAMjBAAAgQQAAIEEAACjCAAD4wQAAiMEAAFhCAAC4QQAAMMEAAMDAAACwwQAATMIAAADCAAD4wQAAIMIAAABBAAAcwgAA4MAAAEzCAAAYwgAAFEIAAFBBAACMwgAACEIAAILCAADgQAAAOMIAADBBAAAAQgAAtEIAAOjBAABcQgAAuEEAAKBAAACMQgAAiMEAADxCAAB4wgAAIMEAAERCAACEQgAAUEIAABTCAADwQQAAFEIAADBBAAAUQgAADEIAAADDAACgQAAAoEAAAGhCAADgQQAAiMIAADDBAAC8wgAAmEEAAKzCAAAEwgAAJMIAALBBAAAowgAAikIAAIpCAAD4wQAAcEIAAOjBAACkwgAAbMIAAIA_AACQQQAAwEEAABTCAAAYQgAA6MEAACBBAABwwQAAQEEAACxCAAAoQgAA6EEAABjCAAAIwgAAlEIAALDBAAA4wgAAHEIAALjBAAAEQgAAEMEAAEhCAADYQQAAfMIAAEBCAAAIQgAAQMEAADjCAACAvwAA6MEAAEBBAADgwQAA8EEAAGRCAACoQQAABMIAAKDAAACIwQAAfEIAAIhBAAAkwgAA8MEAAMjBAAAYwgAAVMIAACDBAACAvwAAoEAAADDBAACgwQAAAMEAAPjBAABAwQAABMIAANjBAACIwQAAFEIAAMDBAAAEQgAAwMAAAODBAACIwQAA1sIAAJjBAADIQQAAgkIAAJDBAAAcQgAAUEEAAKzCAABcQgAAqEEAAFDBAACgwAAAYEEAAEBBAAAAwQAAgD8AAIDAAABgwQAAcMIAAMDCAAD4QQAAAMIAAFBBAACIwQAAFMIAAATCAACoQQAA2MEAAK5CAAAEQgAAcEEAAEDAAADQQQAAwEEAAPjBAAB8wgAAwMAAAABAAAAcwgAAPEIAANhBAABEwgAA4MAAAIDAAAC4wQAAPEIAAGTCAAAgwgAA4MEAAODAAADgwAAAwEEAAFDCAADQQQAAYEEAALhBAAAQQgAAPMIAAIBAAAC4wQAAwMEgADgTQAlIdVABKo8CEAAagAIAAIK-AABQvQAAij4AALY-AACIPQAA4DwAAKg9AAD2vgAADL4AADQ-AAC4PQAAPD4AAI4-AADIPQAAEL0AADC9AACgvAAADD4AANg9AADaPgAAfz8AAIg9AABAvAAAPD4AADC9AAAwvQAA2L0AANi9AAAUvgAA-D0AAOA8AADYPQAAir4AAJg9AACovQAAiD0AAEQ-AACSvgAA1r4AAFA9AACCvgAA-D0AABy-AADYPQAAQLwAACQ-AABQPQAA4DwAADA9AABUvgAAEL0AAEC8AACOPgAAtj4AANK-AAAQPQAAJz8AAOA8AACAuwAAfD4AALi9AACgvAAAoLwAAHS-IAA4E0AJSHxQASqPAhABGoACAAB0vgAAuD0AAAS-AABJvwAA6L0AAGw-AACCPgAAyL0AAPi9AAB8PgAAoLwAAGS-AACIPQAAqL0AACQ-AACIvQAADD4AAB0_AABAvAAA6j4AADA9AAAUPgAAFD4AAIi9AABAvAAA6L0AANi9AACoPQAAyL0AAMi9AAAwPQAAMD0AACQ-AACqvgAA6D0AACS-AABwPQAAcD0AAKi9AAAMPgAAmD0AABC9AACovQAAQLwAAJi9AAAwPQAAf78AALi9AAC4vQAApj4AAHw-AACgvAAAoLwAAKo-AABQPQAAuD0AADC9AAAcPgAAmD0AANi9AAA8PgAAbD4AAHQ-AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=_agxMnKikxk","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17372014448767605186"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4180541921"},"9776884393033231408":{"videoId":"9776884393033231408","docid":"34-4-16-ZF78269BC8368834C","description":"This video is about Number Theory | Fermat's Numbers/ Primes. details of example at 6:48 can be found at Link : • Congruences|Part 10| Another interesting r...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1549529/e467abc54b90cd55e18d0640906dc446/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RKylSQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5NmSvKtaDAs","linkTemplate":"/video/preview/9776884393033231408?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Number Theory | Fermat's Numbers/ Primes","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5NmSvKtaDAs\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhUKEzk3NzY4ODQzOTMwMzMyMzE0MDhaEzk3NzY4ODQzOTMwMzMyMzE0MDhqtQ8SATAYACJEGjAACiloaGNpeWlwZ2tidGpwamloaFVDUzJzNWlKeFdyVXk1eEVySmhpN2FKdxICABEqEMIPDxoPPxPWAYIEJAGABCsqiwEQARp4ge_6AQD8BQDs-wgF_QIAAPUB-AD5_v4A_AX6_QYE_gAEAQH-_wAAAPoQA_4GAAAA-_3-B_7-AAAGBf37-wAAAAz6-fz-AAAA-xoB_v4BAAD8_AoEA_8AAAoF_f0AAAAA9v718wAAAAACEAEHAAAAAP_-APAAAAAAIAAtfGXeOzgTQAlITlACKoQCEAAa8AF_9P8A6gPdAcj21ADYOBkCpS4l__w10QDLEQP_t_bGAO0H6QDO-sb_DQgX_7Qq-P8l69f_IMkIASDg_v43xgsA6vv8ASz38AE9Ey7_BfbwANwNC_385QIA_cbeAAQk2f4B8Ab-_g3sAesl1QMZ5S0D9uYjBSz89v_crv0B2-H_BPzl3f3zFfoHB8sNAegIJgEdyiEAHvkM-_Iz4fztAAf5Ae8OAggv1P0E7AwE-wsD_eTZ8gsPBxv9GPMB_cX8_AzX8S8G3Bb2_-T3CAA09AD0rhXsBPzg8woa8w8E6-UA_BHs8gDl7vD68xMHAtny9PkgAC2kNxE7OBNACUhhUAIqcxAAGmAP8gAsCTX6G9Pt4PHK7ggayPsDEpsI_-TT__oA6fkgO7jRAPn_Kf824KoAAAAd9hMM9QDkcdvSv0X4Ee3mqskR73_8GwzMzN4H98bXIPT2_UA2KTEAE_2w9lMvrkQJESAgAC1YlR87OBNACUhvUAIqrwYQDBqgBgAANEIAAATCAABIQgAAvMIAAJDBAACAwQAArEIAAIDAAADIwQAAUEEAABhCAAAgwgAAYMEAAIC_AADgwAAAIEEAAEBCAACgwQAAgEEAAHDBAABEwgAAeMIAAMDCAAAUQgAAtMIAAEDCAACgQAAAcMEAAADBAAAwQgAAdMIAAHBBAACcwgAAMEIAAKjCAADQwQAAwEAAADRCAABQwQAAeEIAAABCAADgwAAAHEIAAFDBAACgQQAAJMIAAIBBAABQQgAAMEIAABhCAACgwQAATMIAACDBAADYQQAADEIAAKhBAADcwgAAUEEAAOhBAADAQQAAIEIAAPDBAABIwgAAEMIAAADCAADqwgAA0MEAAJzCAACIwQAANMIAAFRCAABUQgAAcMEAAHRCAAAwwQAAXMIAAETCAACAQAAAQEEAAAhCAAAgwQAAoEIAAFBBAACAwQAAYMEAACxCAACowQAAIMEAAOBBAABgQQAAyEEAAExCAABYwgAAIMEAAJBBAACgwAAA0MEAAODAAADAQQAAgEIAAI7CAAAgQQAAMEEAABzCAAAcwgAAiEEAADBBAACAPwAAgMEAAGBCAACcQgAAAEIAAIDBAADAwAAAAAAAAIxCAAC4QQAAEMEAAFBBAAAQwgAAoMEAABDCAAAQQQAAsMEAAIA_AAC4QQAAoMEAAPBBAABUwgAAZEIAABTCAACQwQAAgD8AAIZCAAAwwQAAUEEAAAzCAABEQgAAkMEAAIrCAACgQQAAIEIAANhBAAAAwgAAFEIAABhCAABwwQAAkMEAAODAAACAvwAAAEAAAGBBAABIQgAAAMEAALDBAACwwQAATMIAADDBAACOwgAA6MEAAJzCAADwQQAAmEEAANhBAAC4QQAA2EEAAADAAACKQgAAjkIAAFDBAACgwQAAgEAAAFBBAABUwgAAZMIAAHhCAABgwQAA4MAAAPjBAADAQgAA0MIAAADCAAAAAAAAQMEAAARCAAAAwQAAUMIAAIhBAAAMwgAAwEAAABBCAADYwQAAIMEAAGDBAADgwQAAQEIAAJDBAABQQQAAQEAAAPjBIAA4E0AJSHVQASqPAhAAGoACAADIvQAAdL4AAHA9AAAcPgAAJL4AALI-AABMvgAALb8AALi9AAA0PgAAgLsAAOC8AACYPQAAxj4AACS-AAC4vQAAhj4AAIA7AAC4PQAADz8AAH8_AADIvQAALL4AAFQ-AAAkvgAAJL4AAIg9AACovQAA-D0AADw-AAC4PQAA_r4AALa-AACePgAAuj4AAJi9AABwPQAAgLsAAES-AABkvgAAFL4AAKg9AACCPgAAoLwAAEA8AADYvQAA6D0AABS-AAC4PQAArr4AAJi9AACIvQAAVD4AABA9AABEvgAAML0AAFs_AAAMPgAAcL0AAK4-AADgPAAAhj4AAIg9AACIvSAAOBNACUh8UAEqjwIQARqAAgAABL4AAIi9AAAQvQAAJb8AACS-AADYvQAAJD4AAEC8AAC4PQAAmL0AAKC8AADgvAAAED0AADC9AADIPQAA4LwAAIA7AAAzPwAAmL0AAPI-AAAQvQAAfL4AAIC7AAA8vgAA4LwAANi9AAAQPQAAUD0AAHw-AABwPQAAgDsAAAQ-AAAsvgAAyL0AAHw-AAC4PQAA2D0AALg9AAAcvgAAiD0AAHQ-AADovQAADL4AABA9AAA8vgAAMD0AAH-_AAD4vQAA-L0AAIC7AACgvAAA6D0AAEy-AABkPgAA6D0AAAQ-AAAwvQAA-D0AAIC7AADYPQAA6D0AAPi9AAAEPgAAuL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=5NmSvKtaDAs","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9776884393033231408"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2605631770"},"8676765850758613245":{"videoId":"8676765850758613245","docid":"34-10-9-Z6B2D0C8C9F24F499","description":"This video is about introduction and use of artificial variables. While applying Simplex method, we find initial BFS using initial identity matrix available in coefficient matrix. But if this...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4333727/17d3fa0de9eb6d7d85c2122cabf7890e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/rQO7JQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSiN1UjrM99w","linkTemplate":"/video/preview/8676765850758613245?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplex Method |Part 8| Introduction and Use of Artificial Variables","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SiN1UjrM99w\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhUKEzg2NzY3NjU4NTA3NTg2MTMyNDVaEzg2NzY3NjU4NTA3NTg2MTMyNDVqhxcSATAYACJEGjAACiloaGNpeWlwZ2tidGpwamloaFVDUzJzNWlKeFdyVXk1eEVySmhpN2FKdxICABEqEMIPDxoPPxPXA4IEJAGABCsqiwEQARp4gfb7-_v7BQADAAUGAQj8AgsJBwD3AQAA-fsCDfwE_gAH-wgB-wEAAAIH_wH9AAAAAQcB_vL-AQAO_f4DBAAAABYE_P0DAAAADgP4_v4BAADy8wEB9gIAAQYACAAAAAAABhIGAv4AAAD1EP7-AAAAAAv-_gEAAAAAIAAtWZHiOzgTQAlITlACKoQCEAAa8AF_-gQD0fvS_-H47v_fHwoCxB8v__0w1gDHIg0B3PHaAO8HBQDOAeD_BxsRALom-f8S27oC9rb3ADff_AAd6O8A9OoBACrq7gA4Eir_BPfxAN4OGv_i3-sBFtnWAwkp7wAM4w__BxTnAu4DxgIVAxwA5_oqBCkCDP_d2vcC4vEIBdDfz_z1C_P-8eD_-vbkJgQL0RH-Ifv8__UT-ADx9gUHDtoL_AVG9_0D7gsEBxbwBeHt8AUOAAsBLRMNAukC8AfK9BP20AgXAeXs9_EJ_gL10xbo-fvXAwUY9A0E6OcUBA_u8wD66_gA_gDqB-IH9e4gAC2uoB87OBNACUhhUAIqzwcQABrAB08-xb5-2Nw8McawO3dlJ74VRJO8QcnuvKjhG77fFuw8h9tGPCCWwj0Koxm9EAaevKFHDL5S3Iy8sCwCvQovYT4XcbC8QdPGOXV0_L0vE5o9CwIQvRUcTr6sTcg8NZcfO5rMuDy-OYK9f8MfPKA0xD2m1VC9Ef_WOWGCYLtvFgo9GLptvNxqGTr1EVi9E3xYvU2foTvKuHO9GI4RPf9YbT30h4c6PFWZPO3IAj0rEjg8kTYjvLfVrDvnzDE92T4EvZBRGT16hD89_GYsPVj-vL3F2Z69KktfOwZifr0dpVy8BOa-OqxjCz0NBjI8WuybvGL0jD2eftC9vnZdu7HhSb4ukvY8TwidPN20GT49FtE8A2D6uwNzWb0N5po9L2MvvJzZUzzQsei8x1WSOT0mVz13EaY8I7YAPYkXmj3VAh68IRSluv1xsTx4RLU9tVd6PIbiTj2Q_nK9RqBVvOZAzz3vSKs8UcC2vHyddL02wgw9on3XOS2PmjyGe8A8PRKrO0VO_LuSdRg9nSbYPGBnhD35Eb-9PWsSPApCg71sv7u9DIPoO2Mvnz0m_6M9uGI1vG786T1M5K29K3Opu_nQD73X3qe6flreO2S2YLuoBI-9mjQZuzbTyL18lDY8LnMbvL9rp7s6w7k81jV_vK9meLwtN5I9nlUPO5k20ry8Ws69GJwvOtW8eT2bffo5gtA0O_ubaz32C1Y9DisnuoFb9z0IS5a9-F_uOC7Og71hCC-9qKjKuUGaEb1ZNWO9M0gHuW0D1z21o9i9DJ-vOZDC0DzJu1k9njYeOakomL398QM9y0V9OD0s7zy4fjC82NXEt1xUC72cFfG93J51OcfmlTuRL7w8RXyKOpICMDzRNpM9pkX0OBL1Qr0iGOe9eBrqN6y-BL1Snx89SZG8OTgU3j2LPZ89Mq23uGdIgL1KkNs8uqC9tw2wJb2KciG6xpYuOe8YwzzkBi47a73EOOukYzyijKK9v1JkORe-eT1_VK49OTHVOLJwSDx_6YM92_2AN-jYAT0SE1Q9qpyCtoE6Sj1t2EC9OR6vt8mqjT0jnuw60OO2OCL7AL7GXyQ9F5hlOCpY97isCTi9tnJrN1g8dbyWpam7YOfItofpsTzX6gE9zvSkNpJdGT7ZT1C9rMI_ubhdk73Pq5C92nVEuH-Jg70O2PW9C9ESuJtLW72SPKc9bXCBOEn3jjytUMS9c5zyuMr0cD0i4Ss-8cuKOCmeabx4zZA9oeaauLQB-L21WEU9UeBcON4BHr0ZsY071QM-OCAAOBNACUhtUAEqcxAAGmAq6QA8_Aza7jYZ5-vt7wP36f3nJrjo_9vZ_wFA7woC6QnTAQYAJdsR67UAAAAz-t4h6AAPYtr76RTwGCS5wuMHC3_xBfmp5BcJrAj_Ee31EPwQMl8A2QK6CzIK1vv1CyggAC1iIDU7OBNACUhvUAIqrwYQDBqgBgAAGMIAAPBBAACAwQAAoMEAAIC_AAAAwQAA7EIAABDCAAAAwAAAqEEAADBBAAAAwAAAqsIAAKBBAABoQgAAAEEAAOjBAABYwgAAuEEAAADBAAAEQgAAiMEAAEhCAABQQQAAQEEAAFDBAAAMwgAAuMEAAADAAABQQgAA0EEAAPBBAAAkwgAAeMIAANzCAACQwQAAcMEAAIZCAAAkwgAAwEAAAIDAAAAAwQAANEIAAOhBAAAsQgAAMMIAAKDAAADoQQAAeEIAABhCAABAwAAAiEEAADBCAACwwQAAdEIAAGRCAADSwgAAIEEAAIjBAACAQAAAAAAAAKbCAADYQQAAqMEAACBCAABwQQAAuMEAAKDBAABQQgAAyMEAAGxCAACoQQAAPMIAAABCAACAQQAAiMIAAADCAABQwgAAXEIAAKBBAAB4wgAAtkIAABzCAABgwQAAIEIAANjBAACgQQAAeEIAAIJCAAA4wgAA-EEAAHhCAADAwAAAZMIAAJjBAAC2wgAA4EAAAKhBAACGQgAAkMEAAGzCAABIQgAAIEIAACTCAACQwgAAAEAAAIDBAACAQQAAiMIAAIhCAAD4QQAADEIAAGDCAAAwQgAAPMIAADjCAAAcwgAARMIAAGjCAABYwgAAEMIAAFDBAACwwQAAcEEAADDBAADAQAAAoEAAAGjCAAD4wQAAAEIAAHDBAACgwAAAlsIAALBBAACYQQAA4EAAAEBCAACAQAAA4MEAAGjCAAAAwgAAsMEAAKhBAAAkwgAAcEIAAGzCAAAIwgAAgEEAAMBAAADQQQAAwMEAAIBBAAAsQgAAsEEAABDBAABAQAAAsMEAAHjCAAD4wQAAdEIAAHTCAACIwQAAKMIAAODAAAAwQgAAMMEAAMBAAABYQgAAMEIAAEDAAABAQAAAgEAAAHDBAACMwgAAEMEAAADCAAAQwQAATMIAAKhBAACowQAAJEIAAEBAAABwwQAAPEIAAChCAADgwQAAEMEAAIjBAACGQgAAkMEAAIzCAADgQQAAqEEAAPjBAABIQgAA0MEAAABAAADgwAAAUMIAACBBIAA4E0AJSHVQASqPAhAAGoACAACgvAAAGb8AAOg9AACoPQAA6L0AAIo-AAAEvgAAQ78AAIa-AABAPAAAuD0AALi9AACAuwAAij4AAKa-AAAMPgAAfD4AAJg9AACuPgAAMT8AAH8_AACIvQAAMD0AAAy-AAAUvgAAxj4AACw-AABMvgAAgLsAALg9AABkPgAAlj4AAAS-AAAkPgAAnj4AANY-AACCPgAAdL4AAKi9AADgPAAAhr4AAIC7AAD4vQAAQDwAAEQ-AADoPQAAoLwAABS-AACgPAAAnr4AAIg9AABAPAAAgj4AAGQ-AAAwPQAAoLwAAC8_AAAwvQAAJD4AADw-AADIvQAAmD0AAIC7AAAMPiAAOBNACUh8UAEqjwIQARqAAgAAVL4AADy-AABkvgAAGb8AAKg9AAAkPgAAzj4AAIC7AADgPAAA2D0AABS-AAAQvQAA4DwAACy-AAAcPgAAQDwAAFQ-AAAJPwAA-L0AAA0_AABEvgAA-D0AABS-AACoPQAAqD0AANi9AACSPgAAED0AACS-AADgPAAAED0AABQ-AAAUvgAAoLwAAHA9AAAUvgAAkj4AAHA9AACavgAATD4AAOA8AABMvgAAQDwAADQ-AACgvAAAcL0AAH-_AAA8vgAAzr4AANg9AACAuwAAED0AANi9AACIvQAA2D0AAPg9AACAuwAABD4AAFQ-AAAsPgAABD4AALg9AADovQAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=SiN1UjrM99w","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8676765850758613245"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3118655946"},"16335766288097340229":{"videoId":"16335766288097340229","docid":"34-10-1-Z0996F03566BDACB8","description":"This video is about Fundamental Theorem of Linear Programming Problem. This explains why we always look for optimal solution at corner point. As there is one to one correspondence with...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3581591/daf95c9455085f5d417c7c8254f2199d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/akKoHwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrGtHdJYAmfs","linkTemplate":"/video/preview/16335766288097340229?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematics Behind Simplex Method |Part 7| Fundamental Theorem of LPP","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rGtHdJYAmfs\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhYKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5WhQxNjMzNTc2NjI4ODA5NzM0MDIyOWqHFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E8gGggQkAYAEKyqLARABGniB7gH5_fwFAPsDAw4KCPsCDv4GAvcAAAD0Dff1AwEAAPT-_PwIAAAA_gf0B_wAAAAA-_IM-f4AAA0C-BACAAAAEgAFBPwAAAAKDgMA_gEAAP_8CfsDAAAABQr8Af8AAAD4Cgf7-_8AAPUMBQYAAAAABwUJAwAAAAAgAC1xht47OBNACUhOUAIqhAIQABrwAX8P6P7WD9oA0wXEALIaPgCfMif__DjOAKwZAQGy9sIBBfDuAO3Yzf8q_hQAtBsJAEX0xf_5ywIALOnv_zYSHwDsDikAROv6AUEVMf8F9e8A1Qz4_wfuCgL1187-AhnlA_8MHfzYBOr_6wO9AgvRRAPy9RYCHOYI_8fjAgLRCvUC6trV_RAW_f380ev86hg_ARTeCv4Q_xf87wzpBRDx5wAP6Qv8Hx7e_f_VBgzM-gj5_vALCB_15PcECDD-0fL6BRX0I_L6_u0E4en27jACCg3X8e8CCu30CCwaDwH11AH87-0J7-DxAwP3D_n81vH0-SAALQhPCDs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6Zk4Hvv4qn7uC-KW8FNqYvSdPeT0LEYm7UbuvPZ7OOrwIoji8HEIVvlDwgzybSB-9Ci9hPhdxsLxB08Y5hzQqvp5pqD22cmW8TMQ7voKcRbtWMte6zbNNPUX9RL22Jbw8b5spPXG7Qb3O0C48b4sIvUNHB7oj2Bi9IhehvTucirwFK1O9G3-HPNc3m72uqWK7LlmlPWNCTLwfCFo89SVAPIe_prygbIq8ypQFPY2iAj27s5u8CXmTPQ3WyTz8jmE8EwmLvQo3VL2yto68JRetvdtewbwLIc463_zGPewb8zyHWT69ZUOdPXc1tL2QdjK9seFJvi6S9jxPCJ087IbtPYz3gz1yW5E70lebvd1IVD0a9C27xSIBPTO54rzTRru7hO1MPeTzaj1UkPo8xBA0PQRe3jtn_008CWTAPM9ZdT2FY7E8FoTSPUV2j70nZyi8ql2oPUtwDzxuNWu8KlmJvSV0OLumtcy6T1xuPZG3PD1hfAe72S4GvMyh-zzaM_A6xTVDPfhRDb4Jbyy7dfhVvcH-K70XKn-8AmcEPShPNDwiQB87SBgGPm7JZb3t1QW8nBxZvY7V-7v502s80TIaPOeMSL3ZPDM83gLpvZiThjzp5Ji6rYEyvbdWxTz-MPy7fTuuu7Wlzj0-auG6kaBTvN8mrb0W7Z66uI98PTwck7y4SzC7OwZfPXi3Ej1BxrO6VPqePZroOL14Wk84KlkpvJtUVL1vHdI7ZdOAvJAomb1SAxM73WGTPbuXC76lDmg5CvcKPc8GKj32rb05_uuRvWeHUz2cSPG4hfkhPcnQDL1qNvy1XFQLvZwV8b3cnnU5gehuvJcUiT2o_Qq5Nw2bPVHHOT25Iz43X3-9vR8YO70I1Te5qk7ivBOKYz3zha84XAy0PVVtkjxVNBo4Z0iAvUqQ2zy6oL23Pf2UOxwdAb0vpaK4rLq7ulDIjj1kzPo37Lmvu8XBmr0TgHY5xFY1PXlhxj225i64E2NZvc67Gz0_fzw4H0dzPL8S4TvsFi-48VkoPXeWir3VNes4Ig4jPTnhEDuwHlO4yuEDvhDXHjyX_U43yCxWvG0bxrwceyS4Ep9gu7IcNrtlCzI2lkhYPK5IzDwfR1A4weMrPtylaLwHiXS5ClwIveLDkb08pVi4MpTuvLr4u702Fya4rSRDvQxzRz0ewRY39nR6PeAP370_mZu3yvRwPSLhKz7xy4o45yBDvQt0cj0FdZW4rW3qvRQ7vzxv0uM3-ckHvCCBGr1ufJ23IAA4E0AJSG1QASpzEAAaYAP4AD8GEu7IGCvf18DgEtbeTMQM28v_-Pr_-y_28uD718MWMv8kphr5owAAADb_2__7AN95vOvMLPP1CrrX6iQMf_QPCcAyC_Gl2zUg8AhAA_06NADVBKIeXwirLPhLIyAALapZFTs4E0AJSG9QAiqvBhAMGqAGAABAQQAAuEEAAEDBAACAPwAAcMEAABhCAACIQgAAuMEAAFBBAABUwgAAyMEAAJhBAAAkwgAAkMEAALRCAABwQQAA8MEAABDCAABQQQAAVMIAAIBBAACAwgAAFEIAAABCAADoQQAAQEAAAIBBAADgwAAAIEEAAODBAAAkwgAAIEEAAJLCAAAgQQAAsMEAADTCAABgQQAAgkIAAIBAAADgwAAAMEIAAGBBAAAMQgAAKEIAAJBBAAAkwgAALMIAAKjBAACaQgAAgEEAAGDCAACAwQAAcEEAABhCAABUQgAAzEIAAKjCAADgwAAARMIAAFhCAADAwAAAWMIAABBBAACAwAAAMEIAAHxCAACQQQAA2MEAADBCAAAAwgAAQEIAAERCAACWwgAAUEIAACBBAADwwQAAkMEAACDCAACAwQAAAMAAAITCAABgQgAAgMEAADBCAAAUQgAABMIAAFBCAABMQgAAWEIAALDBAAAEQgAAZEIAAODAAAAcwgAA-MEAAPbCAAAQwQAAUMEAAHRCAACAwAAA4MEAAJRCAAA4QgAAnsIAAFjCAAAgwQAA8MEAAERCAAC4wQAANEIAAIBBAAAUwgAAQMEAABBBAACQwQAAAMAAAGTCAABgwgAACMIAABzCAAAQwgAAhsIAALDBAABEwgAAcMEAAEBBAABgQQAARMIAANjBAADwwQAA-EEAAODBAAAEwgAAdEIAAADBAACAQQAAgEIAAEBCAADowQAAtMIAAOBAAADoQQAAEEEAAADAAACSQgAAmMEAAAzCAADowQAAcEEAAJBBAAAoQgAAmkIAAGhCAAAwQQAAQMAAACBCAAAowgAArsIAAPDBAABQQQAA4MAAANBBAAAcwgAAMEEAAABCAAAMQgAAaEIAAHBBAACgQQAAUEEAAEjCAACgQQAALMIAAADCAACgwgAAEEIAAIBAAABAQAAAAAAAALhBAABwwQAAiEEAAKBAAAAAQgAApEIAAIBBAABIwgAAMMEAAChCAADYwQAAsMEAABzCAACoQQAA4MAAAHBCAADYwQAAwMEAAKDAAACcwgAA4MAgADgTQAlIdVABKo8CEAAagAIAAEy-AAAMvgAABD4AAFA9AAD4vQAAyj4AAIC7AAADvwAApr4AAAS-AAC4PQAANL4AAIA7AAAEPgAAbL4AABy-AACOPgAAcL0AAJY-AADuPgAAfz8AAFC9AACaPgAABD4AAPi9AAAsvgAAML0AAEA8AAAEPgAAyD0AADw-AACgvAAABD4AAGw-AACAOwAA6D0AAEQ-AACivgAAzr4AAFC9AADavgAAiD0AADA9AAAwvQAAZL4AAOA8AACOPgAAnr4AABS-AACevgAAuL0AAEC8AACKPgAARD4AADS-AAAwvQAAGz8AADw-AAAMPgAAyD0AAIa-AABUPgAA4DwAAIA7IAA4E0AJSHxQASqPAhABGoACAAAMvgAAUD0AAOC8AAAhvwAAkr4AAPg9AADyPgAA2D0AAKg9AADgvAAAoDwAAFy-AADgPAAAVL4AAMg9AACYPQAATD4AABs_AAA0vgAAsj4AAKg9AAAwvQAADL4AANi9AACgPAAAuD0AAKC8AAAcPgAAXL4AAHC9AABQPQAA2D0AAOi9AACGvgAABD4AABA9AAD4PQAAVD4AAGy-AAAQPQAAij4AAGS-AABwPQAAED0AALg9AABQvQAAf78AAAy-AACSvgAAQDwAAIY-AABEPgAAyL0AADC9AABMPgAA-D0AANi9AACGPgAAqD0AAIg9AABEPgAA4LwAAKA8AADYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=rGtHdJYAmfs","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16335766288097340229"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3370370117"},"6688661299649937457":{"videoId":"6688661299649937457","docid":"34-1-7-ZB07EAD9A0ADF10FD","description":"This video is about Mathematical Backgrounds for Simplex method, Here I discuss line joining of two points, Convex Set and Convex Hull. Mathematics Behind Simplex Method |Part 2| : • Mathematics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3451922/e57ac3f9b5cd686e84365b5abddb9e0c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/GzZmHwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPdoCLCs63LM","linkTemplate":"/video/preview/6688661299649937457?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematics Behind Simplex Method |Part 3| Convex Sets, Convex Hull","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PdoCLCs63LM\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhUKEzY2ODg2NjEyOTk2NDk5Mzc0NTdaEzY2ODg2NjEyOTk2NDk5Mzc0NTdqtQ8SATAYACJEGjAACiloaGNpeWlwZ2tidGpwamloaFVDUzJzNWlKeFdyVXk1eEVySmhpN2FKdxICABEqEMIPDxoPPxOHCIIEJAGABCsqiwEQARp4gfsAAfr_AgAD-g4OBgv6AhMCBPn2AQEA-gf_9AIE_gD3AAX6BwAAAAD_AgX-AAAAAwH5BfL-AQAK_PcFAwAAAAkCAAD0AQAABgz6_f4BAAD3AQr-AgAAAAsUAfT_AAAA8gv__vr_AAAFAgcJAAAAAAz1Ef4AAQAAIAAtWSbXOzgTQAlITlACKoQCEAAa8AF_6A4A3feyAcr21gDaNhgCqC0j__0y0wDM9_8AuffIAPb9-AHb9vD_FwwM_84t_v9i7-T_3MQNACnYDf8V8_EA0hkJAEIA9wE3JxgAFvf3AcQPCwEE6fT_F9fTAxcj-gIN-QP7AP_rAP341P0Y5isCDggWBDD0CQLM5gIB6BLyBeT22f0LAPUJ7LP4_vIJGgwM6P0IHgIVAuUE8gEF2fwJ7gD3-hwb4v0W7wb-2wb8AvD4_gUY9f0FJAsF__MC5vjm4h3_1wP5_-X3BwAX4x364wD3BRPg-Qoi7hT5AMz4AQTg-fnyCfEK_gDpB-AI9e0gAC3RQhc7OBNACUhhUAIqcxAAGmAL9gAy7ybz5xcq5eXT7QPixBfE6b3t___r_xIj8ub8-OHXMzb__rAd6aEAAAA96ckQJQDvfrLV4yAB5BGJz98mK3_NAxnB_Sn0v_c6C_gDRfouQTEAwf6hH1UjyC7vOyggAC0k1hQ7OBNACUhvUAIqrwYQDBqgBgAAQMEAANBBAACgwQAAQMAAAKDAAAAgQgAAlEIAAPjBAABgQQAAOMIAAJjBAADAQAAANMIAAKDBAAC-QgAA0EEAAIDBAAAcwgAAUEEAAFDCAACIQQAAdMIAABhCAADQQQAA0EEAAOBAAAC4QQAAAMEAAMBAAADAwQAAHMIAAFBBAACQwgAA4EAAAPDBAABQwgAAiEEAAJRCAACAwAAAAAAAACBCAACAQQAAFEIAAChCAABwQQAAHMIAABjCAABAwQAAjEIAAIhBAABkwgAAmMEAAJBBAAAIQgAAaEIAAMBCAACywgAAIMEAAGTCAAAoQgAAkMEAAIDCAACoQQAA4MAAACRCAAB8QgAAUEEAAIDBAAAoQgAA8MEAAEBCAABsQgAAjsIAAGRCAAAgQQAAwMEAAFDBAAAIwgAAqMEAAIC_AACWwgAATEIAAMDBAAAwQgAAJEIAABzCAAAUQgAATEIAAGxCAACwwQAAYEIAAFBCAAAAAAAAGMIAAPjBAADwwgAA4MAAAKDAAACKQgAA0MEAADTCAACmQgAAREIAAKLCAABkwgAAEMEAAOjBAAA0QgAAYMEAABBCAACQQQAAwMEAAIDBAACIQQAAQMEAAJDBAABgwgAAWMIAABTCAAAAwgAAHMIAAFTCAADowQAAVMIAAJDBAABwQQAAgEEAAEzCAADwwQAAoMEAANBBAAAMwgAA2MEAAIRCAABwwQAAqEEAAIZCAAAkQgAAAMIAAKDCAACAQAAAqEEAADBBAACAwAAAnEIAAGDBAAAgwgAAyMEAAJhBAADYQQAAyEEAAIxCAABMQgAAmEEAABBBAAAEQgAASMIAAKrCAACowQAAsEEAAIBAAACIQQAAKMIAAMBBAAAUQgAAAEIAAEBCAADAQQAAUEEAADBBAAAkwgAAiEEAACzCAADwwQAApMIAANhBAABwQQAAQEAAAABAAACQQQAAkMEAAMBAAADAQAAAGEIAAKRCAACAQQAAQMIAAIA_AABUQgAAyMEAAJDBAAAUwgAAyEEAAMDAAABQQgAAIMIAALDBAAAgQQAAmMIAAKDAIAA4E0AJSHVQASqPAhAAGoACAADevgAAEL0AAJg9AACoPQAAQDwAAN4-AAAMvgAAHb8AAIq-AAAEvgAAFD4AAJa-AACIPQAAUD0AAHC9AADIvQAAbD4AABA9AAAUPgAADT8AAH8_AACAuwAAcD0AAKA8AACIvQAAJL4AAFC9AABAPAAAMD0AADQ-AACCPgAAoLwAABQ-AAB0PgAAML0AAEQ-AADYPQAAkr4AAI6-AACovQAA6r4AAIA7AACgvAAAcL0AAIg9AAAUPgAApj4AAIq-AAAEvgAAlr4AABA9AACAOwAAij4AAGQ-AACuvgAA4LwAACs_AACWPgAAjj4AADw-AACWvgAAmj4AAKA8AAAUviAAOBNACUh8UAEqjwIQARqAAgAAVL4AANg9AACIvQAADb8AAHy-AAAcPgAAFT8AAJg9AAAUPgAAuL0AAFC9AACKvgAAoLwAAHy-AAC4PQAAyD0AAAw-AAAlPwAAbL4AAKI-AACoPQAABL4AANi9AAAwvQAAgLsAAPg9AACYvQAAPD4AAFS-AABkvgAAED0AACQ-AAAsvgAADL4AAAw-AADgPAAAhj4AAPg9AABUvgAAUL0AAL4-AABEvgAAMD0AAOC8AABwPQAAgDsAAH-_AACKvgAAlr4AABC9AABsPgAAVD4AAAy-AACgvAAAXD4AABQ-AADovQAAlj4AAKg9AAAkPgAAFD4AABy-AADovQAAFD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=PdoCLCs63LM","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6688661299649937457"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9952998091361659310":{"videoId":"9952998091361659310","docid":"34-4-14-Z2D76CE94A3F2B866","description":"In this video, Generating Functions are introduced. Complete Playlist of this topic: • Enumerative Combinatorics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4396879/f581569d4a4212a77c390340e09944f2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Oe3TJAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtA2cqfNh5EM","linkTemplate":"/video/preview/9952998091361659310?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Generating Functions | Part 1","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tA2cqfNh5EM\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhUKEzk5NTI5OTgwOTEzNjE2NTkzMTBaEzk5NTI5OTgwOTEzNjE2NTkzMTBqkhcSATAYACJEGjAACiloaGNpeWlwZ2tidGpwamloaFVDUzJzNWlKeFdyVXk1eEVySmhpN2FKdxICABEqEMIPDxoPPxPKDoIEJAGABCsqiwEQARp4gfQI-wf9AwDwAwv7_AEAAQsA8AH2__8A8QII8gMBAADtCQIG-wAAAP0C-wUBAAAA9v7-_vz_AAAS9QEAAwAAAAz3CAL7AAAAAAf9AP8BAADx_PwDAwAAABYF_gYAAAAA_AwH_wIAAAAMD_8CAQAAAAb9DQEAAAAAIAAtIz_cOzgTQAlITlACKoQCEAAa8AF__9UAx_vj_9QFxQDWJzABoTAm_xIXzwDTBvYBiOfR_wAP3gD37an_DQgX_7YbCAAU1rACBMQW_zftAP8m7wgA8AQZATb2BAE7ERkCDAzx_9oNC_0X_P8AGdTQAwQm2P76_BQA7OrpAh8XyAIa5C8DAukr_PbxAP3Y8Qb_8AgJ_-Pd7AD3JQYF38b2-_b0KP760DgDAAcL-dzy7_wI__T7DuoK_OsS7wP47PUP6uEH_PHbAvr8AeUEFyMl_s397QQT0R8M7P3y-O0CEPhJDBEHsfz9-QjXCRQ2HQP3AMj4AezbAPXw5w3_5REHF9gN8f8gAC1D7gs7OBNACUhhUAIqzwcQABrABwcH2755A4w8ymcxOlPkVb1R3oc8i-IwvI2PAL2AzLg9FpIjuyCWwj0Koxm9EAaevBxCFb5Q8IM8m0gfvf29dD6SVEu9A7HsPIbjCb7fIPU8rAEqvabUBb4_TKm6BWaqvNz1Ej2RC868oAcQu4hlcz2lapu9cAKZOm-xDL1WWxu9UjjMvLXgJb49qqu89_wVvU2foTvKuHO9GI4RPfhEaD29w2283tu-O0k_Cz2Zu_a9bLpUvNg1TrsbdHg8FKFHvMkibT1FhNo7JTMoPEq4i72tMtO8R1ACvFZQjL3QwQm9WhSRvDbsMj0ADQU9xNI7vWVDnT13NbS9kHYyvXf1Cr6gny49XPlRvOSG_z05dvU8jG-ePBSbCr1dNU89-CVRPGGIPD0hySy9Yd2dO0sXBz3_iRs9NM9bPDLPJT0kTRc95rrfPASs1Twzopk89PNLPFPKoD0sd1C94rEbvPOHqz2IYAG8Eu6-OcMKnL1JNcc8JCmKu5hbED25edk86fEAOoAzpzzoWNQ8ksE8O0VcpTxzuPa95AQ3PFxNqLy5clG9b1azvF7FmDzX22a882EGukgYBj5uyWW97dUFvKY_kL184Lq7wJ4nOwPBLT3svHK9l7hBuOzJgr3eKCg9ocA3O_xlgb2OoVI83-tavMuY57xaDbk97IyIO6c95bzrjA--Jd69t5t-vz0Ud_w89IgrOi2Lkz2erx49oKIPOuZbADxEkJ68JSFTu1Rhoryc_QG9zOHFut1rF71KqgC9Hkw9uWa2UD2J7tm9IZW9ORhVkD14izE9YMQSOdYNar0Cv2E98yh7uJXmIL3D--A84dytOa0vtzr9EvG9vCOJOZ-J2Tswp189lcngONGlKT2vcWc9RF7FukoLF74K3Jq9qarhtkf4KLyQXt48bl2WuAcM0j1fac-81d_VtLmMvLuiauw7Q026OgBWJ71YuaG82o2hOZWabDlmpDm89R7bOMOAJTznjo69w2ZyOdTuV7ykORI-xf1VuXzjpb34hDG9m0EcNoBHhD0AMIM8z6mnuMc3aj0gX4K9dvnKNm2pYz2oNOI8sUW0uGh1Mr5kpCg9F8pMt3j6t7x7vNA8cqqaN5QjDr2Sypi7By4DuEpzUDxZ6g89UpiGOMKk2D02Kia9e7QtuU7BkL0_vk69U05lNx4qeDslBOu9I79nODILs70S_kA9snK2NzLurD1cJr697GpDN8r0cD0i4Ss-8cuKOHpTkbzZ1f88LwUFubQB-L21WEU9UeBcOHcUhLraugW9BVpQOCAAOBNACUhtUAEqcxAAGmA3-wBA1iMF__M55f3V5REFzB0PQeLn_939ABAy7fMZGfWOCiYAHN7eBKwAAAAoEw443ADpbgXx_RzTOwDpywbgJX_sAvz62R4OzOj7KAz-Qwge6zQAIvmjIj3noEooPxUgAC3n0yM7OBNACUhvUAIqrwYQDBqgBgAAEEEAAAxCAAAIQgAAMMEAAHBBAABwQQAAIEIAAEDAAACowQAAgL8AAGRCAAB0wgAAvsIAAADCAACEQgAAQMEAAFzCAACowQAAYMEAAPjBAAAAwAAAaMIAADRCAAAQwQAAHEIAAMDAAAB0wgAAOMIAAMhBAAAgQgAAoMAAAIRCAACqwgAAOMIAAJLCAABYwgAAoMAAAI5CAAAAwgAAYEEAAJjBAACAQAAAqEEAAMDAAABEQgAAUMIAABjCAAAAwAAAuEIAABxCAACMwgAADEIAAHBBAADgwAAAREIAAIA_AAAAwwAADEIAABDBAACYQQAAgEEAAEjCAAAAwAAAOMIAAEBAAADAQAAAVMIAACTCAAAIQgAAcMEAAIJCAACsQgAAKMIAADRCAAAwwQAAgMIAAGjCAAAEwgAAfEIAAPBBAABswgAAZEIAAADAAACoQQAAAEAAAMDAAADAQQAAAEIAAGRCAABcwgAAAMEAAJJCAACAQAAAOMIAAJBBAAC2wgAAoMEAAEBAAAAYQgAAEMIAAFzCAACKQgAAYEEAAGTCAAAowgAA4EEAADjCAADAQQAAIMEAAIhCAAB4QgAAmEEAAGTCAACgQAAAwEAAAMDBAAAwwgAAYMEAABjCAAAEwgAAsMEAAI7CAAD4wQAAGMIAAOBAAADoQQAAmMEAAKjBAAAkwgAAAEAAAEBCAACAPwAAEMIAAJhBAACYQQAAIEEAAABCAADoQQAADMIAAK7CAAAcwgAAoMAAABBBAADIwQAAkkIAANDBAABkwgAAAMEAAEBBAADwwQAAoMAAAMBAAAD4QQAA4EAAAIBAAADYwQAA6MEAAKDCAADwwQAAkkIAAHDBAAAcQgAA-MEAABDCAAAAwAAAkEEAAHBBAACMQgAAUEIAABRCAADYwQAAgEIAAABAAAAgwQAAMMEAAAhCAABAwAAAyEEAAEhCAACIQQAAQEEAADDBAAC4QQAAYEEAADBCAADAQAAAqMEAAJBBAACAPwAAEMIAAETCAAAUwgAAIMEAAPjBAAAsQgAAYMEAAEBAAABMwgAAsMIAAODAIAA4E0AJSHVQASqPAhAAGoACAAAQPQAAcD0AAOg9AABUvgAABL4AAJ4-AADYvQAA4r4AAIq-AAAMPgAAgDsAAOC8AACYvQAALD4AAGy-AAD4PQAAyD0AAKC8AACOPgAAHT8AAH8_AAAEvgAAgLsAANg9AACCvgAAQDwAAFQ-AAAkPgAAgLsAAKI-AAD4PQAAoLwAAKi9AAAUvgAATD4AABS-AAAcPgAAPL4AADS-AAAsvgAAFL4AAIa-AABsPgAAnr4AALg9AABkPgAAqD0AAGS-AAAQvQAAJL4AAFQ-AAAQvQAAij4AAJg9AACgPAAAoDwAAF0_AACCvgAArj4AABQ-AADoPQAAjj4AAHA9AAAMviAAOBNACUh8UAEqjwIQARqAAgAAgDsAAOC8AAAkvgAAHb8AAIi9AACYvQAAHD4AABS-AACYvQAAfD4AADw-AAAQvQAAgLsAAGS-AACAuwAAuL0AAOC8AAAdPwAAuL0AAJ4-AACovQAAQDwAAKA8AAAMvgAAUL0AAJi9AACYvQAAgLsAABw-AACIPQAADD4AANg9AABsvgAAgDsAADw-AACgPAAAgj4AAIY-AACSvgAAMD0AALo-AACAOwAAZL4AAAQ-AAAMvgAABD4AAH-_AACAuwAAED0AAIA7AAAUPgAABL4AABQ-AACgvAAATD4AADA9AACAOwAAcL0AAES-AADIvQAAoLwAABw-AABQvQAAcL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=tA2cqfNh5EM","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9952998091361659310"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3723565412"},"6324684100304861377":{"videoId":"6324684100304861377","docid":"34-8-1-ZBBD454DEFD28EB5F","description":"This video is about mathematics behind Simplex method. In Simplex method, we use concepts of Matrices, determinant, linear equation, inverse of a matrix, convex sets, hyperplane, and some basic...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2822661/44c590b88ac1de54b20e1a90e7202a34/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/u1BXHwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQ_N2mbpT6_U","linkTemplate":"/video/preview/6324684100304861377?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematics Behind Simplex Method |Part-1| Matrices, Determinant, Linear equations","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Q_N2mbpT6_U\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhUKEzYzMjQ2ODQxMDAzMDQ4NjEzNzdaEzYzMjQ2ODQxMDAzMDQ4NjEzNzdqtQ8SATAYACJEGjAACiloaGNpeWlwZ2tidGpwamloaFVDUzJzNWlKeFdyVXk1eEVySmhpN2FKdxICABEqEMIPDxoPPxPCC4IEJAGABCsqiwEQARp4gff-_AD-AwADCgoNAgr6AhAIAwv2AQEA_wP_-_kF_gAC-wT6DgEAAP0C-wUBAAAA_fj4Avv-AAAO_f4DBAAAAA8D_v_9AAAAEBD6-f4BAAD-ARL2AgAAAAUK_AH_AAAA-QX--P4AAAD1DAUGAAAAAAYDAQAAAAAAIAAtAFPbOzgTQAlITlACKoQCEAAa8AFuDev-7SXoAdkEzADbNBcCgSIK_v0x1QDBBf0AlenX__EHywDR3s3_IRkV_74YCAA89s3_9rX3ACbsEv8i8QcA4xIEATTMDwE1JhgA8fPs_tUWAf4R0gcA99zU_wcL7_4K8xL68vzk-g7_1wMX5yoC-QEkBSTuAAHM7xEC_AsABeX22v0OBAUAA9f_-toZHgIR4gn_DxwX-tcB_gUO8-oA7_EJ_wcC4voP4O0LzAf2_ALuAPYb9-j4IBAR9OcS4QgK6RYC7v3z-eMHDwE17A_86en5AQrl_f4c-wH-_s4J9-f6Avfh-f35AgL-ANzz9fogAC3_IR07OBNACUhhUAIqcxAAGmAC8gAg9BrP7jEy8drf4Q337Q-2K8XX_-Xz_xwN7_P3Ee7LCB8AB84f-bAAAAAu5OIDDgDAaqzc7zgKAQ-xw-APEH_2FBTr9B3vsAsf_wz7SAQYHCgAAfeqA2MZthYQ-ScgAC1zoyk7OBNACUhvUAIqrwYQDBqgBgAAoMAAAMhBAAAwwQAAgD8AAGDBAAAkQgAAmEIAABTCAABwQQAANMIAAKjBAAAAQQAAJMIAAJjBAAC4QgAAwEEAACDBAADwwQAAUEEAAFjCAAAwQQAAbMIAACBCAACwQQAAoEEAADBBAADYQQAAcMEAADBBAACAwQAAEMIAAJBBAACiwgAAUEEAABzCAABEwgAAUEEAAJZCAACAwAAAgMAAAABCAACAQQAAFEIAAAhCAABgQQAABMIAABDCAABgwQAAbEIAAIBBAABkwgAAUMEAAMhBAAAQQgAAbEIAANBCAACqwgAAMMEAAFTCAAAgQgAAkMEAAHDCAABgQQAA4EAAACRCAACKQgAAwEAAABDBAAAcQgAAuMEAACRCAABkQgAAhsIAAFRCAABAQAAA4MEAAIjBAAAYwgAAuMEAAIA_AACgwgAAaEIAANDBAAAsQgAANEIAABTCAAAsQgAASEIAAFhCAAC4wQAAREIAAERCAABAQAAAAMIAAODBAAD8wgAAAMAAAIA_AABgQgAAwMEAABjCAACcQgAANEIAAKDCAABowgAAEMEAAOjBAAA4QgAAuMEAABRCAACgQQAA2MEAAFDBAACQQQAAQMEAAEDBAABswgAAUMIAABTCAAAYwgAAGMIAAGjCAADgwQAAVMIAANjBAAAAQQAAmEEAAFjCAADgwQAAiMEAANBBAAAMwgAACMIAAIZCAABQwQAAsEEAAIhCAAAkQgAAAMIAAKzCAABAQAAA2EEAAEBBAABAQAAAmkIAAIjBAAAUwgAA2MEAAJBBAACwQQAA6EEAAI5CAABQQgAAcEEAAKBAAAAkQgAAXMIAAKLCAACwwQAAkEEAAKBAAABQQQAARMIAAJhBAAAUQgAAEEIAAEhCAACwQQAAgEEAABBBAABIwgAAgEEAAAzCAADQwQAAqsIAALBBAAAgQQAAEEEAAKBAAADAQQAAQMEAACBBAAAAAAAAEEIAAKBCAACwQQAAXMIAAMBAAABQQgAAuMEAAJjBAAAIwgAAsEEAACDBAABcQgAACMIAALjBAAAAwAAAqMIAAIDAIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAQDwAAIC7AADovQAAyD0AALo-AAAQPQAAQ78AAL6-AADgPAAAEL0AAKi9AAAQvQAAJD4AAIa-AABMvgAAxj4AAHC9AACmPgAAJz8AAH8_AABQPQAApj4AACw-AAAwvQAABL4AAIo-AAAkvgAAUL0AAJI-AACCPgAAXL4AABC9AAAwPQAALD4AADA9AAA0PgAAZL4AAKa-AAC6vgAAtr4AAHC9AACYPQAAcL0AAIC7AABMPgAAzj4AAOK-AABMvgAAxr4AAFC9AACSvgAADD4AAMg9AAD4vQAAmL0AAF8_AAD4vQAAUL0AAIg9AAAUvgAAET8AAKA8AADCviAAOBNACUh8UAEqjwIQARqAAgAAmL0AAHw-AACAOwAAJb8AANK-AAAQvQAA-j4AADC9AAAkPgAA4DwAAIi9AACmvgAA6L0AAHS-AADoPQAAQDwAAFA9AAAbPwAAmL0AANY-AADoPQAAkr4AAIK-AABQvQAAQDwAAJi9AAAEvgAALD4AAPi9AADYvQAAEL0AAPg9AACgvAAADL4AABQ-AABwPQAAij4AAMg9AABMvgAAuD0AAII-AADIvQAAcL0AAEA8AABQPQAAcD0AAH-_AAC4vQAAPL4AAKi9AAAkPgAAiD0AAGS-AACAuwAAuD0AAEQ-AADovQAAXD4AAHA9AABEPgAAFD4AAKi9AACgvAAAXD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Q_N2mbpT6_U","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6324684100304861377"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12872513650132361043":{"videoId":"12872513650132361043","docid":"34-5-9-Z013FAE3AC8FF3A49","description":"This video is about Class 11 Maths | Sets | Part 1...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1528810/c9961aec9dd28b05214cd9cdf05ef92f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/aOFiJwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLSVNKoXGJrY","linkTemplate":"/video/preview/12872513650132361043?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Class 11 Maths | Sets | Part 1","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LSVNKoXGJrY\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhYKFDEyODcyNTEzNjUwMTMyMzYxMDQzWhQxMjg3MjUxMzY1MDEzMjM2MTA0M2q1DxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E7IGggQkAYAEKyqLARABGniB-wH5CPwFAAUEDgX6CPwC_gv48vj-_gD9BAMAAgX-AP0C_wT_AQAADQj0_v0AAAD-_v7_-P4AAA0A_QP7AAAACQwG_PoAAAANF_sC_gEAAPH8_AMDAAAACAQO_P8AAAD8B_78BvoB__sRCQwAAAAA_fUA-_z1_gAgAC2i1OE7OBNACUhOUAIqhAIQABrwAW8S_P-3_AH-E-PEAO8pFAGBIgr-NBLJAMsBDgDC6-EB7hfgAO_w5gAB-vwA0Q4lABsBxwAC6RYAKgQSAC4jCgAADQ0AO-77AFL8_AHyEeb_wCgJ_hD5Hf8X2dUDGRnfAA0RIP_6Acv__fnW_f8EKgARHBj_CuUW_gYsFwDoFA8CAf3u_ggHEAfL8QT55i4hAgH1Agf3Gfb51vkNAAjx-P4O2Qz8H-Tz-A4G8gb_8wP9AOEGAvLc0f4EByr_6hb5BejxF_kE3fL53REM9UTy_vzsHfkBAu8I-0EN9QHi3gn3193x-ukCAQjfAf4IAwfrEiAALf8hHTs4E0AJSGFQAipzEAAaYB7nAA_oNRYGLiz08dLpNuvQDecg1gf_BO7__Bzk7R4rBalJ-f8U0_DjqQAAACoQ0fgtAAtxvu_QGf0hDcrMEfcPf_ki2-a0FAnv4_TCzBMWJMkRJwAS9rI0GvmfSlIcFCAALaYAIzs4E0AJSG9QAiqvBhAMGqAGAAA8QgAAQMAAAIhCAACmwgAAAEEAADBBAACcQgAAAMAAANDBAADAQAAAAMAAADzCAABIwgAA0MEAAODAAABAwAAAkEIAAKjBAAAoQgAAwMEAALDBAAA0wgAAyMIAAIZCAACAwgAAuEEAAFDBAACAwAAAiEEAAJhBAACAQQAAUMEAAADAAAAAQgAAzMIAAIjBAACgQQAAtkIAAGDBAAAAQgAAqEEAAKDBAACAQQAAEMIAACBBAADIwQAAwMAAACRCAACGQgAAqEEAACzCAADQwQAAGMIAAHhCAAAkQgAAoMAAAKDCAADAwQAAiEEAAEDAAACIQgAALMIAAFTCAAAswgAAgMAAAL7CAABUwgAAwMIAAHjCAAAUwgAAyEEAAJZCAABgwgAAQMAAANBBAAA4wgAAaMIAAATCAABAQQAABEIAAIDBAAC2QgAAEMEAAKBAAABwQQAAOEIAALjBAABwwgAAfEIAAFDBAADIQQAAhkIAACTCAAAMwgAA6MEAADzCAABYwgAAgEAAADhCAABAQQAAYMIAAFxCAAAAQQAANMIAABzCAABAQAAAgMEAAERCAABAwQAAVEIAAIpCAABEQgAAkMEAAIBAAAAgwQAAPEIAAMBBAADQwQAAEMIAAFDBAAAYwgAAIMIAABjCAABEwgAAgMAAAIC_AADAwQAAqEEAANjBAAAEQgAA4MAAAFzCAABUwgAADEIAABzCAADwQQAAHEIAAEDBAADAwAAAEMIAAADBAADAwAAA4MAAANjBAAAQQQAAAEIAAAAAAACAPwAAAMAAAAAAAADgQAAAsEEAAKBCAAAoQgAAMMEAAODAAAAswgAAmsIAAEjCAACAQAAAYMEAAKDAAAAAQQAAIEEAACDBAACIQQAAkEEAAM5CAAA0QgAAGMIAAKBAAACAwAAAsMEAAEDAAABAwAAAMEEAADzCAABQwQAAwMAAAFRCAADEwgAAyMEAAAAAAACAQQAASEIAABjCAACSwgAA4MAAAHDBAADAwQAAQEIAAIbCAACIQQAAAAAAADDBAAD4QQAAsEEAAEBBAACgwAAAPEIgADgTQAlIdVABKo8CEAAagAIAAEC8AAAcvgAAfD4AAKA8AACYvQAAHD4AAMa-AAD6vgAAuL0AALg9AACgvAAATL4AAKA8AACCPgAAmL0AAKg9AACSPgAAcD0AAOg9AADyPgAAfz8AAOg9AAB0vgAA2D0AAIi9AAAsvgAAoDwAABA9AAAkPgAA6D0AAIC7AAAQPQAAUL0AAES-AAC4vQAA4LwAAOA8AAAwvQAADL4AAFy-AADIvQAAfL4AAIY-AAAQPQAAmD0AABy-AACAOwAAQDwAAOA8AADYvQAAjj4AADC9AACePgAAND4AAJq-AABQPQAAXz8AABw-AAAEPgAAJL4AADA9AAD4PQAABD4AADy-IAA4E0AJSHxQASqPAhABGoACAABcvgAA-L0AAAy-AAArvwAAXD4AADA9AABEPgAA-L0AAOg9AAAQPQAAgLsAAIA7AAA0vgAAjr4AALg9AACgvAAAuL0AADE_AAB8vgAAoj4AAMi9AACIvQAAmD0AAEC8AAAQPQAABD4AAIC7AADIPQAAyD0AAIi9AAAwPQAAFD4AANi9AABUvgAAUD0AADA9AAAQPQAAcD0AABy-AAAkPgAApj4AAFS-AAAwvQAA4DwAAAS-AAAsvgAAf78AAFS-AAAQvQAAND4AAAS-AACovQAAgLsAANi9AACOPgAAoDwAAKC8AABwPQAANL4AAIA7AACAOwAAoDwAAIg9AADYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=LSVNKoXGJrY","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12872513650132361043"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14031134107130370164":{"videoId":"14031134107130370164","docid":"34-7-14-Z282E2F3512B3E784","description":"In this video I am formulating some Linear Programming Problems. Link to Formulation of LPP Videos: • Formulation of LPP Link to Videos for course Uma035 (OT): • Uma035 (Optimization Techniques)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3937972/fdfee729d03085b7eb136dd5c079bf0b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zFAeqgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DltxrVlPdhI0","linkTemplate":"/video/preview/14031134107130370164?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"LPP Formulations | Practice Set | Part 1","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ltxrVlPdhI0\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhYKFDE0MDMxMTM0MTA3MTMwMzcwMTY0WhQxNDAzMTEzNDEwNzEzMDM3MDE2NGqHFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E-UHggQkAYAEKyqLARABGniBBv76CPwEAPz1BwD7Bf4BBgb4APf__wD5_f4DBQL_AAUE_AQBAQAA_wYB_wUAAAD3DgLy__8AABYCDgUEAAAADf_9BwQAAAAFAf0G_wEAAPryAPgCAAAADQgBBQAAAAD6FAf9_v8AAAkYAQsAAAAAAAAI9_8AAAAgAC11HeA7OBNACUhOUAIqhAIQABrwAX8ICAHOF-sA7QbWAN0w_QCHCiv_ERbSAMToKwCz8_UA4iv3_wLr4AAH4jT-4Q39_2Xu4_8EyuIAGf4GAPsgGwAEA_EBIrYdAB3aEwDw8uv-2w8c_wXo9P8X8cX_FwwM_wMU-vzOBbz_D__UAxnlLAMNCCwE5fsH_fUZA_zUNfQAzNzL-wfnC_n7uA386hsaAQLaCAjwHQ744xX8Bgkp8_sS2u8C9RUAAfPlEQjQ-gf68Pj-BekH1gMWISP-8wLl-BXy8wEI4_8ACAwI_zjrEPvf6QYDF_QRASwK9_nszPMC2eP-6rf9CQfqAvz94Aj07CAALY27Ezs4E0AJSGFQAirPBxAAGsAH14XnvkS8Or0KoaQ7XNf5vO97b720BQS9NjXYO5t8rj0b6yc9isITPbRNWz22DhA8oUh3vnNWujykNjG9xVWFPlQwb72bfyq8WMfRvQy8iTxsA3y99aFrvoTTBz10NcO7bLDwPAproTsO2aO6b8ACPTjRU70KCaK8s652ves98LwggC-9MuPxu7FX87zJlv6625lTPZILmb286-y7hTiAPW_etLqu1xS9QsFWPdeEGb3VUeG72DVOuxt0eDwUoUe8gH8KPgL_Kj021Sw7SMsXPewHhjx383m8UwIHvRTaKDwutKk8WkAyvYuauT3McgK8YvSMPZ5-0L2-dl27UwlqvUQ2oD2YZ0U69fX8PZyiCD3rK1m8_Ouuu-4eZT2IA7I86PJrPRETib1IIuo7wyrePR_bEj5Uf4I6meJgPDXpOz05nxM85DvGO4z3Az6_LMg8OeCpPfX7mT3gaAW8nASlPF0AdTyjJ4C8wdY2vEscrj20PXq8O3TFPQcBHr2uFBu8pO3vO5GAUT0cJS-8M7vTvIQjrb3UDuc46wHzPH11erygg9O7IrCYPRbGcTwju3e89gWpPcG80bxvfPG7CuFMvba-SD2281w7fp-bPe-WP7z8CBU8Wmq4vZs08jwVqwa8eCPYvM3IlT0yHR27fTuuu7Wlzj0-auG6lT4-PMiTKb1Y67y7y-iRPbM4vb3apVO7gKxRPYtWCb36Zva6ElDBPcF4Qb1h0wq6Evhku-4sMLw21_Y3xqQ_vOQEt7w8_vm4eW0gPWGPtL1b0Jc5s3iBPct-AjxRHL82rm7rvKbwID0Llp65tfSNPHCY6LxroOI3rhlPvOw2Q70aTrU5djwBvaBzkryqFZC4PBbbPSVeeT3FJ7W4ax7BvcSuor1Z-CI4tctSvfDfvD1M8t-4xeKcvJTdDD0UvbK31q6UvbzwGjz-2aO5n1XJuqrkjb3onBU56h4evcgXjj05yUc4TKgAPcfwnb3-7jA5zfIrvOMmmT3azh-4ACMDPQ7b1j0-T4w369A_PbPdMz3Lj5O4mgcQPd44yb0INPs2LueSPRbgNj0nJxa5Y6iEvWaZL73HPsk3ZXOwvMs8A7xNimK4CREVPSync70bCTg4AJQavRsSdzzjhrM4kl0ZPtlPUL2swj-5k0O6vR0teD0STW64wyb9t7NDjL1Nig43m9KPu-Lkjj1g3kc35NWevHqJ8b1lVTC4ipZXPRBY-T2NF0A4U1N8vfDzZD0mccO3K6advVjywrzwqKW33ZNMPSfU_Lr8ede3IAA4E0AJSG1QASpzEAAaYFP6AAb-GMoTBzfdNOPYIei2M9Tv1QP_JPL_GycE0QsYK5sABP9By_oJoAAAAB4T9jvwAPx_7dvf5OkVE7Cd7Qb9etQLQcmyIRTIqiwQF_ETA_8uMADr9JsjKNrHWkJBHCAALdzzETs4E0AJSG9QAiqvBhAMGqAGAADgwAAAoMAAAAAAAABQwgAA6EEAANBBAACOQgAA0MEAADDCAADgQAAAyMEAACBBAADwwQAAkEEAAABCAACwQQAAQEAAAODBAAAgwQAAKMIAAEDAAAAowgAAgEAAADRCAACoQQAAwEEAAIC_AADYwQAAmMEAAChCAADQwQAAqEEAALLCAADgQAAAoMEAAKjBAADYQQAAZEIAAATCAACQQQAA8EEAAEDAAAAQQgAAAEIAAIBCAACgwgAAgL8AAIhBAAAkQgAAuEEAAIjBAADgwAAAQMAAAEDAAADgQAAAqEEAAK7CAABAwQAAAEAAADRCAACYwQAAosIAAMBAAAAwwgAAgEEAAODBAACwwQAAPMIAAChCAACAwQAAgEIAAEBBAACEwgAAkkIAAMBAAABUwgAAuMEAABDBAACWQgAAgD8AABTCAACwQgAAUEEAANDBAADAQQAAvsIAANhBAADAQAAAfEIAACTCAAAgQgAAbEIAAETCAABYwgAAGMIAAIbCAAAgQQAAFMIAAI5CAABQQgAALMIAAEhCAAAYQgAAFMIAAFTCAAD4QQAAMMEAAABBAACIwQAAkEEAAADAAABQwQAAcMEAALpCAADwwQAASEIAAEBAAADYwQAA0MIAAI7CAAAcwgAAFMIAAODBAAAIQgAAEMEAAEDAAABQQQAAgMIAAPjBAACOQgAA4MEAAIDAAABMwgAAOEIAAIhBAADwQQAA8EEAAMjBAADwwQAArsIAAEBBAABowgAAgkIAACTCAAAkQgAAgMAAAGDCAABAQAAAeEIAAGBBAACIQQAAwMAAABRCAAAAwQAAgMAAAOBBAACSwgAAIMIAAJrCAABQQgAABMIAAAxCAAAMwgAAwMEAACDBAADYQQAAIEEAAABCAACcQgAAmEEAAFDBAABEQgAAMMEAAJLCAAAYwgAAPMIAAMDAAADwwQAAiMIAAIC_AACYQQAAAMEAAOjBAADQQQAA1EIAADRCAAA0wgAADMIAAPhBAAAAwQAANMIAAJjBAACQQQAADMIAAKhBAACgwAAAgD8AABjCAAAwwgAAGMIgADgTQAlIdVABKo8CEAAagAIAAIA7AACgPAAAgLsAACw-AAAcvgAAgj4AADw-AAD2vgAA-L0AAFQ-AACGvgAAoLwAACy-AAAsPgAAPL4AAKC8AABcPgAAcD0AABw-AABHPwAAfT8AADA9AACovQAAiD0AAGS-AADIvQAADD4AAEA8AABkvgAAFD4AAOA8AACAuwAAUD0AAOA8AACoPQAA2L0AAFw-AADIvQAAir4AAGS-AADIvQAArr4AAEw-AABwvQAAUL0AAKg9AACoPQAALL4AAFS-AACWvgAAfD4AAOg9AABcPgAALD4AAKK-AADgvAAAfz8AAOi9AABkPgAA4DwAAEC8AAA0PgAAgLsAAPi9IAA4E0AJSHxQASqPAhABGoACAAAwvQAAUD0AAFS-AAARvwAA2D0AAIg9AACgvAAAcL0AAJi9AACSPgAAqD0AABA9AADgvAAAhr4AAJg9AABwvQAAML0AADM_AAAUvgAAjj4AAAS-AACgPAAATD4AALi9AACYvQAAqD0AAIA7AADYPQAAED0AAOC8AADoPQAADD4AAGy-AADgvAAAoDwAADC9AABEPgAAvj4AAJa-AAAMvgAAij4AAIC7AAAsvgAA4DwAAHA9AAC4PQAAf78AAOi9AAAMPgAABD4AAJg9AAA0vgAAgDsAAJg9AACGPgAAoDwAAFA9AABAvAAANL4AAIg9AAAwPQAAJD4AABA9AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ltxrVlPdhI0","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14031134107130370164"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1941104750"},"8159220707031112307":{"videoId":"8159220707031112307","docid":"34-3-5-ZC58B3C83F202E318","description":"This video is about an example for Gomory's cut Method for IPP. Others videos can be found on • Optimization Techniques/Operation Research .","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/223629/cf6de6fdf416ccf711881d2c56b0d20f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pxo1YQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWKo893XX-Ak","linkTemplate":"/video/preview/8159220707031112307?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Example | Gomory's cut Method for IPP","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WKo893XX-Ak\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhUKEzgxNTkyMjA3MDcwMzExMTIzMDdaEzgxNTkyMjA3MDcwMzExMTIzMDdqtQ8SATAYACJEGjAACiloaGNpeWlwZ2tidGpwamloaFVDUzJzNWlKeFdyVXk1eEVySmhpN2FKdxICABEqEMIPDxoPPxPwBYIEJAGABCsqiwEQARp4ge72BwgC_gDzCg8KBQb8ARYC_PL1AgIA5wH3-_j-AQAJ__n3_wEAAA7_DQf8AAAA9_3-9Pr_AAAP_f4DBAAAACEN_Pj7AAAAEgYADf4BAAD9ARP2AgAAAA79_vj_AAAABxAAD_4AAAD0CAL3AQAAAA_3EQwAAAAAIAAtnf3MOzgTQAlITlACKoQCEAAa8AF_6A4AzvvQ_8zm5QDeL_0AqC0j__0y0wDM9_8AuffIAO0a9wAC6-EA9wsmANkm3wAy1tL_-tACAC28DAIe5-4A2wL8ASHwBAFCAhb_Fvf3AcoSNwHgzfoAKeHZAhcj-gL5BQn8CPvaAQ__1QMz7x8CByEsCR7uEgLesv0B2dnpAuze2v4EF_0F7LP4_uvwGAQXvgoDDvX--tYT8_0A-Q_969sPACs01v8F_ggJ7QzwANr3_gYY9f0FHSUK-tMI0_3m4h3_4R__9-X3BwAX4x360Rjn-Q_sAhIa4wACCvL5Cf_U5gfY_vYF7QrrBuAI9e0gAC3RQhc7OBNACUhhUAIqcxAAGmAv_gAYDRgL3-oD7vXdFRPQ5v3w9eLrABwGAAAx4CgCEtrNGQL_-60a6rgAAAAs-PsHDgDqYunW4RQU7xfAzsfyIn_8JBS48CvzyNYJ0evz4jILCz0AEg68GDv36jjQMRwgAC0VmDg7OBNACUhvUAIqrwYQDBqgBgAAgMAAAHDBAAAAQQAAgMEAAJBBAACYwQAAzEIAAADBAAD4wQAAAAAAAGBBAACAQAAAEMIAACxCAACCQgAAgL8AACDCAADIwQAAAAAAAATCAAAAAAAAMMIAAIDAAAAEQgAA4EEAABDBAACgQQAAVMIAAABBAABMQgAAQEAAAEhCAACuwgAA4MAAAI7CAAAcwgAA4MAAALJCAADgwQAAMEEAACBCAAAAQgAAXEIAACBBAADgQQAAnsIAANDBAADgwAAABEIAANhBAADgwQAAFEIAAMhBAAAQwgAADEIAAIBBAACqwgAAsEEAAABBAAD4QQAAUEEAAITCAADgwQAAhsIAAOhBAAAAwgAAQMIAAFzCAABwQQAACMIAAJxCAAAQQgAAbMIAAHBCAACowQAAtsIAAABBAACgwQAAXEIAAChCAAD4wQAAqkIAAEDBAADAQAAAEEIAAIDBAACCQgAAEEEAAKBBAAB4wgAAgMEAALJCAAAAwgAAoMEAAIhBAADUwgAANEIAAAAAAABsQgAAsEEAAMjBAAAIQgAA4EAAAMjBAAAYwgAAwEAAAKDAAACoQQAAHMIAAPhBAAC4QQAAwEAAABDCAACgQQAAcMEAAABCAAAYwgAAgMEAAJTCAACYwgAADMIAAEDCAAC4wQAAgEEAAARCAAAAQQAAIEEAAHzCAAAIwgAAOEIAAODBAAAAwgAAlMIAABxCAAAAwAAA2EEAABBCAACgwAAAbMIAAETCAAAAQQAAYMEAAKhBAADowQAAPEIAABDBAABIwgAADEIAAAhCAAAwwQAA8MEAAMBAAABUQgAA4EAAAEDCAAAwQQAASMIAAJDCAABkwgAAkEIAAEzCAACYQQAAKMIAACTCAACwQQAA4EEAACBCAABcQgAAREIAABDBAADgwAAAREIAACzCAABgwgAA2MEAAAjCAAAAwgAA2MEAAMjBAABAwQAAQEIAABDBAABQwgAAkkIAAJBCAACYQQAAKMIAAEDBAACAwQAAUMEAAIrCAACgwAAAAEEAANDBAACEQgAA4EAAAODAAAAAwQAAUMIAAMDBIAA4E0AJSHVQASqPAhAAGoACAAAwPQAAUL0AABw-AACAuwAATL4AAGQ-AACSPgAAJb8AAHS-AAAUPgAAoLwAAPi9AAA8vgAAAT8AABw-AABEvgAARD4AADA9AACAOwAAHT8AAEM_AACYvQAAUD0AAOA8AADYvQAAqL0AAIg9AADgvAAAfL4AANg9AACAuwAAyL0AAFC9AABcPgAAoLwAAMi9AADKPgAAkr4AAIa-AADgPAAAqL0AAKC8AABUPgAAjj4AAMi9AADgPAAAiL0AADC9AAAEvgAA3r4AALi9AACKPgAAgj4AAGw-AADWvgAA2D0AAH8_AADovQAAwj4AABA9AADovQAAjj4AAJg9AAD4vSAAOBNACUh8UAEqjwIQARqAAgAAQLwAAOA8AACovQAAQ78AAAO_AABwPQAAnj4AAFQ-AADYvQAAoj4AAFA9AABcvgAAiD0AAKi9AADIvQAAUL0AAKi9AAAtPwAAUL0AALY-AACgPAAAXL4AAIC7AAAMvgAA6L0AADC9AAAsvgAAqD0AABA9AAAwPQAAQLwAADA9AAAEvgAAhr4AAAQ-AADYvQAA6j4AACQ-AABkvgAAJD4AACw-AABkvgAAZL4AAHA9AACIPQAAjj4AAH-_AAAwvQAAjr4AAFC9AACWPgAAQLwAAEw-AABwPQAAmD0AALg9AABwvQAABD4AAEQ-AADgvAAAsj4AABw-AAAkvgAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=WKo893XX-Ak","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8159220707031112307"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3963933156"},"17897524586469138321":{"videoId":"17897524586469138321","docid":"34-0-9-Z511D74829A6F16DF","description":"This video is about Mathematical Backgrounds for Simplex Method. Here I will talk about Vectors, Hyperplane, Polyhedron. Link to Mathematics Behind Simplex Method |Part-1|: • Mathematics Behind...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2976332/d39f20555b821c846cc907341738d977/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/IyjCMQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dg60HFdaq6jI","linkTemplate":"/video/preview/17897524586469138321?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematics Behind Simplex Method |Part-2| Vectors, Hyperplane, Polyhedron","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=g60HFdaq6jI\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhYKFDE3ODk3NTI0NTg2NDY5MTM4MzIxWhQxNzg5NzUyNDU4NjQ2OTEzODMyMWrVEBIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E8YKggQkAYAEKyqLARABGniB6vj8-wL-APv8_xABCfsCHgD8_vMDAwD1-vv8_gP_AAD3-AINAAAACP7xCQIAAAD3Bvr98_8BAAQE9wgEAAAAEPr89PUAAAAGGwUG_gEAAPX6BvgCAAAABwMF9_8AAADyBfYD-v__Ae0aAQcAAAAACRAN__8AAAAgAC2OTss7OBNACUhOUAIqhAIQABrwAX8ICAHgEMUCxRPiANwhCwKHCiv__DTSAM3k6wG49scA_hjzAOL91wAjGxb_tSn4_zPV0P8EyuIALroMAjUD8QDsC_sALujtADgoGQD-Bej_3iQS_wna-__9x94AGhrdAAUE_v_UCdcA7QPCAhnlLAP_HBYFLAIN_t2w_QHd-_wC4vLv_gz4BgP7uA382AQiAgvQ_f4PBQj05ATxAQwDBP7q2hAAHRvh_f_YBgvsDfAA2ff-Bg4J_wkTEwYB-RHvBPvpGf72Bf3rAPj7BCnxHADa8vAC-M_zDxEJCP72xQgH_9PmB-YC7gLsCuoG4Aj07CAALY27Ezs4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe7Zk4Hvv4qn7uC-KW846C5vRxtizxeBSO82pAfPqYFMzvnrZk6HEIVvlDwgzybSB-9Ci9hPhdxsLxB08Y5hzQqvp5pqD22cmW8RBhfvtRkZzulnT88OC_OPM5twrwxb588snWaPaXL0bwt6AG86JmDPCRU-jybKSO9sZzOvJecSby27WC9G3-HPNc3m72uqWK7mK27PdkbITzZvOA8zvYNPXOL1Lzf0bG71jEzvY1S-Dw0P8i8mj-GPenVQD2E2d-76_uFvT5oTL2HOxE8VYpdvRzjlLyNBQq93_zGPewb8zyHWT69YvSMPZ5-0L2-dl27qMghvgJ8HD3o6W085Ib_PTl29TyMb548fJrTvbGiJj19XrG8WtcJPDFgibzumso7YCETPRvcgT1OiM47Yz2KPSAghDz5SIo8BSotPEZBED3d81c8huJOPZD-cr1GoFW8hI4MPR-CKryWlaa8A9--vSzfCT3n8hM7T1xuPZG3PD1hfAe75BqXujxy2jt6iZY8BSOlPdYCO75J5Zo64LzYvXdhgL0-fQK80KD8PFCJ0DyKcQC8i8ucPaQXer1feEq8-dAPvdfep7p-Wt470TIaPOeMSL3ZPDM83gLpvZiThjzp5Ji62L_GvMTeVTx_8TG8xJJ2O99vpD1cQMM6bAHnuzBH770_mqC61bx5PZt9-jmC0DQ7o22BPZLjkz3DiRy4SQ59PUXA_LwrMte7LEJWvUhj_ryhXQ07zGG3vOMtXL0S8II33WGTPbuXC76lDmg5_reSPAZcAT3bHSw4XvhcvY2CuzymwVo37m-aPKMsMr2895u4y6LwvFtCHr43BeM5rGg9PEipJD0lyfK5ynoAPTmobj3cEpg6PkKdveiqVL2Wh065nVI0vTeffz2YhJK4FHyuPSvCjT3gZGU4nZubvN5ubjwPvQi4Pf2UOxwdAb0vpaK4YWZpvDWtPj0A7om4vIYqvakTkL0Ayqg4FAQPPRBdAD6Nw3G4uhdzvfQyyjyS2hK1g7jXPBl_EzwLRZQ4GuflPF0Pa724sI03NYCCPVewjTzl86u2uOQovtF_hbyd-Bq5mhL_vL2yJr0Vuse3ziULPLtlYryBvJm2FvPYPEq_szxlhZW3weMrPtylaLwHiXS5qCanvVQ9xL0cuIO4OOeWvEbAN71q4gO45js4vagtfz3KEMiyQyLIPKVN1b1QB3e4yvRwPSLhKz7xy4o4OaELvdEQhD3l09W4tAH4vbVYRT1R4Fw4ziuovPqpBzo9VeM3IAA4E0AJSG1QASpzEAAaYAP9AD7eEdf6PSDx7NfcEtjuJNYf3ff_HPL_EyH2EAsi5NENEf8YrSbcqgAAACXT3gQNANtz1-3lLxP8OMi96hAaf-sFLcYqItnK60kc_9k8AB0hIwDEAJ8gSwypKM46MiAALVBgHzs4E0AJSG9QAiqPAhAAGoACAAD4vQAALL4AAJg9AACgPAAA2L0AAII-AABQvQAAB78AAFy-AABwvQAAPD4AABy-AAAkPgAAQLwAACy-AABUvgAAZD4AAOA8AACKPgAABT8AAH8_AACAOwAAND4AACw-AADgvAAAhr4AAOC8AAAwPQAAJD4AAFQ-AABUPgAAuL0AAIg9AABEPgAAyD0AAMI-AABMPgAAVL4AAKq-AACovQAAB78AAIA7AAAQvQAAuL0AAKC8AABQPQAAoj4AAGy-AADIvQAAqr4AAJi9AACIvQAAlj4AAII-AAA0vgAAUL0AABM_AAA0PgAAUD0AABA9AABkvgAAFD4AAFA9AACIPSAAOBNACUh8UAEqjwIQARqAAgAA6L0AACw-AAAwvQAAG78AAI6-AACIPQAAqj4AAHA9AACIPQAAUL0AAAS-AACevgAAEL0AAAy-AAC4PQAAQLwAAOA8AAAJPwAAdL4AAK4-AAAEPgAANL4AAAy-AAA8vgAAED0AAKC8AAD4vQAAiD0AAOi9AACAOwAA4DwAAOg9AAD4vQAABL4AALg9AACAOwAABD4AAOg9AAA0vgAA4DwAAEQ-AADYvQAAuD0AABA9AACovQAAQLwAAH-_AABAvAAAXL4AAKA8AADoPQAA2D0AALi9AAAEPgAA-D0AAOg9AACYvQAATD4AAKC8AAAMPgAAUD0AALi9AADoPQAAqD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=g60HFdaq6jI","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17897524586469138321"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3732211145"},"7012273611243830616":{"videoId":"7012273611243830616","docid":"34-0-0-Z56050E204975A350","description":"This video is about Tie in Entering Variable, when two variables in a LPP (Maximum/Minimum-objective function) corresponds to same zj-cj (most -ve /or most +ve), which are entering variables then...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4145531/4121957310bcd10c25232508388bbdf2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/4INEVAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCLj6mJvVKgQ","linkTemplate":"/video/preview/7012273611243830616?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplex Method |Part 13| Tie in Entering Variable","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CLj6mJvVKgQ\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhUKEzcwMTIyNzM2MTEyNDM4MzA2MTZaEzcwMTIyNzM2MTEyNDM4MzA2MTZqtQ8SATAYACJEGjAACiloaGNpeWlwZ2tidGpwamloaFVDUzJzNWlKeFdyVXk1eEVySmhpN2FKdxICABEqEMIPDxoPPxOqBIIEJAGABCsqiwEQARp4gfj2-_gE-wADCwsOAwv6Ah0AAQr0AgIA_v8Q-vUF_gAFCgUA9wEAAAEDB_z_AAAABgj4-vj9AQAQ_P4DBAAAABUABQT8AAAACwf2Cf4BAAD1BAIK9gIAAQX6_vb_AAAA-xsDCf8AAADnDAMMAAAAABr5EP4AAQAAIAAtQR7GOzgTQAlITlACKoQCEAAa8AF_Avr_5O7NAc8W9wG_LAoApS4l__w00gC6--kAverfAfT8EADh_dcADywXALQq-P8U2LMC9a_2ADzc_AAw6PgA2gL8ASz38AE5KRkABfbwAPANF_8J2fv_Ctrn_wIY5wP-5hb_BxblAvQV2AEl-y8B3hEZ_zrs9P64sxsF9OYJBff73QDsA_4E-uML_urvGQQLyusFHgry-9UT8_wIC_n__t4X_Po85PoE7QwE-g3lCdvL-gcmBf0JASL-8vkW2fzl4R7_0RT68ePiCvcwF_n8yv75_hvR-BIG-O797vcJ_wf36PHtAPHv5_jvAtEUA_UgAC34xhE7OBNACUhhUAIqcxAAGmAs5QA6_B32Cjk1_cL07QbmzxLcEs_x__Xf_wY7_SQF9NzIMxMAH9Qc4qwAAAA28fwL1gAJcOcMARzuDQ6p5P34G3zt8_Go1yTuwPn8_PT6BuQrTX8AwR64Kk_29wn13AggAC33dyQ7OBNACUhvUAIqrwYQDBqgBgAAIMIAAAhCAAC4wQAAmMEAAAAAAAAAwQAA4kIAABDCAACAvwAA-EEAAMBAAACgwAAApsIAAGBBAABUQgAAoEAAAATCAABkwgAAqEEAAEDBAAAQQgAAUMEAAFxCAABwQQAAkEEAAJDBAADwwQAAuMEAAIDAAABgQgAAuEEAALhBAAAkwgAAiMIAANzCAACIwQAAmMEAAIJCAAAwwgAAIEEAAEBAAABAwAAANEIAABhCAAAoQgAAIMIAAGDBAADoQQAAfEIAABhCAACgwAAAiEEAABRCAADQwQAAZEIAAFxCAADawgAAMEEAALjBAADAQAAAgEAAAKDCAADwQQAAoMEAABRCAADgQAAAsMEAANDBAABYQgAAyMEAAGxCAACgQQAALMIAAABCAACAQQAAiMIAAATCAABEwgAAgEIAAJhBAABswgAArEIAABDCAACYwQAAJEIAAADCAACQQQAAhEIAAIhCAAA4wgAACEIAAHhCAAAAAAAAeMIAAKDBAAC-wgAAgEAAAMhBAACGQgAAoMEAAGTCAAA4QgAAMEIAACTCAACCwgAAgEAAAGDBAACQQQAAfMIAAIpCAADoQQAAFEIAAFjCAAA0QgAAMMIAADjCAAAQwgAASMIAAHTCAABQwgAA8MEAAHDBAACgwQAAQEEAAHDBAADgQAAAAEEAAFDCAAAMwgAAFEIAAKDBAACAvwAAjMIAAJhBAACYQQAA4EAAADRCAAAQQQAA8MEAAGDCAADYwQAAqMEAAKhBAAAkwgAAaEIAAGzCAAD4wQAAQEEAAEBBAAD4QQAA0MEAABBBAAAYQgAAwEEAABDBAADgQAAAkMEAAHDCAADwwQAAdEIAAGzCAACIwQAAOMIAAEDBAABEQgAAIMEAACBBAABIQgAAKEIAABDBAAAQQQAA4EAAAIjBAACSwgAAoMAAAAzCAAAAwAAAVMIAANBBAACgwQAAGEIAAMBAAABQwQAAVEIAADhCAADQwQAA4MAAAJDBAACMQgAAuMEAAJbCAADIQQAAsEEAAAjCAAAgQgAACMIAAEDAAAAAwQAAKMIAAABBIAA4E0AJSHVQASqPAhAAGoACAACoPQAAVL4AAKA8AACIPQAA6L0AALI-AADgvAAADb8AAIq-AADIPQAAcL0AAOA8AAAwPQAA6D0AAPi9AADIvQAAvj4AALg9AABcPgAAuj4AAH8_AACIPQAAyD0AANg9AAA0vgAA4DwAABA9AACCvgAA6L0AABQ-AADIPQAAiL0AAEC8AACgvAAA-D0AAJY-AACYPQAARL4AACy-AAA0vgAAmr4AAIg9AABwvQAAQDwAAAw-AACIPQAA4LwAAHA9AAAkvgAAhr4AABA9AADIPQAA2D0AAIg9AAAcvgAAML0AADk_AABQvQAARD4AALg9AAC4vQAAuD0AAFA9AAAwvSAAOBNACUh8UAEqjwIQARqAAgAARL4AAOi9AABsvgAAMb8AAKC8AADgvAAAPD4AAJg9AACgPAAAND4AAIC7AABwvQAANL4AAJa-AAAEPgAA4LwAAKg9AAABPwAAuL0AAN4-AAAMvgAALD4AAFS-AAAQPQAAqD0AAMg9AABQPQAAQLwAABy-AACAuwAA4LwAAOg9AAC4PQAADL4AAFA9AADovQAALD4AAMg9AACKvgAAkj4AAKA8AABUvgAAUL0AAKg9AACgvAAALL4AAH-_AABQvQAAor4AAEC8AADIvQAA6L0AADA9AADovQAABD4AAOA8AABAPAAAiD0AAOA8AACoPQAAMD0AAIA7AACIvQAAfD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=CLj6mJvVKgQ","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7012273611243830616"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5907570783520883052":{"videoId":"5907570783520883052","docid":"34-8-12-Z80C8D6522E4EBC3A","description":"This video is about the two basic counting Principles in Combinatorics; Sum Rule and the Product Rule or Addition Rule and the Multiplication Rule. Complete Playlist of this topic: • Enumerative...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4579383/e74fe61f2cad1849caeeab2934f998cd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jE7FiAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DV9peSVfg-kg","linkTemplate":"/video/preview/5907570783520883052?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Two Basic Counting Principles","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=V9peSVfg-kg\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhUKEzU5MDc1NzA3ODM1MjA4ODMwNTJaEzU5MDc1NzA3ODM1MjA4ODMwNTJqtQ8SATAYACJEGjAACiloaGNpeWlwZ2tidGpwamloaFVDUzJzNWlKeFdyVXk1eEVySmhpN2FKdxICABEqEMIPDxoPPxOXDIIEJAGABCsqiwEQARp4gfb6Av4BAAAQABEAAgj_Af0J9_z3_f0A3vr9AgP7AgD_CwMAAAEAAPQPCAD7AAAA8P3y_QIAAAATC_X2BAAAAAb0_fsEAAAADAoI9_8BAAD_7gUBA_8AAB_2BgMAAAAA_gj-AAIBAAAUCQMMAAAAAArwAQP78v4AIAAtrT7ROzgTQAlITlACKoQCEAAa8AF_BOr_2w3eAOvvzAGmLRD_ozID_xEV0wDD-yAAkunW_-0Z9wAC_NgAEvoH_978HQA99sz_9rP3ACv88f8VAgwA_fMoACPaCwBD8R3_C_z__u8eHQAJ-wsAF9jUAwcM7v79EQr93ATt_xwVzQETwRoA-AElBgbpCP_q8P4D7gT6AuT22f0OFP3-3vPzAOwVOAEJ7RQFAAP6-NXgAP74C-L9DewJ_RAV8wAJ7OgI7OQG_OT2AvgC8t37HfoiBs8U7P0K6RcC_fcI_OD1C_FF5g8Lzf75_jDYAgcxGgP4-eTxA_r-BfPg-f354vT9Den-7AQgAC2uoxk7OBNACUhhUAIqcxAAGmA8_QAw_DgO-P1g5eoO9Q8Jy9jZL9fi_9UF_9sGAfcl8hKl0gP_RcQN66IAAAANAcJJFQALfs__3yL7KOjzyM3hG3_iDk4H3CMB69Qw-ccbKPI7824A-MezJzDK-1crMDcgAC3frBU7OBNACUhvUAIqrwYQDBqgBgAA4EAAABRCAAAgQgAAIMEAABBBAAAgQQAAaEIAAGDBAAAIwgAAAAAAAGxCAABkwgAA0MIAADDCAAA4QgAAQMEAAOjBAACYwQAAmMEAAMDBAACAQAAAgsIAADBCAACAwAAANEIAAIDAAACAwgAAkMEAAJBBAABcQgAAAEAAAIBCAACmwgAAUMIAAJrCAABQwgAAgL8AAI5CAAD4wQAAsEEAALjBAADgQAAAmEEAAADAAABUQgAAHMIAADTCAAAgwQAA4kIAAAxCAACCwgAAcEEAAEBBAAAAwQAAHEIAAIDAAAD-wgAAEEIAAKDAAADIQQAA2EEAAEDCAACAQAAAKMIAAIBAAADgQAAAaMIAADjCAAAYQgAAAEAAAAhCAACEQgAALMIAAABCAACIwQAAYMIAAIbCAACYwQAATEIAABBCAABowgAAXEIAAKBAAACwQQAAQEEAAADBAAAQQQAAGEIAAHRCAAAwwgAAmEEAAIxCAABQQQAAQMIAAOBBAAC2wgAACMIAAADAAADgQQAAMMIAAGzCAABwQgAAgEEAAGDCAAAowgAAAEIAAETCAAAAQAAAgEEAAIZCAACKQgAAHEIAADDCAAAQQQAAgEAAAODBAAAYwgAAgL8AABDCAAAkwgAA0MEAAIDCAADowQAAYMIAACDBAAD4QQAAQMEAAADBAAA0wgAAAEIAAHxCAAAAQQAAJMIAAJBBAADAQQAAAAAAAGBBAAAQQgAAMMIAAKLCAAAcwgAAAAAAAEDAAADgwQAApkIAALDBAAA8wgAA4MEAAKBAAADAwQAAUMEAAIC_AADAQQAA4MAAAIBAAAD4wQAACMIAAK7CAAAowgAApkIAAKDAAAA4QgAAwMEAABzCAAAAAAAAMEEAAJBBAACQQgAALEIAADBCAAAgwQAAREIAAIC_AAAwwQAAgD8AAPhBAACgwAAALEIAAAhCAADwQQAAwMAAABDBAAAAQQAAuEEAADxCAAAAQQAAQMEAAABCAABAwQAADMIAAODBAAAYwgAAwMAAABjCAAAsQgAAcMEAAHBBAABUwgAAssIAAABAIAA4E0AJSHVQASqPAhAAGoACAAAkvgAAJL4AANg9AADgvAAAqL0AADA9AACYPQAA_r4AABC9AADoPQAAuL0AAJg9AAAsvgAADD4AAKC8AAAwPQAAyD0AAOA8AAAEPgAA2j4AAH8_AACgvAAAoLwAAEQ-AACivgAAPL4AAEC8AAAUvgAAgDsAAGQ-AACIPQAA6L0AAHS-AABAPAAAoj4AAKC8AADIPQAAcD0AAIq-AADIvQAAEL0AAIK-AABwvQAAiL0AAIg9AACYvQAAqD0AAAy-AADIPQAALL4AAEC8AADgPAAAFD4AAAw-AAB8vgAAQDwAACc_AACAOwAAqL0AANo-AABAvAAAnj4AAKg9AADIvSAAOBNACUh8UAEqjwIQARqAAgAAcD0AADy-AADYvQAAN78AABA9AACovQAAqD0AALi9AADIvQAAuD0AAOC8AABwvQAAgDsAADy-AADgvAAA4LwAAIg9AAArPwAAHL4AALI-AAA8vgAAQDwAAJi9AAD4vQAAoLwAAHA9AADoPQAA2L0AABQ-AACGPgAAuD0AALg9AADovQAAHL4AAMi9AADYPQAAyL0AAIA7AAAcvgAA4DwAAGw-AACAuwAAyL0AANg9AACuvgAA4DwAAH-_AABcvgAATL4AAEA8AACgPAAAoDwAAPg9AABwvQAAcD0AAIA7AABAPAAAHD4AAES-AACIvQAAMD0AADA9AACIvQAAPL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=V9peSVfg-kg","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5907570783520883052"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1061369503"},"9776418811693863935":{"videoId":"9776418811693863935","docid":"34-1-5-ZEB9F89D37BC2FE8B","description":"In this video we discuss Generating Functions of Partitions of a positive integer, and it is equivalent to find the no of ways to distribute r-identical objects into n-identical boxes .","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1024500/ac524b8152f3fdd5becf93236b3640a3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/PbvUFQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dubh1GIxGZrA","linkTemplate":"/video/preview/9776418811693863935?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Generating Functions| Partitions of a positive integer|Identical objects into identical boxes","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ubh1GIxGZrA\",\"src\":\"serp\",\"rvb\":\"EqoDChI0NTU3NDExNzE0NTE5MTY3NjAKFDE1NDM2ODMwNTQ4ODA2ODE1MTMxChM0MDAxODI4NjE2ODQzMjc4ODUzChM0NTM5NTY0MTk3NTA5MzQ4MzcxChQxNzM3MjAxNDQ0ODc2NzYwNTE4NgoTOTc3Njg4NDM5MzAzMzIzMTQwOAoTODY3Njc2NTg1MDc1ODYxMzI0NQoUMTYzMzU3NjYyODgwOTczNDAyMjkKEzY2ODg2NjEyOTk2NDk5Mzc0NTcKEzk5NTI5OTgwOTEzNjE2NTkzMTAKEzYzMjQ2ODQxMDAzMDQ4NjEzNzcKFDEyODcyNTEzNjUwMTMyMzYxMDQzChQxNDAzMTEzNDEwNzEzMDM3MDE2NAoTODE1OTIyMDcwNzAzMTExMjMwNwoUMTc4OTc1MjQ1ODY0NjkxMzgzMjEKEzcwMTIyNzM2MTEyNDM4MzA2MTYKEzU5MDc1NzA3ODM1MjA4ODMwNTIKEzk3NzY0MTg4MTE2OTM4NjM5MzUKEzUxNzAyNDk1NzA3NzU2OTgyMjYKFDEwMTU4MTk4NzU2NzQ2Nzk1MzYzGhUKEzk3NzY0MTg4MTE2OTM4NjM5MzVaEzk3NzY0MTg4MTE2OTM4NjM5MzVqhxcSATAYACJEGjAACiloaGNpeWlwZ2tidGpwamloaFVDUzJzNWlKeFdyVXk1eEVySmhpN2FKdxICABEqEMIPDxoPPxOKEoIEJAGABCsqiwEQARp4gfsL_gD_AQDtAQL2_f8CAAwA-_r2AAAA7QcHAAH_AADxCwL7-QAAAAYM_wUEAAAA9v77CPT_AQAL9gAB-gAAAAzx_f_5AAAAABf2B_4AAADuAQb_AwAAAB4CCPv_AAAA9wMM_AEAAAADAPr_AAAAAAz0Ev4AAQAAIAAtCGHVOzgTQAlITlACKoQCEAAa8AF_9w__4-3LAcEU4ADGJPcAmjcE__w30ADFAhAAoxXH_usc9gAC_NQA4hMmAbTt6wE2087-ANj1AD39BP85xAsA8P8LABTDAwBIAxj_COPr_t4jMP3p6jICLN_VAggN7f4ZABX-8fvg-gvptAkQ_kIB7AsaBiEDGfvwwgj_ygMC-vzk3P0QIOcC79v_-eoXPgELyOoFAOwE_tgv8wIcCP356dgQAQgx0v0z6u0JFesS-fHbAvr84PUGFyMl_s8h9wfk4B__4gj79-P3CAA_2AD3yP75_hz08w02HQP3Dtv6BP8I9e7NAQH82g71_fsf8PogAC1O_As7OBNACUhhUAIqzwcQABrAB7qj974xg6c8InxePOYQZ70WqEC9LB-DvfgzPLyHSzM9xMGUu5CiHj5KEt88t0MBPPaWYr4FeIE8eT8NvP29dD6SVEu9A7HsPHV0_L0vE5o9CwIQvUzEO76CnEW7VjLXuskzND046Fy9UJAzvODZfj1ScU29zTdHvCGVoryGRJC8Tt62vIlH_byTnai9a3ARvf7VQz1gPnm9fNa1PFZspz3_CMM81VLKvIev5Tz3hDa83aCsvMi_xbwOQDQ6Eo6wu17_hbmo97k8q_XVOwR2cL1erF48qOukvKp3ALwu5Zk7a-gwPA97hj3suZE9OaErvWVDnT13NbS9kHYyvajIIb4CfBw96OltPKj8Cz6lg5U9JI6GvNJXm73dSFQ9GvQtu8UiAT0zueK800a7u898oz24MlI9p9BUPGM9ij0gIIQ8-UiKPKoeRrqAgYA9VNNkPCBLqj2oFva8XHaIvISODD0fgiq8lpWmvIeAuL0qq4k9VwejO4IwwTw_9fo70oSzu-zeyjxTng894ap8PEVcpTxzuPa95AQ3PHX4Vb3B_iu9Fyp_vGo2DTyfeyo9McltvIvLnD2kF3q9X3hKvEnjZr2KEv48Zrbxug4-Az3nOsi9LzNsPFACpr16H0I9BMFKu_xlQbyF7Nm7h0I6vMuY57xaDbk97IyIO2wB57swR--9P5qgupsbqD3HybM7TqgWO6iEjDyNHzQ9itK1uxJQwT3BeEG9YdMKuoR1Db2L2Ay9vyNwu1-UhbzwtEa8bMhfuO50nD2s4s29Kv-9OXD3KD1UCrA8I04jOaw84b1pQ1Q9lVuyOP_FebtvkJq86AQ2uRxdpbw9Mmy9_RXLOAOLwTnBmCM9IcvTuJ4_kj2hA9w8O26xuT5Cnb3oqlS9lodOuaNHI7w9dIs8WlJKOYMT0T0h8_W7MEsQOL8HlLwiqou8skUGud3P6bx35H68vza1uIurCDzoAQI9cTVON1qvgz0Bj8O9ptFaORQEDz0QXQA-jcNxuP-nyTuTNwC9vdR2uHuSqjwvgks9YQ3vuLETgzy2sbO9FanpOLOKiD0gjyq8WyOFN2h1Mr5kpCg9F8pMtxQPXrwznhK9HJY3t1n6kLxQPIK8E5Ryt2-3iTxCUWo8h0IpOJJdGT7ZT1C9rMI_uYgXP71yk8e8d88muG9FZ720Fpu9TnD4tzILs70S_kA9snK2Nx2XDD1JD0O-VDFNucr0cD0i4Ss-8cuKOCmeabx4zZA9oeaauFrtxr0PFDM9aNv7N5gJULxya9I8A_Z8OCAAOBNACUhtUAEqcxAAGmAWBQA-_BwK9e0-4BLW8QjVyCHzFu_6_9jPAAom0v8JGs2x3ykAFsgM6LMAAAAdDgJKAAAOZ-jv6x0XPP3areYETn_ZDi7V9CPptM4kCAr7DBIV8TwA5P2wCjoI0j0dFDIgAC2OQik7OBNACUhvUAIqrwYQDBqgBgAAQEAAAABCAADIQQAAMMEAAIhBAABQQQAAHEIAAIjBAAAwwQAAwEAAAFRCAABwwgAAtMIAANDBAACGQgAAwMEAACDCAACIwQAAwMAAACDCAAAgwQAASMIAABxCAADgwAAALEIAAFDBAABowgAAbMIAAIhBAAAQQgAAgMAAAIhCAACwwgAAHMIAAJTCAAA0wgAAoMAAAJZCAAAMwgAA2EEAAMDAAAAAwQAAwEEAAMDAAABYQgAAlsIAAEjCAAAAAAAAqkIAAABCAACCwgAACEIAAHBBAACAwAAAHEIAACBBAAAAwwAAEEIAAJjBAABwQQAAqEEAADzCAAAAQAAASMIAACBBAABAQAAAbMIAAEDCAAAsQgAAsMEAAHRCAACaQgAAKMIAABxCAAAQwQAAeMIAAEjCAAAMwgAAbEIAAPhBAAB8wgAAaEIAAIDBAAD4QQAAIEEAAADAAAAgQQAA6EEAAGRCAABowgAAgEAAAHhCAAAQQQAAHMIAAEBBAAC0wgAAoMEAAIDAAAAYQgAAFMIAAHDCAACSQgAAsEEAAGjCAAD4wQAAqEEAAETCAAC4QQAAkMEAAI5CAABkQgAAyEEAACTCAABAQAAAwEAAAJDBAAAwwgAAMMEAAEjCAAAIwgAAiMEAAGzCAAAIwgAABMIAAMBAAAAcQgAAUMEAAJjBAAAQwgAAgL8AAExCAAAQwQAAAMIAALhBAAAgQQAAwEAAAARCAADoQQAALMIAAKbCAAAMwgAAcMEAAGBBAAC4wQAAgEIAAOjBAABMwgAAsMEAAIhBAADIwQAAAMEAAJBBAAAcQgAAQEEAAIA_AADYwQAABMIAAKDCAAAQwgAAkEIAAJjBAAAIQgAA-MEAAADCAACAwAAA0EEAADBBAACMQgAAPEIAABBCAADQwQAAhkIAAIA_AAAAQAAAIMEAAMhBAACgwAAABEIAAExCAAAwQQAAyEEAAODAAACwQQAAkEEAAFBCAADgQAAA2MEAADBBAAAAQAAAGMIAAFDCAAAYwgAAgMAAABjCAABAQgAAQMEAAIA_AABIwgAArMIAAMDAIAA4E0AJSHVQASqPAhAAGoACAABkvgAA-L0AAIA7AACKvgAAmL0AAKY-AAAcPgAAIb8AAMi9AABwvQAAiD0AAI6-AABwPQAAsj4AAFS-AABAvAAA6D0AAOA8AAAsPgAALT8AAH8_AAD4vQAAMD0AAEA8AACevgAAED0AAEw-AACovQAAqj4AAL4-AABcPgAAoLwAADy-AACAOwAAhj4AAPg9AAAEPgAABL4AAIi9AAB8vgAA7r4AAJK-AAAUPgAAdL4AAEA8AACoPQAAqD0AAKq-AACovQAAhr4AABQ-AABAvAAAij4AAPg9AACovQAAiL0AAG8_AACIvQAAij4AAFw-AAD4vQAAiD0AAOA8AABwvSAAOBNACUh8UAEqjwIQARqAAgAABL4AAIC7AADYvQAAG78AAKi9AAAkvgAAHD4AALi9AADYvQAAhj4AABw-AADovQAAmL0AAFS-AACAuwAAcL0AAFA9AAAXPwAAED0AALY-AAAQPQAA4LwAAFC9AAAkvgAAED0AAFA9AABAvAAAuD0AABC9AACoPQAAuD0AAAw-AAC4vQAAuD0AAAw-AADYvQAAdD4AAMI-AABcvgAAQDwAAPY-AAAQvQAA2L0AAKC8AAD4vQAAUD0AAH-_AABQvQAAuL0AAIA7AAAUPgAAUL0AALg9AACAuwAAyD0AADA9AADgvAAAyD0AAAS-AAAwvQAAML0AAIA7AAAcvgAA2D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ubh1GIxGZrA","parent-reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9776418811693863935"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"980488789"}},"dups":{"455741171451916760":{"videoId":"455741171451916760","title":"Logic | Part 1| Discrete \u0007[Math\u0007] Structure","cleanTitle":"Logic | Part 1| Discrete Math Structure","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=h43uWcch-mE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/h43uWcch-mE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":620,"text":"10:20","a11yText":"Süre 10 dakika 20 saniye","shortText":"10 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"10 ağu 2021","modifyTime":1628553600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/h43uWcch-mE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=h43uWcch-mE","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":620},"parentClipId":"455741171451916760","href":"/preview/455741171451916760?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/455741171451916760?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15436830548806815131":{"videoId":"15436830548806815131","title":"Mathematics Behind Simplex Method |Part-8| Optimality and Feasibility Criteria","cleanTitle":"Mathematics Behind Simplex Method |Part-8| Optimality and Feasibility Criteria","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=H3CPlsoEyHI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/H3CPlsoEyHI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1133,"text":"18:53","a11yText":"Süre 18 dakika 53 saniye","shortText":"18 dk."},"views":{"text":"16,2bin","a11yText":"16,2 bin izleme"},"date":"17 haz 2020","modifyTime":1592352000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/H3CPlsoEyHI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=H3CPlsoEyHI","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":1133},"parentClipId":"15436830548806815131","href":"/preview/15436830548806815131?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/15436830548806815131?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4001828616843278853":{"videoId":"4001828616843278853","title":"Mathematical Induction-First and Second Principle","cleanTitle":"Mathematical Induction-First and Second Principle","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sraSn2MPCfU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sraSn2MPCfU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/channel/UCS2s5iJxWrUy5xErJhi7aJw","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":681,"text":"11:21","a11yText":"Süre 11 dakika 21 saniye","shortText":"11 dk."},"views":{"text":"16,1bin","a11yText":"16,1 bin izleme"},"date":"4 tem 2020","modifyTime":1593820800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sraSn2MPCfU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sraSn2MPCfU","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":681},"parentClipId":"4001828616843278853","href":"/preview/4001828616843278853?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/4001828616843278853?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4539564197509348371":{"videoId":"4539564197509348371","title":"Logic | Part 2 | Discrete \u0007[Math\u0007] Structure","cleanTitle":"Logic | Part 2 | Discrete Math Structure","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=blFuDLHyUfM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/blFuDLHyUfM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1644,"text":"27:24","a11yText":"Süre 27 dakika 24 saniye","shortText":"27 dk."},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"10 ağu 2021","modifyTime":1628553600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/blFuDLHyUfM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=blFuDLHyUfM","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":1644},"parentClipId":"4539564197509348371","href":"/preview/4539564197509348371?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/4539564197509348371?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17372014448767605186":{"videoId":"17372014448767605186","title":"Divisibility |Part 3| Greatest Common Divisor","cleanTitle":"Divisibility |Part 3| Greatest Common Divisor","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_agxMnKikxk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_agxMnKikxk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":784,"text":"13:04","a11yText":"Süre 13 dakika 4 saniye","shortText":"13 dk."},"views":{"text":"28bin","a11yText":"28 bin izleme"},"date":"2 tem 2020","modifyTime":1593648000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_agxMnKikxk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_agxMnKikxk","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":784},"parentClipId":"17372014448767605186","href":"/preview/17372014448767605186?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/17372014448767605186?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9776884393033231408":{"videoId":"9776884393033231408","title":"Number Theory | Fermat's Numbers/ Primes","cleanTitle":"Number Theory | Fermat's Numbers/ Primes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5NmSvKtaDAs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5NmSvKtaDAs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":214,"text":"3:34","a11yText":"Süre 3 dakika 34 saniye","shortText":"3 dk."},"views":{"text":"22,1bin","a11yText":"22,1 bin izleme"},"date":"17 tem 2020","modifyTime":1594944000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5NmSvKtaDAs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5NmSvKtaDAs","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":214},"parentClipId":"9776884393033231408","href":"/preview/9776884393033231408?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/9776884393033231408?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8676765850758613245":{"videoId":"8676765850758613245","title":"Simplex Method |Part 8| Introduction and Use of Artificial Variables","cleanTitle":"Simplex Method |Part 8| Introduction and Use of Artificial Variables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SiN1UjrM99w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SiN1UjrM99w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":471,"text":"7:51","a11yText":"Süre 7 dakika 51 saniye","shortText":"7 dk."},"views":{"text":"21,6bin","a11yText":"21,6 bin izleme"},"date":"26 haz 2020","modifyTime":1593129600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SiN1UjrM99w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SiN1UjrM99w","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":471},"parentClipId":"8676765850758613245","href":"/preview/8676765850758613245?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/8676765850758613245?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16335766288097340229":{"videoId":"16335766288097340229","title":"Mathematics Behind Simplex Method |Part 7| Fundamental Theorem of LPP","cleanTitle":"Mathematics Behind Simplex Method |Part 7| Fundamental Theorem of LPP","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rGtHdJYAmfs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rGtHdJYAmfs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":840,"text":"14:00","a11yText":"Süre 14 dakika","shortText":"14 dk."},"views":{"text":"19,5bin","a11yText":"19,5 bin izleme"},"date":"17 haz 2020","modifyTime":1592352000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rGtHdJYAmfs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rGtHdJYAmfs","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":840},"parentClipId":"16335766288097340229","href":"/preview/16335766288097340229?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/16335766288097340229?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6688661299649937457":{"videoId":"6688661299649937457","title":"Mathematics Behind Simplex Method |Part 3| Convex Sets, Convex Hull","cleanTitle":"Mathematics Behind Simplex Method |Part 3| Convex Sets, Convex Hull","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PdoCLCs63LM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PdoCLCs63LM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1031,"text":"17:11","a11yText":"Süre 17 dakika 11 saniye","shortText":"17 dk."},"views":{"text":"21,4bin","a11yText":"21,4 bin izleme"},"date":"13 haz 2020","modifyTime":1592006400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PdoCLCs63LM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PdoCLCs63LM","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":1031},"parentClipId":"6688661299649937457","href":"/preview/6688661299649937457?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/6688661299649937457?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9952998091361659310":{"videoId":"9952998091361659310","title":"Generating Functions | Part 1","cleanTitle":"Generating Functions | Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tA2cqfNh5EM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tA2cqfNh5EM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1866,"text":"31:06","a11yText":"Süre 31 dakika 6 saniye","shortText":"31 dk."},"views":{"text":"3,8bin","a11yText":"3,8 bin izleme"},"date":"30 mar 2021","modifyTime":1617062400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tA2cqfNh5EM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tA2cqfNh5EM","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":1866},"parentClipId":"9952998091361659310","href":"/preview/9952998091361659310?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/9952998091361659310?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6324684100304861377":{"videoId":"6324684100304861377","title":"Mathematics Behind Simplex Method |Part-1| Matrices, Determinant, Linear equations","cleanTitle":"Mathematics Behind Simplex Method |Part-1| Matrices, Determinant, Linear equations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Q_N2mbpT6_U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Q_N2mbpT6_U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1474,"text":"24:34","a11yText":"Süre 24 dakika 34 saniye","shortText":"24 dk."},"views":{"text":"34bin","a11yText":"34 bin izleme"},"date":"12 haz 2020","modifyTime":1591920000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Q_N2mbpT6_U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Q_N2mbpT6_U","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":1474},"parentClipId":"6324684100304861377","href":"/preview/6324684100304861377?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/6324684100304861377?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12872513650132361043":{"videoId":"12872513650132361043","title":"Class 11 Maths | Sets | Part 1","cleanTitle":"Class 11 Maths | Sets | Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LSVNKoXGJrY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LSVNKoXGJrY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":818,"text":"13:38","a11yText":"Süre 13 dakika 38 saniye","shortText":"13 dk."},"date":"29 mayıs 2020","modifyTime":1590710400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LSVNKoXGJrY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LSVNKoXGJrY","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":818},"parentClipId":"12872513650132361043","href":"/preview/12872513650132361043?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/12872513650132361043?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14031134107130370164":{"videoId":"14031134107130370164","title":"LPP Formulations | Practice Set | Part 1","cleanTitle":"LPP Formulations | Practice Set | Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ltxrVlPdhI0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ltxrVlPdhI0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":997,"text":"16:37","a11yText":"Süre 16 dakika 37 saniye","shortText":"16 dk."},"views":{"text":"34bin","a11yText":"34 bin izleme"},"date":"4 mar 2021","modifyTime":1614816000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ltxrVlPdhI0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ltxrVlPdhI0","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":997},"parentClipId":"14031134107130370164","href":"/preview/14031134107130370164?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/14031134107130370164?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8159220707031112307":{"videoId":"8159220707031112307","title":"Example | Gomory's cut Method for IPP","cleanTitle":"Example | Gomory's cut Method for IPP","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WKo893XX-Ak","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WKo893XX-Ak?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":752,"text":"12:32","a11yText":"Süre 12 dakika 32 saniye","shortText":"12 dk."},"views":{"text":"13bin","a11yText":"13 bin izleme"},"date":"21 ara 2020","modifyTime":1608508800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WKo893XX-Ak?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WKo893XX-Ak","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":752},"parentClipId":"8159220707031112307","href":"/preview/8159220707031112307?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/8159220707031112307?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17897524586469138321":{"videoId":"17897524586469138321","title":"Mathematics Behind Simplex Method |Part-2| Vectors, Hyperplane, Polyhedron","cleanTitle":"Mathematics Behind Simplex Method |Part-2| Vectors, Hyperplane, Polyhedron","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=g60HFdaq6jI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/g60HFdaq6jI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1350,"text":"22:30","a11yText":"Süre 22 dakika 30 saniye","shortText":"22 dk."},"views":{"text":"22,2bin","a11yText":"22,2 bin izleme"},"date":"13 haz 2020","modifyTime":1592006400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/g60HFdaq6jI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=g60HFdaq6jI","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":1350},"parentClipId":"17897524586469138321","href":"/preview/17897524586469138321?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/17897524586469138321?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7012273611243830616":{"videoId":"7012273611243830616","title":"Simplex Method |Part 13| Tie in Entering Variable","cleanTitle":"Simplex Method |Part 13| Tie in Entering Variable","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CLj6mJvVKgQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CLj6mJvVKgQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":554,"text":"9:14","a11yText":"Süre 9 dakika 14 saniye","shortText":"9 dk."},"views":{"text":"14,1bin","a11yText":"14,1 bin izleme"},"date":"20 ağu 2020","modifyTime":1597881600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CLj6mJvVKgQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CLj6mJvVKgQ","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":554},"parentClipId":"7012273611243830616","href":"/preview/7012273611243830616?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/7012273611243830616?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5907570783520883052":{"videoId":"5907570783520883052","title":"Two Basic Counting Principles","cleanTitle":"Two Basic Counting Principles","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=V9peSVfg-kg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/V9peSVfg-kg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1559,"text":"25:59","a11yText":"Süre 25 dakika 59 saniye","shortText":"25 dk."},"views":{"text":"4,5bin","a11yText":"4,5 bin izleme"},"date":"1 şub 2021","modifyTime":1612137600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/V9peSVfg-kg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=V9peSVfg-kg","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":1559},"parentClipId":"5907570783520883052","href":"/preview/5907570783520883052?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/5907570783520883052?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9776418811693863935":{"videoId":"9776418811693863935","title":"Generating Functions| Partitions of a positive integer|Identical objects into identical boxes","cleanTitle":"Generating Functions| Partitions of a positive integer|Identical objects into identical boxes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ubh1GIxGZrA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ubh1GIxGZrA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2314,"text":"38:34","a11yText":"Süre 38 dakika 34 saniye","shortText":"38 dk."},"views":{"text":"4,8bin","a11yText":"4,8 bin izleme"},"date":"21 nis 2021","modifyTime":1618963200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ubh1GIxGZrA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ubh1GIxGZrA","reqid":"1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL","duration":2314},"parentClipId":"9776418811693863935","href":"/preview/9776418811693863935?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","rawHref":"/video/preview/9776418811693863935?parent-reqid=1769479964972402-2302698018896729594-balancer-l7leveler-kubr-yp-klg-3-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"2230269801889672959473","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"MathPod","queryUriEscaped":"MathPod","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}