{"pages":{"search":{"query":"MathPod","originalQuery":"MathPod","serpid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","parentReqid":"","serpItems":[{"id":"909802818876635047-0-0","type":"videoSnippet","props":{"videoId":"909802818876635047"},"curPage":0},{"id":"10406370752939041699-0-1","type":"videoSnippet","props":{"videoId":"10406370752939041699"},"curPage":0},{"id":"9510235931582801996-0-2","type":"videoSnippet","props":{"videoId":"9510235931582801996"},"curPage":0},{"id":"15436830548806815131-0-3","type":"videoSnippet","props":{"videoId":"15436830548806815131"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE1hdGhQb2QK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","ui":"desktop","yuid":"3769592231765323196"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"4539564197509348371-0-5","type":"videoSnippet","props":{"videoId":"4539564197509348371"},"curPage":0},{"id":"9868310950382843388-0-6","type":"videoSnippet","props":{"videoId":"9868310950382843388"},"curPage":0},{"id":"11497659508235500444-0-7","type":"videoSnippet","props":{"videoId":"11497659508235500444"},"curPage":0},{"id":"6139559195310042206-0-8","type":"videoSnippet","props":{"videoId":"6139559195310042206"},"curPage":0},{"id":"9952998091361659310-0-9","type":"videoSnippet","props":{"videoId":"9952998091361659310"},"curPage":0},{"id":"16335766288097340229-0-10","type":"videoSnippet","props":{"videoId":"16335766288097340229"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE1hdGhQb2QK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","ui":"desktop","yuid":"3769592231765323196"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"8978740192010191632-0-12","type":"videoSnippet","props":{"videoId":"8978740192010191632"},"curPage":0},{"id":"6688661299649937457-0-13","type":"videoSnippet","props":{"videoId":"6688661299649937457"},"curPage":0},{"id":"17897524586469138321-0-14","type":"videoSnippet","props":{"videoId":"17897524586469138321"},"curPage":0},{"id":"16493714761218133036-0-15","type":"videoSnippet","props":{"videoId":"16493714761218133036"},"curPage":0},{"id":"14445384845133714382-0-16","type":"videoSnippet","props":{"videoId":"14445384845133714382"},"curPage":0},{"id":"9776418811693863935-0-17","type":"videoSnippet","props":{"videoId":"9776418811693863935"},"curPage":0},{"id":"8676765850758613245-0-18","type":"videoSnippet","props":{"videoId":"8676765850758613245"},"curPage":0},{"id":"13120838655797268994-0-19","type":"videoSnippet","props":{"videoId":"13120838655797268994"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE1hdGhQb2QK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","ui":"desktop","yuid":"3769592231765323196"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMathPod"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"7299164547743832263763","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1419615,0,74;151171,0,39;126322,0,63;1281084,0,73;287509,0,59;1006734,0,42"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMathPod","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=MathPod","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=MathPod","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"MathPod: 506 video Yandex'te bulundu","description":"\"MathPod\" sorgusu için arama sonuçları Yandex'te","shareTitle":"MathPod — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y2f3d6e6778f86640d5f602d03b79e325","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1419615,151171,126322,1281084,287509,1006734","queryText":"MathPod","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"3769592231765323196","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1441146,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765323198","tz":"America/Louisville","to_iso":"2025-12-09T18:33:18-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1419615,151171,126322,1281084,287509,1006734","queryText":"MathPod","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"3769592231765323196","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"7299164547743832263763","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":167,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"3769592231765323196","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"909802818876635047":{"videoId":"909802818876635047","docid":"34-11-1-Z6052BEBFB470A130","description":"This video is about Multiplicative Function, I have proved the Number of divisor and Sum of Divisor Functions are multiplicative functions.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1602018/ed91a8b407004f233d57fad83fe4f1f6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RN-QHAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DE6S2_22CLWI","linkTemplate":"/video/preview/909802818876635047?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Arithmetic Functions |Part-2| Multiplicative Function","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=E6S2_22CLWI\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFAoSOTA5ODAyODE4ODc2NjM1MDQ3WhI5MDk4MDI4MTg4NzY2MzUwNDdqtQ8SATAYACJEGjAACiloaGNpeWlwZ2tidGpwamloaFVDUzJzNWlKeFdyVXk1eEVySmhpN2FKdxICABEqEMIPDxoPPxOsBYIEJAGABCsqiwEQARp4ge4B-f38BQD7_gL_AwT-ARkAAQn1AgIA6QH4-_n-AQD_BAz0BwEAAPj_AQ39AAAA9_X9_v3_AAANAP0D-wAAAAL19QD5AAAACQf89wn_AQH19wcCAwAAABX-BgMAAAAA-AoH-_v_AAAS__0FAAAAAAv-_gEAAAAAIAAtcYbeOzgTQAlITlACKoQCEAAa8AF_9P8AzPrO_9YFxwC_LAoApS4l__w10QC7Bf0ApxTJ_vcp8AEC6t8ABvAdAN3_7f8l69f_-c4CADXtAP8g5u4A_BH7ASbT8wE9Ey7_DAzy_8siHf745BIAGNbRAwot7QAB8Ab-AP_rAB0XygIK1EAD5PkuBAvjGP7byQ0B7Of1BPf4xf4NM_QC4Mj2--sWOwH9sAYBHvkM--MV_Ab89QP6_t4Y_AQa4wUS4gMH__ID_NjcBAH08fMHFgcTBsP44P_gxyYG4_L78-jn-_xK8f78tPz9-RcO-xIVDfcAFv0CARrl9PO--uoG-Pz1_doM8f8gAC2kNxE7OBNACUhhUAIqcxAAGmAf_QAWBxHv_vEM8P7c4SDUuyrtBO3l_-TgABsu5f8iAPig-hQADs0MBbYAAAAlCAgyAgD6YwHvEiUIEw6LyQIIJX8IChbF6DDqpP7uHAkT6vwC8hwA9u-1CiADsTEtCf0gAC3-njU7OBNACUhvUAIqrwYQDBqgBgAA2EEAAKBAAAAsQgAAAMIAAIZCAAAAwAAAvkIAACTCAABAQQAAIEEAAKBBAACUwgAAuMEAAEBBAACIQgAA8MEAAMBAAACwQQAAkEEAAFjCAADYwQAA6MEAALDBAAAoQgAAaMIAALjBAABcwgAAmMIAAIhBAAAMQgAAiMEAAPhBAABwwgAAQEEAADDCAAAQwQAAEEEAAMBCAAAIwgAAlEIAAIDBAABQQQAAxEIAAAjCAABwQQAAvMIAAAAAAAAsQgAALEIAAKBBAADgQQAA4MAAABRCAACAQAAABEIAAIDAAAC8wgAAAEAAAKDBAABEQgAAyEEAAFTCAAAMwgAAjsIAANhBAAA4wgAAwMEAACzCAADIQQAA4MEAADhCAADgQQAAIMEAABhCAADwwQAAzsIAAPDBAADYwQAAQMAAABxCAACYwQAAIEIAABTCAAAMQgAA4EAAABxCAADQQQAAQEIAAGxCAAAEwgAA4MAAAIhCAAAMwgAAGMIAAMDBAABYwgAA-EEAAFDBAAAoQgAADEIAAIzCAAB0QgAAFEIAACTCAAAswgAAUMEAAJbCAAA8QgAAKMIAAIpCAAAMQgAAiEEAAEDAAACowQAAwMAAAPhBAAAIwgAAIMIAAOjBAACgwQAAAEAAABTCAAA0wgAAUMEAAJhBAADgQQAAQMAAAOBAAADwwQAAcMEAAFBBAAA8wgAAsMEAADBCAABAwgAA0EEAAKhBAADAQQAAqMEAAOzCAAAAwAAAAEIAAIxCAADwwQAAWEIAAGBBAACKwgAACEIAAODAAABAQAAAUMIAAHhCAABIQgAAiMEAAEDBAADAwAAACMIAAEjCAACiwgAAAEIAAIbCAACAQAAA4MEAAADBAADIwQAAuEEAAIhBAAC-QgAAkEEAAARCAACAwAAAQEAAAMDAAAAgwQAAXMIAAGBBAAAAAAAAUEEAACBCAAAEQgAAUMEAADjCAACowQAA-EEAABBCAADgwQAAwMEAANjBAADAwQAAUMEAAPDBAADgwQAAFEIAALDBAABgQgAANEIAANDBAACAQAAADMIAAGzCIAA4E0AJSHVQASqPAhAAGoACAACIPQAAcD0AALg9AADgPAAAgLsAAII-AACYvQAA0r4AAES-AAAsPgAAMD0AAEy-AACAOwAABD4AAKi9AABQPQAAXD4AAKC8AAAEPgAAzj4AAH8_AACAOwAAuL0AALg9AABUvgAAMD0AABA9AACYvQAAFD4AAMg9AADgPAAAmD0AALi9AAAQvQAAgj4AANi9AAAwvQAAqL0AABy-AAAkvgAAdL4AAAS-AACYPQAA-L0AAEA8AADIvQAAuD0AAKi9AABAPAAAbL4AABQ-AACoPQAAgj4AAIo-AACAOwAAEL0AAAE_AACYvQAARD4AAFA9AACAOwAA4DwAALg9AADgPCAAOBNACUh8UAEqjwIQARqAAgAANL4AAJg9AACSvgAAHb8AAEC8AABQPQAARD4AAFC9AACoPQAA-D0AAFA9AAAQvQAAuL0AAPi9AAC4PQAAEL0AALi9AAAXPwAA1r4AAIo-AAAwvQAAVL4AAOA8AADIvQAAED0AAJg9AAC4vQAAQDwAAFC9AAAQPQAAcD0AAAw-AACSvgAAgDsAAIg9AACgvAAAED0AAEQ-AAAkvgAA6L0AAII-AAA0vgAAgDsAAHA9AACAOwAA4LwAAH-_AABAvAAAyL0AAIi9AAC4PQAAQLwAAAQ-AACgvAAAQDwAAFA9AACAOwAAuD0AAOA8AADgPAAAED0AAKC8AABQvQAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=E6S2_22CLWI","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["909802818876635047"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10406370752939041699":{"videoId":"10406370752939041699","docid":"34-7-13-Z85846A7AFAD53F3B","description":"This video is about Extended Euclidean Algorithm.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4068145/2bffc3b1ee6058128f61784d4d2b12c0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lFXVUgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmbrfypBXznI","linkTemplate":"/video/preview/10406370752939041699?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Extended Euclidean Algorithm","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mbrfypBXznI\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFgoUMTA0MDYzNzA3NTI5MzkwNDE2OTlaFDEwNDA2MzcwNzUyOTM5MDQxNjk5aocXEgEwGAAiRBowAAopaGhjaXlpcGdrYnRqcGppaGhVQ1MyczVpSnhXclV5NXhFckpoaTdhSncSAgARKhDCDw8aDz8TyAWCBCQBgAQrKosBEAEaeIH7A_MHAAAACAj7BwcI_QLu_vX2-v7-APb6-_3-A_8A6PkDBgn_AAD2_QT9-AAAAPoG8fsD_gAACPoADAMAAAAMAQwE9QAAAAP0BvwOAAEBCP_1CgT_AAASCggB_wAAAO33CgUAAAAA9QcC-AEAAAAD8AAFAAEAACAALZpM1Ds4E0AJSE5QAiqEAhAAGvABf_T_AM0X6gDI9tQAyCP3AKgcCgD8NdEAxwIPAKcUyf7hCPMA9AXd__0PEgCs_ucBNNXQ_wTJ4QA83PwANOEIAeATBAETxgMAPRMu___y4f7fIi799LgJ_yfS9QEbDuT9CAIO_vkBx_8dF8oCGeUtA-gPNAEfAxj728kNAdLnDwLr3Nj9-S34AefYFPz39Cb-C8_9_iT7_P7UGdgAGwf9-uy-CvsPJ-8FLO8FBwAI9Prl6P38DOPoAhYhJP7oGPkF5eEe_-X8Bf_x9f__PNoA-M368A8b9PQMEQkJ_gTn9_kE3_j51_72BfYD_wffCPTsIAAtpDcROzgTQAlIYVACKs8HEAAawAdPPsW-ftjcPDHGsDtmTge-_iqfu4L4pbwjE_C91y0nPff9QLz-Ddo9Xy1SPJz047wU6DO---_cPFnThrz9vXQ-klRLvQOx7DyHNCq-nmmoPbZyZbxEGF--1GRnO6WdPzwi5Jc9qqB9vYQAyzugNMQ9ptVQvRH_1jkgqOi6HXURPDPcAL2YrWu9F-VDvbxJAr3-1UM9YD55vXzWtTz4RGg9vcNtvN7bvjvO9g09c4vUvN_Rsbu31aw758wxPdk-BL0JeZM9DdbJPPyOYTxKuIu9rTLTvEdQArwOmKy9CWxuvbIMlrusYws9DQYyPFrsm7xi9Iw9nn7Qvb52Xbux4Um-LpL2PE8InTwnFxM-T9VzPRWpsDx6tl29aUA4PY-axLs-m3I7sB43vfuRhbpLFwc9_4kbPTTPWzxCA1Y9xN3PPHloqzqQJBC8EN-jPaZiAz1blZQ96g6ovTAwhryXPSQ9QSvyO0_ClruqOI-9ISNbPbM7qDtQCBM9VWMuPMYWgjvs3so8U54PPeGqfDzFNUM9-FENvglvLLuV3Dy9PPHBvUPp5rsisJg9FsZxPCO7d7wiiuk9_fsnvcH-a7w30kO9VcJyuwK6TLttpJE8Xsh5vR-sNTspW-S9G_chPV6rkLu_a6e7OsO5PNY1f7wwZss8KqcNPm6TKLpsAee7MEfvvT-aoLpHuZo9Y1Y5vF4GjDv7m2s99gtWPQ4rJ7oSUME9wXhBvWHTCrouzoO9YQgvvaioyrkHyPy808wpvYOlW7rudJw9rOLNvSr_vTkcYnc9565ju9YUtLkqRWG9alyOPYdkK7hr4z48dAicvG21bLlcVAu9nBXxvdyedTl0lpm8dRbHPMYn8LhFjTg9wWwHPQrSHjlrHsG9xK6ivVn4Ijj83se7J8YtPcOXYLjVlto9xC8rPELwNDiARxS9uWA6vK9z4LjRuny9J3U4vJg2VTnuwIq8pSG0PIn7qTdar4M9AY_DvabRWjnOr8E8SZPMPd9Eh7hbPUy7uzS0PMu1mbjo2AE9EhNUPaqcgrYa5-U8XQ9rvbiwjTdtqWM9qDTiPLFFtLi0kBC-2IyiPZl7BLdBPWg7HOvivAGx9bd56o07_3gvPEmoILhqXA49FndyPFO5wrfB4ys-3KVovAeJdLkgcmS9ntkpvQQrf7ghjU-97oJ8vUYVjriRvwq9gx6VPYtDkTcd4ww8Z0bfvWlQErjK9HA9IuErPvHLijh1yfY7Rxk2PcKSjbha7ca9DxQzPWjb-zesei-9WpzxPKij7DcgADgTQAlIbVABKnMQABpgNgEAHuVFv_cF-v7vAPoMtd0l7vn1tf8UvP_kNfMiFhLgrA4PABTwQNmaAAAAUN_gF_8A6H4K4x9sCcgrydP4CBV_8_IxrD0Y9-bf9r_o1F8LTF0rAOzrvSI06NASBFNFIAAt_BUQOzgTQAlIb1ACKq8GEAwaoAYAAMBAAAC4QQAANEIAANDBAACIQgAAgEEAAJBCAABAwAAA-MEAAIA_AAAwQQAAbMIAACTCAAAEwgAAkkIAAADAAADAwAAAwMAAAMDBAABswgAAgL8AAIDBAAA8wgAAgEEAAFDBAAAQwgAAfMIAAEjCAAB4QgAAKEIAANjBAACgQQAAkMIAABhCAAAUwgAAoMEAABhCAAC2QgAAcMEAAKxCAACAQQAAgL8AAGxCAAC4wQAAhkIAAJDCAAAowgAAHEIAAKxCAAAMQgAAIMIAAMBBAACwQQAAUMEAAPBBAAAQQgAAAMMAACBBAACowQAALEIAAABCAACGwgAAwMAAAJzCAAAgQQAAhsIAABzCAAAowgAAAEAAAADCAABkQgAAlEIAAKDBAABYQgAAuMEAALDCAADAwQAAAMAAALhBAAAQQQAAJMIAAOBBAABQwQAAVEIAAIjBAABAQAAAQEAAAExCAABUQgAAXMIAAJhBAABMQgAAYMEAAITCAADAQAAA8MEAADBBAADgwAAAGEIAAABBAABUwgAAnkIAAEhCAAAEwgAAXMIAANDBAAAQwQAAmEEAABzCAAAIQgAAsEEAAGBBAADwwQAAsMEAAIC_AADAQQAAwMAAADTCAAAIwgAAEMEAAAjCAABYwgAAHMIAAAjCAACQQQAADEIAAAjCAAAwwQAAHMIAANDBAABAwAAAoMEAAPDBAAAcQgAALMIAAARCAAAgQQAAEMEAADjCAACowgAASMIAALBBAABMQgAAgMAAAChCAAAgwQAAsMIAAMhBAACAQQAAAMIAAMDAAAAEQgAAPEIAAJDBAACAvwAA4MAAAEBAAACOwgAArsIAABxCAACAwQAAIEEAACDBAACYwQAAMMEAAIDAAACAwAAAVEIAADBCAADgQAAAwMEAAFRCAACowQAAgMAAAHDCAAAAAAAAoEAAAATCAAAQQgAACEIAAEDBAAAQwgAAIEEAAHDBAAB8QgAAsMEAADTCAACAPwAAgL8AAODAAAAgQQAAdMIAANhBAACQQQAABEIAAAxCAAAowgAAiMEAAGjCAAA8wiAAOBNACUh1UAEqjwIQABqAAgAALL4AAJg9AACaPgAAxj4AAEC8AACoPQAAvr4AAAO_AACuvgAAyj4AAFQ-AACAuwAAPD4AAOC8AAAEPgAAcD0AADy-AADYPQAAyD0AAMY-AAB_PwAAXL4AAPi9AABQvQAARL4AAGS-AADgPAAAED0AAJi9AABUPgAA2D0AANg9AAD4vQAA0j4AAJo-AABsPgAAEL0AAKK-AACivgAARL4AACy-AAAQPQAAqD0AAOi9AABsvgAAcL0AAMi9AAA0PgAA4DwAAJK-AADIvQAAqL0AANg9AABUPgAA0r4AAJg9AAAbPwAA6D0AAEQ-AACGPgAAiD0AAHC9AAA8PgAA2D0gADgTQAlIfFABKo8CEAEagAIAADy-AABQvQAATL4AADG_AACoPQAAhj4AANg9AACIvQAAQDwAAAw-AADovQAAiL0AAOA8AADgPAAADD4AAHC9AADIPQAADT8AAMK-AACmPgAABL4AAFQ-AAC4PQAAcL0AAFA9AABMPgAAQLwAAHA9AACIPQAAED0AAKg9AAC4PQAAUL0AADy-AAAQPQAAoDwAAEw-AACoPQAAqL0AAES-AAAsPgAAQDwAAMi9AAAMPgAAdL4AACS-AAB_vwAADD4AABC9AADePgAAoLwAABC9AAAwvQAAwj4AAAQ-AACYPQAA4DwAAOC8AACgvAAAiL0AAAw-AAAUPgAArj4AAFC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=mbrfypBXznI","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10406370752939041699"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9510235931582801996":{"videoId":"9510235931582801996","docid":"34-3-14-ZC8537156F6C12188","description":"This video is about Mobius Inversion Formula.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3924933/935b1881acde6772e660090bb79daf4e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/j3_iHwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkhfIH1H6iUg","linkTemplate":"/video/preview/9510235931582801996?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Arithmetic Functions |Part-4| Mobius Inversion Formula","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=khfIH1H6iUg\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFQoTOTUxMDIzNTkzMTU4MjgwMTk5NloTOTUxMDIzNTkzMTU4MjgwMTk5NmqHFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E7IFggQkAYAEKyqLARABGniBCPD99gT7AOUH-fsE_gIAFgX3BvQBAQDiAPAKAP0CAPACEPoHAAAABg3_BgQAAAD_-f7u__0BABP_7ggCAAAACgUS9fgAAAAP_-wB_wEAAPP6_vwDAAAAHhID_P4AAAD0CwP6AgAAAPX6C_8AAAAADQYJ-gAAAAAgAC3028Y7OBNACUhOUAIqhAIQABrwAX8C-v_ZDtwAyPbUANwiCwKQFQ3__DTSALr76QCnFMn-4QjzAAL81gAPLBcAof73ATTV0P_1r_YAIOD-_jD7BgAG7AgBFdsEAj0TLv_-Avf-wg8LAfP0CwAY1tEDHxnEAAryE_nOBbv_7QPBAgrUQAPoDzQBGucH_9rX9wLS5w8C_Obe_Q8e6ALgyPb76AgmAR3KIQAABwr66xPc_RsH_frq2hAAERfyACDx9gbwBvz6ztT2-wb17vsDCRwD1A39BuXhHv_3Dfz66Of7_DzaAPjO-vAP_vgBEg_-_vzsy_MCBez-9L8M-QYCAv0A2gzx_yAALfjGETs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6CgfMvVcPFLw0hQ69SV4nveNVVj2mv8281IEMPlK9gL0C0sC7BFQ4vpahorsESL68_b10PpJUS70Dsew8cT1avucWvz2FTKi8iQsQvjZqrrrOj_k73PUSPZELzrygBxC74Nl-PVJxTb3NN0e8IKjouh11ETwz3AC9mK1rvRflQ728SQK9TZ-hO8q4c70YjhE9bEhXPbHs-LxUhpa8XBBgPQCXVr2OUai8cv4BvfQSiDz2Ali8RWRYPb2g6jxffI-6SByNvSd1l7rKci-7JRetvdtewbwLIc46NuwyPQANBT3E0ju9YvSMPZ5-0L2-dl27qMghvgJ8HD3o6W087IbtPYz3gz1yW5E7Ka5KvZUgrTwvdni6YYg8PSHJLL1h3Z07HzxkPT7jRz3QAdE7IJwqPUiqzjrCbP67JNENvJloKz1YkGY8FoTSPUV2j70nZyi8KnF9Pae-PbzVfka8jZuavXOVOD3s-4u8mFsQPbl52Tzp8QA6eYQpPRDfEz0gYgM9xTVDPfhRDb4Jbyy7ldw8vTzxwb1D6ea7RLFLPXldHLz_1gi7bvzpPUzkrb0rc6m7pj-QvXzgurvAnic7QdgJPUJYor3kPyK6NtPIvXyUNjwucxu8rYEyvbdWxTz-MPy7qhyJvCumAj4O6g25mTbSvLxazr0YnC863_nlPU2UjLt5K-A6-5trPfYLVj0OKye6SQ59PUXA_LwrMte7aRgfvBQiIL06JqQ62rrlvMA1sb1SWQ667nScPazizb0q_705SqFnPekHmjzzGic5_uuRvWeHUz2cSPG4qAXKvLEcvjqlhHO576sSPc6mA74Woda3f4zUPCTC9TwzH7y5kxd-PTasKT1lEw45L1DyvahcnL1DgL-3ZUSYvHJTQz2tGTG3Fo2wPZuSh7yefJk4ThbtvOgIKjxFW2I3UZ9kvWaJqbyZ8Vc5BYQcvFm6JzzIAxu2QfEDPXFPwb3XOHs51O5XvKQ5Ej7F_VW5Fb4ovS_ZH7ygvD64e5KqPC-CSz1hDe-43ln7PNjxn70YDZc4yaqNPSOe7DrQ47Y4aHUyvmSkKD0Xyky3FtWHPF4IgztzTJQ4Xr5QvDi96jtKVrG4SnNQPFnqDz1SmIY4kl0ZPtlPUL2swj-5hd5MvVSojr3qysO4MpTuvLr4u702Fya4IE2rvc5Ehz1nPDQ4va8FPaVJCb6tnoW4yvRwPSLhKz7xy4o4-k_tOux1wTyL7aC4rW3qvRQ7vzxv0uM3xEDXvJgGNLyrgL42IAA4E0AJSG1QASpzEAAaYCX9ACrwEMkJ-QXmD9byG7bSO-_uvvf_88__6y37BQT1_Z3yEAAGwQkIqQAAAET6_xr_ABF269kNEfo3I56s7RQdf_j6DLHSIPeL5hcFLvn98BoMQQDYApwZNByyKREtFSAALcRtHDs4E0AJSG9QAiqvBhAMGqAGAAAYQgAAoMEAAEBCAADgwAAApEIAAIA_AAD-QgAAJMIAAHBBAABcQgAAGEIAAHTCAACAwAAAAEIAADBCAACIwQAAmEEAAJhBAADgQQAAYMEAAADCAADYwQAAVMIAAFBBAAB4wgAA-MEAAGDBAAAYwgAA4EAAAChCAADwwQAAUEEAAKjCAACYwQAAMMIAAABBAAD4QQAAkEIAACjCAACKQgAAsMEAAKBAAACSQgAAcMIAAABBAADEwgAAgEAAAIxCAAAIQgAADEIAAPBBAABwwQAAIEIAABBBAADgQQAAAMEAAJbCAADAQAAAAEIAAIZCAACAQAAApMIAACzCAAB4wgAA0EEAAITCAACowQAAOMIAABBCAABAwgAA0EEAAABCAAA0wgAAyEEAABTCAAC6wgAASMIAAADBAACIwQAA4EEAACDBAACIQgAADMIAAOBAAADAwAAAwEEAAGBBAADwQQAAHEIAAADAAABwwQAAokIAACTCAADgQAAAAEEAALjBAACIQQAAcMEAABBCAACoQQAAYMIAAMBAAAD4QQAAAEAAAFTCAADAQQAAAMIAAEBBAAC4wQAAlEIAAHhCAABAQQAAgMAAABBBAAAQwgAAaEIAAOBAAAAYwgAAjMIAABTCAACQwQAAIMEAAJDBAABwwQAAMEEAAKBAAAAsQgAAAMEAAMjBAAAQQQAAsMEAAOjBAAAAwQAAgkIAACDCAABQQgAAIMEAABRCAACAwAAA3sIAAKBAAAAwQQAApEIAAPjBAABMQgAAEEIAAJjCAABMQgAAIMEAAEBAAACYwgAAGEIAAMhBAACAwQAA4EAAANDBAAAowgAA6MEAAJjCAAAAwAAAiMIAAFBBAAAYwgAAMMEAALBBAAAQQQAAwMAAAKBCAADwQQAA4EEAAHBBAACAwAAAsEEAALDBAABUwgAAMEEAAEBBAAAAwgAABEIAABBBAAAEwgAADMIAACzCAACoQQAAHEIAAETCAADIwQAAQMIAAMDAAACgQAAAAMAAALDBAAC4QQAAgL8AAPBBAABEQgAAGMIAAKBAAACAPwAAwMEgADgTQAlIdVABKo8CEAAagAIAAKg9AACgvAAAoDwAANg9AAAEPgAApj4AAEA8AAABvwAAPL4AANg9AAAwPQAAdL4AAKA8AACWPgAADL4AAIi9AACaPgAAUD0AAAw-AADaPgAAfz8AAAQ-AADIvQAATD4AAIA7AAAEPgAA2D0AADA9AACGPgAAmD0AAKg9AAB8vgAAdL4AABC9AABUPgAADL4AAIg9AABEvgAAjr4AAJa-AAA8vgAAEL0AAHA9AADIvQAAcD0AAHC9AAAQPQAAcL0AAHA9AAA0vgAA2D0AAEA8AABcPgAAJD4AAHA9AADgvAAAQT8AAFS-AABMPgAAcD0AABC9AAD4PQAAcD0AAAS-IAA4E0AJSHxQASqPAhABGoACAADovQAAUD0AAOi9AAAhvwAAmL0AAFA9AAAEPgAAUL0AABA9AAB8PgAAmD0AAPi9AACAOwAAEL0AACQ-AACYvQAAoLwAACc_AAD4vQAAsj4AABA9AABEvgAA6D0AAAS-AADoPQAAMD0AAIi9AAAwPQAAQLwAAKg9AADgvAAABD4AABS-AAAQvQAAFD4AAOi9AAAwPQAAVD4AAAy-AABwvQAAgj4AAOC8AADgPAAAoLwAAIA7AACAuwAAf78AALg9AADgPAAAEL0AAEA8AADovQAAiL0AAAQ-AAAQPQAAuD0AABA9AACgvAAAoLwAAFA9AAC4PQAA6L0AAKC8AABAPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=khfIH1H6iUg","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9510235931582801996"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15436830548806815131":{"videoId":"15436830548806815131","docid":"34-9-17-Z7E374694BEA801AF","description":"This video is about Optimality and Feasibility Criteria used in the simplex method, here I have proved a theorem giving these criteria and also an expression which we call as z(j)-c(j) is derived.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2986509/296b8d89661985f8f07b7d0ae22620cc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MP5SKAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DH3CPlsoEyHI","linkTemplate":"/video/preview/15436830548806815131?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematics Behind Simplex Method |Part-8| Optimality and Feasibility Criteria","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=H3CPlsoEyHI\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFgoUMTU0MzY4MzA1NDg4MDY4MTUxMzFaFDE1NDM2ODMwNTQ4ODA2ODE1MTMxarUPEgEwGAAiRBowAAopaGhjaXlpcGdrYnRqcGppaGhVQ1MyczVpSnhXclV5NXhFckpoaTdhSncSAgARKhDCDw8aDz8T7QiCBCQBgAQrKosBEAEaeIH2-_v7-wUA9QkOCQQF_QEL_vsI9___APYH_P__Av8AAvsE_AMBAAAA_PgK_gAAAP34-AL7_gAACP3-_QMAAAAYAv0A-AAAAAQE_vX_AQAA_f8CBgP_AAAPA_nz_wAAAPgKBvv7_wAA8Av8BQAAAAALA_wJAAAAACAALVmR4js4E0AJSE5QAiqEAhAAGvABfxET_tv2rgHDE-EA6B35AaQvJf_8NdEAufvoALoD4AD1_fgB5hTS_yQbF_-0E-z_JuvX__Wu9gAr1g7_MfsGAObn4QEv5-wALgAwARf29wHaDxz_997s_vbZ0P4fGsQALvkBAecP1AEeF8kCGeUuA-cPNQEo7QAB3K79Adz7_AL16u_7DAD1CuDH9vvXBSMCDMwS_hAGCPTkBPEB7QAH-e3wCv8OE88A_uH-Ae0k8QPv-P0FCer7CRz-Cvzv-d8K5eEf_-wICvrfzAP4IO4F98b93f384PIKB_oOA_bECQcH9-jx5e7v-vsh8__fCPTsIAAtHUYQOzgTQAlIYVACKnMQABpgA_MAHPz-7eo0G_Le0M4I2-wr1gTK_f8B8f8JLfD9-uj72DQSABnZKuizAAAAJuvbFvoA9Wix5eIWFQclosrmFiR__wMFv_YV1s_3F_r4-iwJFDZLAM0Brx5B_7kl7yoVIAAtEyovOzgTQAlIb1ACKq8GEAwaoAYAAIBAAABwQQAADMIAAEDAAAAAAAAAgEEAAGRCAADIwQAAgEAAAAjCAAAAwQAAYMEAAGjCAADAwAAAtkIAAMBAAAAkwgAAIMIAABDBAABcwgAAAMAAADjCAABQQgAAmEEAACRCAAAgwQAAMMEAAODBAACAQQAA0MEAADzCAACwQQAAhMIAAFBBAAD4wQAAWMIAAARCAABwQgAAoMEAAMBAAABMQgAAyEEAAFhCAAAIQgAAgEEAAFTCAAA0wgAAcMEAAJZCAAAEQgAAJMIAAIDBAAD4QQAALEIAAFBCAACgQgAA1sIAAADAAABwwgAADEIAADBBAAAswgAAoEAAANDBAABIQgAAUEIAAMBAAADIwQAAhEIAACjCAACAQgAAOEIAAHjCAAAEQgAAAEEAAFzCAACowQAACMIAAADBAADAQAAAisIAAHhCAAAAwQAAIEIAAGBBAAAgwgAAFEIAAHhCAACIQgAAOMIAABhCAABQQgAAgD8AAFjCAABgwQAA0sIAAMBAAAAAwQAAREIAAIDAAAA0wgAApEIAAGhCAABswgAAFMIAAGDBAAA4wgAANEIAAKDBAAA8QgAAyEEAAKDBAACwwQAAoEEAAFDBAACAwAAAVMIAADDCAADowQAAEMIAAAjCAABowgAAFMIAADDCAACAvwAAmEEAAMBAAABAwgAAEMIAANDBAABQQQAAkMEAACjCAAAwQgAA0MEAAAAAAAB0QgAAGEIAACDCAAC-wgAAgEEAAEDAAADAQQAAAMAAAI5CAABgwQAASMIAAOjBAADoQQAAwEEAAGBBAACaQgAAhkIAAJBBAACgQAAAEEIAAAzCAACywgAAMMIAAAhCAACwwQAAkEEAACTCAAAAQAAAqEEAABxCAABEQgAAsEEAAABBAACIQQAAPMIAAOhBAAAIwgAAUMEAAIjCAADwQQAAAEAAAIBAAADQQQAAwEAAAMBAAACgQAAAMEEAADRCAACaQgAAqEEAADTCAAAAQQAAgEEAAJDBAAAUwgAAYMIAAMhBAADYwQAAZEIAAPDBAADAwQAAAMEAAK7CAABwwSAAOBNACUh1UAEqjwIQABqAAgAAVL4AAJq-AABQPQAA4LwAAKi9AAC6PgAAgj4AADm_AABcvgAA6L0AAEQ-AACKvgAAND4AAJg9AACmvgAAyL0AAJY-AACAuwAArj4AAB0_AAB_PwAAHD4AAFA9AACWPgAAHL4AADC9AACIPQAABL4AAAQ-AACgPAAAVD4AAKK-AACIvQAAMD0AABw-AACYPQAAkj4AAI6-AACSvgAA4DwAALa-AAB8PgAAPD4AABQ-AABcvgAAqj4AALY-AACyvgAAQLwAANK-AADIvQAAmD0AAKY-AACqPgAAyL0AAHC9AABDPwAA4DwAAKg9AACgvAAAhr4AAKo-AACYvQAAkr4gADgTQAlIfFABKo8CEAEagAIAAJi9AACYPQAAML0AAB2_AACGvgAAZD4AAI4-AAA0PgAAqL0AADw-AABQvQAAPL4AAHC9AABEvgAA2D0AAEA8AAAsPgAAKz8AANi9AADqPgAAoDwAAFC9AADIvQAAHL4AAJg9AAAQPQAAqL0AAAQ-AAAkvgAAuL0AAHC9AACoPQAAUD0AAJq-AAAUPgAAEL0AAMg9AAAkPgAADL4AAJg9AAA8PgAAXL4AALi9AACYvQAAgDsAADC9AAB_vwAA-L0AAHy-AAD4PQAAJD4AAIg9AABEvgAAuD0AAPg9AACIPQAAmL0AADQ-AAAwPQAAHD4AABQ-AABAPAAAHD4AAAw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=H3CPlsoEyHI","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15436830548806815131"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4539564197509348371":{"videoId":"4539564197509348371","docid":"34-4-3-ZA4717A6BFDC35FEE","description":"This video is second video on Logic, Here I presented Connectives (OR, AND, XOR,.. operations) & Truth Tables, for the course Discrete Mathematical Structures. For complete Course : • Discrete...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4578966/33d001f21739db7631949f8bcc21468c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pK4HyAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DblFuDLHyUfM","linkTemplate":"/video/preview/4539564197509348371?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Logic | Part 2 | Discrete Math Structure","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=blFuDLHyUfM\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFQoTNDUzOTU2NDE5NzUwOTM0ODM3MVoTNDUzOTU2NDE5NzUwOTM0ODM3MWqHFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E-wMggQkAYAEKyqLARABGniB9Aj7B_0DAPv8_w8BCPsCCwDwAfb__wD8Bfr9BgT-APX3A__3AAAA-g_x_wMAAAD9-PgC-_4AAAoFAAgEAAAAERH-9vwAAAASEQYJ_gEAAPz4Av8C_wAABgAIAAAAAAD6C_gC_gAAAAEXAfYAAAAAAQQG_v8AAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAX8TBAPsAuEB3hDhANsQFAGSCSf_6iDXANAL6gDE7OIB9wv7AOX-2wD9DhAAqxELARLcuwIO3AUANs3o_0XP_v_6APoAKeruADMlFwD-Ber_3g4Z_xjq9__9zOEACArV_gz5A_v84OEB7wPHAg7-OQH09xIBMPEWAeC3_QHvBPoC_Ojh_gIP7gn75gn-7RQ1ARzP_v4MBfP60i7jAwAP9Qnk8BX_-zbn-x3z9wUF_Pv-3tH7BgX2BgMDCBkC0RPt_vT4IwLXNgD95_gHABYJBPzlAPgF_eT0CTAHBAHw-Aj_8PT7_dv-9wXnH_0G5SL68iAALQS6Ijs4E0AJSGFQAirPBxAAGsAH2czhvia_arwZ-xa8CgfMvVcPFLw0hQ69zKWXvXGq9Tw9PJU8pg7yPZX0MLxkyWe6FOgzvvvv3DxZ04a8_b10PpJUS70Dsew8dXT8vS8Tmj0LAhC9t7IkvikVwzxE0GK8gkSJvHUrir38K1i7snWaPaXL0bwt6AG8AZzFu33-wbugkm693GoZOvURWL0TfFi9G3-HPNc3m72uqWK7nYV4Pbw-kLuKBT68ozKwuwyON7059Zy8TyRzvLiCHD1aDYm8dWYsPaaLwzz_dKg8U9DtvR8yQL2R1568-SlTvQQDCDxvuXo8Y15sPDsODT0tTuu82MIHPUTHmb3yO7K8seFJvi6S9jxPCJ08qPwLPqWDlT0kjoa80lebvd1IVD0a9C27uypQPfqNQLy_7746z3yjPbgyUj2n0FQ8yG1qu8yRmTuuIoo7jUolPdYjKD0s85Y8W5WUPeoOqL0wMIa854FZPTIVKDu7Heu8KlmJvSV0OLumtcy6qnMWPQSeKj189MQ7IY0vPKpHmjy8z3E8xTVDPfhRDb4Jbyy7c1rBvFW9Qb36Dnq758xRPbigiD1ZfR68bvzpPUzkrb0rc6m7n24FvLnBdTxqKBw8baSRPF7Ieb0frDU7Wmq4vZs08jwVqwa82L_GvMTeVTx_8TG8r2Z4vC03kj2eVQ87bAHnuzBH770_mqC69StdPXMRPz2wlem6-5trPfYLVj0OKye6lY2NPeo3mL2FVW86acw_vdBjNL3Ij526LolYvd3pM730jaa67nScPazizb0q_705tyn9On-6Rj01-k451uynveD7djz5OyQ5yEqCvNmDg7u4IsQ5y6LwvFtCHr43BeM5f4zUPCTC9TwzH7y5sTRQPWQzgT1NFDQ5JdY4vRjMRL0fH8w5vWGRvMerYrzAkcW4FHyuPSvCjT3gZGU4TLwIvbpQkbkyGUG5tLDlu9t7Ir2AHPA4HzQWPfGv7zyaA4k47Lmvu8XBmr0TgHY5F755PX9Urj05MdU4a2nJvDp3uzyKwsO39kczPaY0cT0K7bG4qvkFPR8OMr3B4b83baljPag04jyxRbS4oFDPvRXvhj3C0gI4EmiPu06Dvbx1Moi2wobnvLOgy7xNf1-49yizO3oxGT3Zetw4weMrPtylaLwHiXS5XEkBvcre0r0XIgS5dfX0vFnd6r0NI_E1m0tbvZI8pz1tcIE4hhAhPVx3073e85u3yvRwPSLhKz7xy4o4OaELvdEQhD3l09W4bgONvSdprj2_9xY3zmYavQ_uzryQJD-3IAA4E0AJSG1QASpzEAAaYA77ACEIIg7kIT_20NzUB-fnDuv93Of_3dMABi3eAA_x79P6_f8KvhXxtgAAACgH5SQVAOBj6-DmSeQPCbTe5wojf_IOJtMUA-zYDSYK8f_qIQjmWAAP4sE5I-y4HvELBSAALdpQOjs4E0AJSG9QAiqvBhAMGqAGAABAQQAA4MAAADBCAABgwQAAYMEAADBBAABIQgAA-MEAAABBAADAQAAABEIAADDCAAAcwgAAgMEAALhBAACKwgAAiEEAALDBAAAQwQAATMIAANjBAACgQAAAEMEAANhBAAB4wgAABEIAAIbCAACawgAAkEEAAIDBAAAAwAAAAEEAACjCAABQwgAAiMEAAChCAAAMwgAAtEIAABxCAABQQgAAgMAAAMhBAACYQgAA2EEAAEhCAAAQwgAAYMEAAJjBAAD8QgAANEIAAADCAAAgQQAAAMIAADxCAADQQQAAiMEAAP7CAACOwgAAGMIAADBCAAAwQgAAIMEAALDBAADQwgAAAMEAALjCAACQwQAA1MIAAATCAABkwgAApkIAAIBCAACAwgAALMIAAGxCAADMwgAAEMEAAOjBAAB8QgAAQMAAABzCAAB4QgAAmMEAAMhBAAAgQgAAuEEAAEBBAABkQgAABEIAAADAAAAgwgAAkEIAAJDBAADQwgAANEIAAFjCAAAAwAAAgEEAAJRCAAAMwgAAYMIAAIhCAABQQQAAPMIAAFzCAACwQQAAmMEAAIBAAABQwQAAZEIAAOBAAABgQQAAgMEAAPDBAACgQAAAuEEAAJDBAACIwQAAiMEAANDBAADAwQAAHMIAAFzCAABQQQAAsEEAAEBAAABgwQAA6MEAADzCAAAQwgAAoEAAAIDBAAAEwgAAJEIAAIDAAAAEwgAA2EEAAEjCAABMwgAAEMIAANhBAACIwQAA4EEAAIDBAABAQQAAwEEAAIDBAACAQQAAYEIAACBBAAAEQgAAQEAAANDBAACAvwAAwMAAAEDAAABYwgAA6MEAAOjBAABIQgAAAMAAAIDAAAAUQgAADMIAAMjBAAAQQQAAqEEAALBBAAAAwQAACMIAAIDAAABsQgAAQMEAACBCAACgQAAAUEEAAMDBAAAgwgAAgMAAACBCAADwwQAAcMEAAKjBAABAQQAAiEEAAMrCAABAwAAADEIAAKBBAADAwQAAqMEAAADCAAAgwQAAIMEAANDBAACgQQAAoMEAAMhBAAAgwgAAAEAgADgTQAlIdVABKo8CEAAagAIAADy-AAAQPQAAkj4AAFA9AABwvQAAGz8AAGQ-AABBvwAA3r4AAFA9AAAwPQAAqr4AAHC9AAAcPgAAEL0AACS-AADiPgAA4DwAAL4-AAATPwAAfz8AAEy-AAD4PQAAiL0AAKC8AABwvQAAqD0AAOA8AAAcPgAA-j4AAIY-AACAuwAAUD0AAII-AAAwvQAATD4AAMi9AADovQAAZL4AAIi9AAA0vgAA2L0AAHQ-AACAuwAAuL0AAKC8AABQPQAARL4AAHS-AACAuwAABD4AAIA7AACKPgAAQLwAABC9AABQPQAAQT8AAPg9AABQPQAA4DwAABC9AABEPgAAbD4AABQ-IAA4E0AJSHxQASqPAhABGoACAAAUvgAADD4AAIa-AAArvwAAJL4AADC9AABUPgAAuL0AAOC8AAA8PgAA2D0AAMi9AAA0vgAAJL4AACw-AACIvQAAML0AAPo-AABsvgAAzj4AAOA8AADgvAAA6L0AAAS-AACAOwAAoLwAAAS-AABQPQAABL4AAEC8AACIPQAA2D0AAKC8AAAwvQAABD4AADC9AAAMPgAAqj4AAES-AABAvAAAfD4AAAy-AADYvQAAQDwAAOC8AABQPQAAf78AABC9AADYvQAAmL0AANg9AAAwvQAAuD0AABA9AABAPAAAyD0AAOC8AACoPQAAqD0AADA9AABAPAAA2D0AABA9AAAcPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=blFuDLHyUfM","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4539564197509348371"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9868310950382843388":{"videoId":"9868310950382843388","docid":"34-7-6-ZD0C24B02AAEB2026","description":"In this video, I have proved some basic results on Convex sets. 1. The Union of two convex sets is not convex (counter example is given), 2. Intersection of two convex sets is convex.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3705189/dc267b92b3b2f408fa742fbc80562f69/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wiElIQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHR0ruBOVZpg","linkTemplate":"/video/preview/9868310950382843388?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematics Behind Simplex Method |Part 4| Some Basic results on Convex sets","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HR0ruBOVZpg\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFQoTOTg2ODMxMDk1MDM4Mjg0MzM4OFoTOTg2ODMxMDk1MDM4Mjg0MzM4OGqHFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E58GggQkAYAEKyqLARABGniB_P8IAQABAAP5Dg4GC_oCHQD8_vQDAwDyDwX5BAEAAPL2CvIIAAAA_QL7BgEAAAAA-_EN-P4AAA_9_gMEAAAAEwAFBPwAAAACC_cG_gEAAP_8CfsDAAAADA0O9wAAAAD6DPgD_QAAAPoSCg0AAAAAC_0M9gAAAAAgAC1KxNQ7OBNACUhOUAIqhAIQABrwAXwE6__bDd8AyBLkANs0FwKBIgr-F0b5AN8DCAC898oACf3jANHezf_17g3_uSf5_xsBxwADyxT_Me8A_ysFKAH4_zEBUMz2AToA_QDyEeb_8QwV_yXVEwD9yuAAG__c_wHxBf6z7OH-xfnQAQ7-OwEV1yUEDAMVAfX4A_vWFAIB5uDvAAQW_QXa6gj4-SEaBBn6-AAi-_z_5gTyAQgL6Abz9Br5AA_v-BHkAgfj6fr25AP_BCQE_ggSEgUB5BUMDgYOF_oN-uEB5AP9AyL9BP7mCgEA6tkAAhT8Bg7szgDx4e769-kX8gTqEfjr4Qj17SAALf8hHTs4E0AJSGFQAirPBxAAGsAHK4TtvjcLxTuzbLm7U-RVvVHehzyL4jC8njl1vYfJL7yxapA8kKIePkoS3zy3QwE8OGmKvtEMPTztrn08xVWFPlQwb72bfyq8dXT8vS8Tmj0LAhC9FRxOvqxNyDw1lx87al0TPEZ8J70gcw67J8BwPfTOGbxPseq8b7EMvVZbG71SOMy83JsEPNST3rz87QG95YB4PUchRL0bCw67xr6pPU8qUDxJHAs8A8UXvFRCZj1cwFO71jEzvY1S-Dw0P8i8Wkc1PYPGp7vIg-M86_uFvT5oTL2HOxE8H6Gku1YmIT1mhqo7NuwyPQANBT3E0ju9X4ySPU4RO7xxwb68-aAHvvQamz0vgYA79fX8PZyiCD3rK1m83O-Fvd0J9j3Ineu6FXUFvJ_EjLwxlDi8z3yjPbgyUj2n0FQ8UqXcPEFxNrzEfgu8jUolPdYjKD0s85Y8x458PTAvwDsm2-W8U6m-PMGrhrvsQ4e7EAfpvR9VQz08qMA7ESqyPRogKDt6UBK7Po2gPOYJgDt-9Je7YGeEPfkRv709axI8x4NtvVcQjr2dt1a8d9zwPEb7Lj32Dae8FZBWPb9elr3dQ8K7QTxcvcIawrxTTw88F5kjvGcsdb2LuEo8VXSavZtUdD3aPh48cMGIPAeVnbzwcBq8Qj0iPC1xaT1Z6aQ7bAHnuzBH770_mqC6Y6SdPWoGJz2Qn_A66zczPTFnUT3Gcfk6ElDBPcF4Qb1h0wq6acw_vdBjNL3Ij526X5SFvPC0RrxsyF-4bQPXPbWj2L0Mn685i3YrPSCXWD32qF-4nV6evUMBW7zBBhq5flGHPY4TN7o_d2e5XFQLvZwV8b3cnnU5uFb7PNlxy7rLzwy6Ha0qPdzhZTwwxl44SafJvBh6xLuG5Pa36ln1vBF55jwL7Ns46_gUPWmVND2hFbI4ox4nvUYcvLyEj6m3Mk94PLT08rxnr5m44xaYvNeufz3XUzg4w4AlPOeOjr3DZnI5UIiFPUYIbz0f1iY4owtFvHZPkz32LUc48Vh9PHQXFz3FMOG3088IPGYx0b0-S5c2YmROPXEhKj2aHBq4uOQovtF_hbyd-Bq5TdpUvYb3lr03gwG3nXClPNmXDL0jCXe4QihKvNuTdrxJnBQ4weMrPtylaLwHiXS5uF2Tvc-rkL3adUS4wyb9t7NDjL1Nig43rSRDvQxzRz0ewRY3YQZ5PfM6Er5L56m4yvRwPSLhKz7xy4o4A_yUvX-ojz2F5F65UgmkvR_4Uz0JQzA4z2vsu2hScbt2WdE3IAA4E0AJSG1QASpzEAAaYBv5AED8E-XXIjfi3t3aH-vlHdL3weL__Pf_BzT65O8F08JRGP8juhbxpAAAAD3Z3_8SAPt_o97AIv0VBoPl0SUGcPjyGcQYENC97D0c2fYb_glGJQDp4J0XUxS5MdgcASAALZImFzs4E0AJSG9QAiqvBhAMGqAGAACAPwAAUEEAAADCAADAQAAAAEAAAHBBAABMQgAADMIAAIBAAABMwgAAgMEAAFDBAABIwgAAgMAAALZCAABAQQAA6MEAADDCAABgwQAAPMIAABDBAABYwgAAUEIAAHBBAACwQQAAQEAAAIDAAADQwQAAIEEAAOjBAAA4wgAA4EEAAHTCAADgQAAA4MEAACTCAAAcQgAAjEIAAHDBAAAQwQAATEIAAKhBAABAQgAA8EEAADBBAABMwgAAKMIAAGDBAACUQgAALEIAAEjCAACAwQAAGEIAAPhBAAB0QgAAskIAANTCAACAwAAAfMIAAARCAAAAwQAATMIAAFBBAACwwQAAKEIAAHBCAACAPwAAwMEAAHBCAADowQAAVEIAABhCAABcwgAAFEIAAOBAAAAwwgAA2MEAACzCAACowQAAgEAAAJjCAACMQgAAmMEAAPhBAACYQQAAMMIAADBCAABkQgAAhEIAADDCAAAQQgAAOEIAAOBAAAA8wgAAUMEAANzCAADgQAAAwMAAAEBCAAAgwQAAHMIAAKxCAABYQgAAaMIAANDBAABwwQAAQMIAACRCAACowQAATEIAAMhBAABQwQAAYMEAAKBBAACYwQAAgEAAAFzCAAA4wgAAGMIAACTCAAAIwgAAcMIAADjCAAAwwgAAgL8AAMBAAABAQQAATMIAAAzCAAC4wQAAwEEAAJDBAAAAwgAAQEIAAKjBAABAQAAAWEIAAARCAADwwQAAwsIAAJBBAADAQAAAkEEAAIBAAACiQgAAAAAAAEzCAADAwQAAEEIAAMhBAABQQQAAmkIAAGhCAADIQQAAQEAAAChCAAA4wgAAsMIAAAjCAAAMQgAAYMEAADBBAAA0wgAAQEAAAGBBAAAwQgAAYEIAAMhBAABQQQAAEEEAAFDCAACIQQAAAMEAAIjBAACOwgAAAEIAAKBAAABgQQAAEEEAAMDAAABAQQAAAMAAAJhBAAAsQgAAoEIAACBBAAAowgAAAAAAAKhBAAD4wQAAsMEAAHzCAACIQQAAYMEAAGBCAAAEwgAAsMEAAKjBAACywgAAIMEgADgTQAlIdVABKo8CEAAagAIAADy-AAAwPQAABD4AADA9AABQPQAAsj4AAOC8AAANvwAAir4AAJi9AACYPQAATL4AAEA8AACYPQAAPL4AAAS-AAB0PgAAgDsAACQ-AAADPwAAfz8AABA9AAA8PgAAuD0AADC9AAAQvQAAUL0AAOg9AABQPQAAHD4AAEQ-AAC4vQAAUD0AAOg9AACIvQAA-D0AACw-AACivgAAvr4AAFC9AADevgAAgLsAAIA7AACIvQAAJD4AACw-AACGPgAArr4AADC9AAB0vgAAgLsAAFA9AAB0PgAAjj4AAHy-AACYvQAAFT8AAAw-AACoPQAAJD4AAKK-AABUPgAAED0AAPi9IAA4E0AJSHxQASqPAhABGoACAABcvgAAuD0AACy-AAAbvwAATL4AAAQ-AADePgAAgLsAALg9AACAuwAAuL0AADS-AACIvQAATL4AADA9AACYPQAA6D0AABU_AAA0vgAA1j4AALg9AABwvQAA6L0AAMi9AACAOwAADD4AAHC9AAAcPgAAkr4AADC9AACYPQAABD4AAKi9AAA8vgAAqD0AAHC9AAAcPgAA-D0AAFS-AAAQPQAApj4AAGS-AABwPQAA4DwAAOA8AACIvQAAf78AAHS-AACOvgAAyD0AAIY-AAAEPgAAPL4AAKA8AAB8PgAA-D0AAOi9AABkPgAAcD0AABw-AAAkPgAAgLsAAEC8AAC4PSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=HR0ruBOVZpg","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9868310950382843388"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11497659508235500444":{"videoId":"11497659508235500444","docid":"34-5-10-Z7BDB6FE9AD058AEA","description":"In this video, we are looking for a way to find coefficients in an expansion. Complete Playlist of this topic: • Enumerative Combinatorics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4576436/32560cb821fa6743c1ba071d655308d5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/dI3vlwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DN5c1uG2hwg4","linkTemplate":"/video/preview/11497659508235500444?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding Coefficient in an expansion| Generating Functions","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=N5c1uG2hwg4\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFgoUMTE0OTc2NTk1MDgyMzU1MDA0NDRaFDExNDk3NjU5NTA4MjM1NTAwNDQ0arUPEgEwGAAiRBowAAopaGhjaXlpcGdrYnRqcGppaGhVQ1MyczVpSnhXclV5NXhFckpoaTdhSncSAgARKhDCDw8aDz8TtAWCBCQBgAQrKosBEAEaeIH_D__-B_gA8gQGAfgE_wEb-u8E8wIBAOMEBP0K_AIA7wMQ-QgAAAAW_vsFAAAAAPT7Cw3z_wEAHPgBCPAAAAAK9gEI_AAAAAQQ-wQLAAEB__v7_wT_AAAfEgP8_gAAAPISDgj-AAAAARsC9AAAAAAIBgsD_wAAACAALf8Avzs4E0AJSE5QAiqEAhAAGvABf_TzAtT71f_fD-MA4Sr9ALIoIP_9LdgA0vj_AN7x3ADjGe4AAv3bAPgbFADOAfH_LdvW__e69wAz4f0AEfH_AO4K-wAp6AIANBEn_wT38gDkHSf-8wEMAiXl3QL1Ken_-_0RAPsAAP0ZE9EBIPwpAej6JwMLAxMB5MriAc3m7gHe1-f-Dgru_vbOAwH49iH-GdIcABr6CvzfJ_UCB_L5_vTbH_8HKNr-ENQD_wjjCvzY8Av66f_2DisSDALL-eT_6eUa_-f0-_Xo-AYALfYA9sUKAgn--QEP_gH_9xrd_wcG-Ovz6eT-Aege_QbpFuP0IAAteAApOzgTQAlIYVACKnMQABpgIvoAEQkcAwYAGt322O356NUc4Bzx8f_Y0AD9IdwKF_TjtPEMACXcCf-9AAAALQQXO9gA_lPn9wQZCwoJ29cNFSZ_FQkW7gMN-cbS4BUK6jYSMu85AAoNzxMO7KxD-yAeIAAtrGtHOzgTQAlIb1ACKq8GEAwaoAYAANhBAADYQQAATEIAAJDBAABQQQAAoMAAAGhCAAAQQQAAoMEAAIBAAACEQgAAyMEAAJTCAACAPwAAJEIAAEBBAAD4wQAAAMIAAGBBAAC4wQAAkMEAAFzCAACAQAAA4MAAAKhBAAAAwQAAXMIAAADCAADgQAAANEIAAMDBAACSQgAAsMIAAEzCAACKwgAADMIAAMBAAACKQgAA4MEAAKBBAADYwQAAQMEAAKhBAABowgAAUEIAAJTCAACAwAAAEEEAANJCAAA8QgAAaMIAALBBAADQQQAAoMAAAAhCAAAgQQAA8MIAACRCAAAYQgAABEIAAHBBAAB8wgAAgD8AAODBAADAQAAAYMEAAFzCAABIwgAA-EEAAMDBAABsQgAAsEIAAETCAAAMQgAADMIAABDCAACuwgAAUMEAAFBCAAA0QgAAMMIAAJRCAABAwAAAgL8AAABAAABgQQAAkEEAAIC_AABoQgAAUMIAACDBAACeQgAAAMIAANDBAADAQQAAosIAACzCAAAQQQAACEIAAODAAACKwgAAkkIAAABBAAAIwgAAaMIAABxCAAAwwgAAMEEAAHDBAACaQgAAkkIAAChCAACGwgAAiEEAALjBAAAAwAAAgMEAAIA_AACEwgAAYMIAAEDCAAC4wgAAEMEAAPDBAAAAQAAAuEEAAKjBAACIwQAAPMIAAAhCAADYQQAAuMEAAADCAACgQQAAcEEAAMBBAACQQQAA-EEAAODAAACewgAAJMIAAPjBAADAQAAAMMIAALRCAAAgwQAAWMIAAIC_AADgQAAAuMEAAFDBAAAwQQAAqEEAAMhBAACIQQAAPMIAADDCAACKwgAAVMIAAEBCAAAwwQAAPEIAADDBAAAMwgAAkEEAAMBBAADgwQAAnkIAAFxCAADgQQAAcMEAADxCAAC4QQAA0MEAACjCAACwQQAAAMAAAKBBAAAcQgAAYEEAAIDAAABQwQAAAEEAACBBAAAgQgAAQMAAAJjBAAAgwQAAQMEAACTCAACIwQAAYMEAACDBAACYwQAAQEIAAKDBAACYQQAAwMEAAGjCAACAPyAAOBNACUh1UAEqjwIQABqAAgAAoDwAAES-AACWPgAAJL4AAKA8AACiPgAA4LwAABG_AACWvgAAUL0AAHC9AAAMvgAALD4AABw-AACYvQAAEL0AAFA9AADoPQAAcL0AAM4-AAB_PwAAPD4AAOA8AABUPgAAFL4AAKC8AADoPQAA4DwAAEC8AADoPQAARD4AAHy-AADgPAAAfL4AAIg9AABwPQAA2D0AAHC9AACmvgAAyL0AABy-AAAQvQAAlj4AAFy-AAD4vQAAVD4AACQ-AADovQAAgj4AAFS-AAAEPgAABD4AAJI-AABkPgAAZL4AAJi9AABLPwAAmD0AADw-AACiPgAAqD0AAOC8AAAkPgAAQDwgADgTQAlIfFABKo8CEAEagAIAAES-AACYPQAAiL0AAA-_AADIvQAADL4AALg9AADYPQAAML0AADQ-AABkPgAAUD0AAAQ-AAB8vgAAoDwAAKC8AABAvAAAFz8AAAw-AACOPgAAmL0AABQ-AACAuwAALL4AANi9AABAvAAAqL0AAIC7AABQvQAAgLsAAIg9AAAEPgAA-L0AANg9AABkPgAARL4AAEQ-AAC-PgAAjr4AAJg9AABEPgAAcL0AAFS-AAC4PQAAcD0AAIA7AAB_vwAA4DwAAIC7AAD4vQAAqj4AAKC8AAB0PgAAQDwAAGQ-AAAQPQAAEL0AAIa-AACIvQAAHL4AAOC8AABwPQAAVL4AANi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=N5c1uG2hwg4","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11497659508235500444"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6139559195310042206":{"videoId":"6139559195310042206","docid":"34-7-8-Z4A2945493A963636","description":"This video is about, Counting using Bijective Principle Techniques. Here I considered a simple example to count paths using binary sequence. Complete Playlist of this topic: • Enumerative...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4245847/08169f61217e86593fc50da095ca281e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/R1P5egEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4NIJ3ZJhwXI","linkTemplate":"/video/preview/6139559195310042206?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Counting using Bijective Principle Techniques","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4NIJ3ZJhwXI\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFQoTNjEzOTU1OTE5NTMxMDA0MjIwNloTNjEzOTU1OTE5NTMxMDA0MjIwNmq1DxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E-8GggQkAYAEKyqLARABGniB_wcHBQAAAPH7_v8IAv8BHAYR_PUDAwDsAvsEAAAAAPEL_QkEAAAA_QUICvkAAAD5-_j6Av4AABoF7_4DAAAAE_4A-P8AAAAODPsD_gEAAPTx_wED_wAAJAH8BP8AAAAJDv0FAQEAABAOCgIBAAAADAP7CgAAAAAgAC1kJtI7OBNACUhOUAIqhAIQABrwAX8JIAHFCd8AzPH4AOwZ6QCn9yb_MTnh_8ziEQGsE8z-4g0CAAvk9QD6ABP_yQHv_wrq-__V0eoAFu0P_zfzFAHy_woAAuMD_0ECFv817vH_4SAr_e3sGgIo4tkCFyL6Ah_jHf_SDfEACuu7CArWPAPsMxkD8PcNA-_ZAAHr5R4A9_jI_g4EBQDMvQH-6_AYBAzp_Qj2GvX51xLz_fUN8fvtwQr8KSzwAQ4G8gbwMQEFAu4A9vzi7fr8JBoK-Av7-ufwGPnW-wn39eT3_SbN__3kAPcFMAj7DQ7-_vztzvQCB9Du8sAr-QXrAfz9APfz_SAALezmGTs4E0AJSGFQAipzEAAaYEL8AC3tHxHnBkriB_7oENPf3OEh4wL__PD_C_3fBgP--68RCv8j0C3yrAAAAB8kyEMSABFu5PPyNiANBKbT3wgif_YLItTrH8_mwBosB_n1Cx8PVgD26rkiO8HVTyInLiAALV22Jjs4E0AJSG9QAiqvBhAMGqAGAABAQAAAcEEAABhCAACQwQAA4EAAAABBAACIQgAAAAAAADjCAACAQAAABEIAADjCAAC8wgAAgMEAADhCAAAAwAAAEMIAAMDBAABQwQAACMIAAEDBAACGwgAABEIAAIA_AAAwQgAAIEEAAGTCAAAEwgAAoEAAAFRCAAAAwQAAhEIAAKzCAACMwgAArMIAAHDCAACAQAAAhkIAANDBAAAwQQAAkMEAAGDBAABgQQAAQMAAADhCAAA8wgAACMIAAJBBAADoQgAAHEIAADTCAACQQQAAoEAAAODAAADoQQAAgD8AAPbCAAAYQgAAAEAAANhBAAA0QgAAkMIAAODAAAAUwgAAYEEAAKDBAABwwgAAeMIAANBBAABAwQAAdEIAAIhCAAA8wgAAIEIAAIDBAACawgAAjsIAAJjBAACQQgAAGEIAAEDCAACaQgAAUMEAAOBAAAC4QQAAgL8AABBBAADoQQAAhkIAABTCAABAQQAAtEIAAAzCAADgwQAA6EEAALTCAAAgwgAAYEEAADRCAAAkwgAARMIAAExCAACIQQAANMIAAFjCAAAkQgAA2MEAAJBBAABAQAAAhkIAAHBCAAAYQgAAdMIAAHBBAAC4wQAAiMEAAODBAADgQAAAYMIAAHDCAACQwQAAaMIAAGDBAAAUwgAAoEAAAPhBAAAAwgAAAMIAAODBAAD4QQAAwEEAAAAAAABcwgAAmEEAAEBBAAAwQQAA4EEAAIBBAACIwQAAksIAABTCAADgwQAAwEAAAATCAACeQgAAoMEAAHDCAABgwQAAQEAAAIjBAABQwQAAcEEAAAxCAACgwAAAEEEAACjCAAA4wgAAisIAABDCAACaQgAAAAAAAChCAACQwQAAEMIAACBBAACAQQAAgEEAAJJCAABUQgAAkEEAAKDAAAB4QgAAgMAAALDBAABQwQAAMEEAANDBAACAQQAAsEEAAABCAACAPwAAQMAAAMDAAACgQQAAUEIAAIBBAABgwQAAoEAAAIBAAADAwQAASMIAAJjBAABAwQAABMIAANhBAAAQwQAACEIAAPjBAACYwgAAIEEgADgTQAlIdVABKo8CEAAagAIAALK-AACIPQAAyD0AAGQ-AABQvQAAiL0AAFA9AAAdvwAAor4AABQ-AACIvQAA4DwAAPi9AABEPgAAHL4AAKi9AAAQPQAAUD0AAHA9AABjPwAAeT8AAEy-AAAEvgAAiD0AACS-AADovQAAED0AALg9AACYvQAAkj4AABQ-AADyvgAARL4AAII-AACCPgAAgDsAAII-AACivgAAhr4AAHC9AABEvgAAJL4AAIg9AACuvgAAUD0AAEA8AAD4PQAAZL4AAEQ-AADavgAALL4AAEC8AACoPQAArj4AAIq-AACgvAAAfz8AAEy-AABUPgAA5j4AALa-AACYPQAAcD0AAIg9IAA4E0AJSHxQASqPAhABGoACAAAsvgAABL4AAFS-AAA9vwAAUD0AAPi9AABAPAAAVL4AAAy-AABwPQAAQDwAABC9AAD4vQAAdL4AAIA7AACIvQAAML0AABs_AAAMvgAAuj4AAHC9AABAvAAA4LwAANi9AACgvAAAQLwAALi9AACgvAAA6D0AAKg9AAAEPgAAyD0AAEC8AACovQAA-D0AAIA7AADoPQAAqD0AAEy-AADoPQAAdD4AABy-AAAsvgAAUD0AAJa-AACgPAAAf78AAAy-AAA8vgAA4DwAAJg9AAAsvgAAUD0AADA9AAAwPQAA4DwAAEC8AAAcPgAA2L0AAIC7AAAQvQAAiD0AAOA8AADgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4NIJ3ZJhwXI","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6139559195310042206"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9952998091361659310":{"videoId":"9952998091361659310","docid":"34-4-14-Z2D76CE94A3F2B866","description":"In this video, Generating Functions are introduced. Complete Playlist of this topic: • Enumerative Combinatorics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4396879/f581569d4a4212a77c390340e09944f2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Oe3TJAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtA2cqfNh5EM","linkTemplate":"/video/preview/9952998091361659310?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Generating Functions | Part 1","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tA2cqfNh5EM\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFQoTOTk1Mjk5ODA5MTM2MTY1OTMxMFoTOTk1Mjk5ODA5MTM2MTY1OTMxMGqSFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E8oOggQkAYAEKyqLARABGniB9Aj7B_0DAPADC_v8AQABCwDwAfb__wDxAgjyAwEAAO0JAgb7AAAA_QL7BQEAAAD2_v7-_P8AABL1AQADAAAADPcIAvsAAAAAB_0A_wEAAPH8_AMDAAAAFgX-BgAAAAD8DAf_AgAAAAwP_wIBAAAABv0NAQAAAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAX__1QDH--P_1AXFANYnMAGhMCb_EhfPANMG9gGI59H_AA_eAPftqf8NCBf_thsIABTWsAIExBb_N-0A_ybvCADwBBkBNvYEATsRGQIMDPH_2g0L_Rf8_wAZ1NADBCbY_vr8FADs6ukCHxfIAhrkLwMC6Sv89vEA_djxBv_wCAn_493sAPclBgXfxvb79vQo_vrQOAMABwv53PLv_Aj_9PsO6gr86xLvA_js9Q_q4Qf88dsC-vwB5QQXIyX-zf3tBBPRHwzs_fL47QIQ-EkMEQex_P35CNcJFDYdA_cAyPgB7NsA9fDnDf_lEQcX2A3x_yAALUPuCzs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6U-RVvVHehzyL4jC8jY8AvYDMuD0WkiO7IJbCPQqjGb0QBp68HEIVvlDwgzybSB-9_b10PpJUS70Dsew8huMJvt8g9TysASq9ptQFvj9MqboFZqq83PUSPZELzrygBxC7iGVzPaVqm71wApk6b7EMvVZbG71SOMy8teAlvj2qq7z3_BW9TZ-hO8q4c70YjhE9-ERoPb3Dbbze2747ST8LPZm79r1sulS82DVOuxt0eDwUoUe8ySJtPUWE2jslMyg8SriLva0y07xHUAK8VlCMvdDBCb1aFJG8NuwyPQANBT3E0ju9ZUOdPXc1tL2QdjK9d_UKvqCfLj1c-VG85Ib_PTl29TyMb548FJsKvV01Tz34JVE8YYg8PSHJLL1h3Z07SxcHPf-JGz00z1s8Ms8lPSRNFz3mut88BKzVPDOimTz080s8U8qgPSx3UL3isRu884erPYhgAbwS7r45wwqcvUk1xzwkKYq7mFsQPbl52Tzp8QA6gDOnPOhY1DySwTw7RVylPHO49r3kBDc8XE2ovLlyUb1vVrO8XsWYPNfbZrzzYQa6SBgGPm7JZb3t1QW8pj-QvXzgurvAnic7A8EtPey8cr2XuEG47MmCvd4oKD2hwDc7_GWBvY6hUjzf61q8y5jnvFoNuT3sjIg7pz3lvOuMD74l3r23m36_PRR3_Dz0iCs6LYuTPZ6vHj2gog865lsAPESQnrwlIVO7VGGivJz9Ab3M4cW63WsXvUqqAL0eTD25ZrZQPYnu2b0hlb05GFWQPXiLMT1gxBI51g1qvQK_YT3zKHu4leYgvcP74Dzh3K05rS-3Ov0S8b28I4k5n4nZOzCnXz2VyeA40aUpPa9xZz1EXsW6SgsXvgrcmr2pquG2R_govJBe3jxuXZa4BwzSPV9pz7zV39W0uYy8u6Jq7DtDTbo6AFYnvVi5obzajaE5lZpsOWakObz1Hts4w4AlPOeOjr3DZnI51O5XvKQ5Ej7F_VW5fOOlvfiEMb2bQRw2gEeEPQAwgzzPqae4xzdqPSBfgr12-co2baljPag04jyxRbS4aHUyvmSkKD0Xyky3ePq3vHu80Dxyqpo3lCMOvZLKmLsHLgO4SnNQPFnqDz1SmIY4wqTYPTYqJr17tC25TsGQvT--Tr1TTmU3Hip4OyUE670jv2c4MguzvRL-QD2ycrY3Mu6sPVwmvr3sakM3yvRwPSLhKz7xy4o4elORvNnV_zwvBQW5tAH4vbVYRT1R4Fw4dxSEutq6Bb0FWlA4IAA4E0AJSG1QASpzEAAaYDf7AEDWIwX_8znl_dXlEQXMHQ9B4uf_3f0AEDLt8xkZ9Y4KJgAc3t4ErAAAACgTDjjcAOluBfH9HNM7AOnLBuAlf-wC_PrZHg7M6PsoDP5DCB7rNAAi-aMiPeegSig_FSAALerTIzs4E0AJSG9QAiqvBhAMGqAGAAAQQQAADEIAAAhCAAAwwQAAcEEAAHBBAAAgQgAAQMAAAKjBAACAvwAAZEIAAHTCAAC-wgAAAMIAAIRCAABAwQAAXMIAAKjBAABgwQAA-MEAAADAAABowgAANEIAABDBAAAcQgAAwMAAAHTCAAA4wgAAyEEAACBCAACgwAAAhEIAAKrCAAA4wgAAksIAAFjCAACgwAAAjkIAAADCAABgQQAAmMEAAIBAAACoQQAAwMAAAERCAABQwgAAGMIAAADAAAC4QgAAHEIAAIzCAAAMQgAAcEEAAODAAABEQgAAgD8AAADDAAAMQgAAEMEAAJhBAACAQQAASMIAAADAAAA4wgAAQEAAAMBAAABUwgAAJMIAAAhCAABwwQAAgkIAAKxCAAAowgAANEIAADDBAACAwgAAaMIAAATCAAB8QgAA8EEAAGzCAABkQgAAAMAAAKhBAAAAQAAAwMAAAMBBAAAAQgAAZEIAAFzCAAAAwQAAkkIAAIBAAAA4wgAAkEEAALbCAACgwQAAQEAAABhCAAAQwgAAXMIAAIpCAABgQQAAZMIAACjCAADgQQAAOMIAAMBBAAAgwQAAiEIAAHhCAACYQQAAZMIAAKBAAADAQAAAwMEAADDCAABgwQAAGMIAAATCAACwwQAAjsIAAPjBAAAYwgAA4EAAAOhBAACYwQAAqMEAACTCAAAAQAAAQEIAAIA_AAAQwgAAmEEAAJhBAAAgQQAAAEIAAOhBAAAMwgAArsIAABzCAACgwAAAEEEAAMjBAACSQgAA0MEAAGTCAAAAwQAAQEEAAPDBAACgwAAAwEAAAPhBAADgQAAAgEAAANjBAADowQAAoMIAAPDBAACSQgAAcMEAABxCAAD4wQAAEMIAAADAAACQQQAAcEEAAIxCAABQQgAAFEIAANjBAACAQgAAAEAAACDBAAAwwQAACEIAAEDAAADIQQAASEIAAIhBAABAQQAAMMEAALhBAABgQQAAMEIAAMBAAACowQAAkEEAAIA_AAAQwgAARMIAABTCAAAgwQAA-MEAACxCAABgwQAAQEAAAEzCAACwwgAA4MAgADgTQAlIdVABKo8CEAAagAIAABA9AABwPQAA6D0AAFS-AAAEvgAAnj4AANi9AADivgAAir4AAAw-AACAOwAA4LwAAJi9AAAsPgAAbL4AAPg9AADIPQAAoLwAAI4-AAAdPwAAfz8AAAS-AACAuwAA2D0AAIK-AABAPAAAVD4AACQ-AACAuwAAoj4AAPg9AACgvAAAqL0AABS-AABMPgAAFL4AABw-AAA8vgAANL4AACy-AAAUvgAAhr4AAGw-AACevgAAuD0AAGQ-AACoPQAAZL4AABC9AAAkvgAAVD4AABC9AACKPgAAmD0AAKA8AACgPAAAXT8AAIK-AACuPgAAFD4AAOg9AACOPgAAcD0AAAy-IAA4E0AJSHxQASqPAhABGoACAACAOwAA4LwAACS-AAAdvwAAiL0AAJi9AAAcPgAAFL4AAJi9AAB8PgAAPD4AABC9AACAuwAAZL4AAIC7AAC4vQAA4LwAAB0_AAC4vQAAnj4AAKi9AABAPAAAoDwAAAy-AABQvQAAmL0AAJi9AACAuwAAHD4AAIg9AAAMPgAA2D0AAGy-AACAOwAAPD4AAKA8AACCPgAAhj4AAJK-AAAwPQAAuj4AAIA7AABkvgAABD4AAAy-AAAEPgAAf78AAIC7AAAQPQAAgDsAABQ-AAAEvgAAFD4AAKC8AABMPgAAMD0AAIA7AABwvQAARL4AAMi9AACgvAAAHD4AAFC9AABwvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=tA2cqfNh5EM","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9952998091361659310"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16335766288097340229":{"videoId":"16335766288097340229","docid":"34-10-1-Z0996F03566BDACB8","description":"This video is about Fundamental Theorem of Linear Programming Problem. This explains why we always look for optimal solution at corner point. As there is one to one correspondence with...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3581591/daf95c9455085f5d417c7c8254f2199d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/akKoHwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrGtHdJYAmfs","linkTemplate":"/video/preview/16335766288097340229?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematics Behind Simplex Method |Part 7| Fundamental Theorem of LPP","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rGtHdJYAmfs\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFgoUMTYzMzU3NjYyODgwOTczNDAyMjlaFDE2MzM1NzY2Mjg4MDk3MzQwMjI5aocXEgEwGAAiRBowAAopaGhjaXlpcGdrYnRqcGppaGhVQ1MyczVpSnhXclV5NXhFckpoaTdhSncSAgARKhDCDw8aDz8TyAaCBCQBgAQrKosBEAEaeIHuAfn9_AUA-wMDDgoI-wIO_gYC9wAAAPQN9_UDAQAA9P78_AgAAAD-B_QH_AAAAAD78gz5_gAADQL4EAIAAAASAAUE_AAAAAoOAwD-AQAA__wJ-wMAAAAFCvwB_wAAAPgKB_v7_wAA9QwFBgAAAAAHBQkDAAAAACAALXGG3js4E0AJSE5QAiqEAhAAGvABfw_o_tYP2gDTBcQAsho-AJ8yJ__8OM4ArBkBAbL2wgEF8O4A7djN_yr-FAC0GwkARfTF__nLAgAs6e__NhIfAOwOKQBE6_oBQRUx_wX17wDVDPj_B-4KAvXXzv4CGeUD_wwd_NgE6v_rA70CC9FEA_L1FgIc5gj_x-MCAtEK9QLq2tX9EBb9_fzR6_zqGD8BFN4K_hD_F_zvDOkFEPHnAA_pC_wfHt79_9UGDMz6CPn-8AsIH_Xk9wQIMP7R8voFFfQj8vr-7QTh6fbuMAIKDdfx7wIK7fQILBoPAfXUAfzv7Qnv4PEDA_cP-fzW8fT5IAAtCE8IOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTpmTge-_iqfu4L4pbwU2pi9J095PQsRibtRu689ns46vAiiOLwcQhW-UPCDPJtIH70KL2E-F3GwvEHTxjmHNCq-nmmoPbZyZbxMxDu-gpxFu1Yy17rNs009Rf1EvbYlvDxvmyk9cbtBvc7QLjxviwi9Q0cHuiPYGL0iF6G9O5yKvAUrU70bf4c81zebva6pYrsuWaU9Y0JMvB8IWjz1JUA8h7-mvKBsirzKlAU9jaICPbuzm7wJeZM9DdbJPPyOYTwTCYu9CjdUvbK2jrwlF629217BvAshzjrf_MY97BvzPIdZPr1lQ509dzW0vZB2Mr2x4Um-LpL2PE8InTzshu09jPeDPXJbkTvSV5u93UhUPRr0LbvFIgE9M7nivNNGu7uE7Uw95PNqPVSQ-jzEEDQ9BF7eO2f_TTwJZMA8z1l1PYVjsTwWhNI9RXaPvSdnKLyqXag9S3APPG41a7wqWYm9JXQ4u6a1zLpPXG49kbc8PWF8B7vZLga8zKH7PNoz8DrFNUM9-FENvglvLLt1-FW9wf4rvRcqf7wCZwQ9KE80PCJAHztIGAY-bsllve3VBbycHFm9jtX7u_nTazzRMho854xIvdk8MzzeAum9mJOGPOnkmLqtgTK9t1bFPP4w_Lt9O667taXOPT5q4bqRoFO83yatvRbtnrq4j3w9PByTvLhLMLs7Bl89eLcSPUHGs7pU-p49mug4vXhaTzgqWSm8m1RUvW8d0jtl04C8kCiZvVIDEzvdYZM9u5cLvqUOaDkK9wo9zwYqPfatvTn-65G9Z4dTPZxI8biF-SE9ydAMvWo2_LVcVAu9nBXxvdyedTmB6G68lxSJPaj9Crk3DZs9Ucc5PbkjPjdff729Hxg7vQjVN7mqTuK8E4pjPfOFrzhcDLQ9VW2SPFU0GjhnSIC9SpDbPLqgvbc9_ZQ7HB0BvS-lorisuru6UMiOPWTM-jfsua-7xcGavROAdjnEVjU9eWHGPbbmLrgTY1m9zrsbPT9_PDgfR3M8vxLhO-wWL7jxWSg9d5aKvdU16zgiDiM9OeEQO7AeU7jK4QO-ENcePJf9TjfILFa8bRvGvBx7JLgSn2C7shw2u2ULMjaWSFg8rkjMPB9HUDjB4ys-3KVovAeJdLkKXAi94sORvTylWLgylO68uvi7vTYXJritJEO9DHNHPR7BFjf2dHo94A_fvT-Zm7fK9HA9IuErPvHLijjnIEO9C3RyPQV1lbitbeq9FDu_PG_S4zf5yQe8IIEavW58nbcgADgTQAlIbVABKnMQABpgA_gAPwYS7sgYK9_XwOAS1t5MxAzby__4-v_7L_by4PvXwxYy_ySmGvmjAAAANv_b__sA33m868ws8_UKutfqJAx_9A8JwDIL8aXbNSDwCEAD_To0ANUEoh5fCKss-EsjIAAtqlkVOzgTQAlIb1ACKq8GEAwaoAYAAEBBAAC4QQAAQMEAAIA_AABwwQAAGEIAAIhCAAC4wQAAUEEAAFTCAADIwQAAmEEAACTCAACQwQAAtEIAAHBBAADwwQAAEMIAAFBBAABUwgAAgEEAAIDCAAAUQgAAAEIAAOhBAABAQAAAgEEAAODAAAAgQQAA4MEAACTCAAAgQQAAksIAACBBAACwwQAANMIAAGBBAACCQgAAgEAAAODAAAAwQgAAYEEAAAxCAAAoQgAAkEEAACTCAAAswgAAqMEAAJpCAACAQQAAYMIAAIDBAABwQQAAGEIAAFRCAADMQgAAqMIAAODAAABEwgAAWEIAAMDAAABYwgAAEEEAAIDAAAAwQgAAfEIAAJBBAADYwQAAMEIAAADCAABAQgAAREIAAJbCAABQQgAAIEEAAPDBAACQwQAAIMIAAIDBAAAAwAAAhMIAAGBCAACAwQAAMEIAABRCAAAEwgAAUEIAAExCAABYQgAAsMEAAARCAABkQgAA4MAAABzCAAD4wQAA9sIAABDBAABQwQAAdEIAAIDAAADgwQAAlEIAADhCAACewgAAWMIAACDBAADwwQAAREIAALjBAAA0QgAAgEEAABTCAABAwQAAEEEAAJDBAAAAwAAAZMIAAGDCAAAIwgAAHMIAABDCAACGwgAAsMEAAETCAABwwQAAQEEAAGBBAABEwgAA2MEAAPDBAAD4QQAA4MEAAATCAAB0QgAAAMEAAIBBAACAQgAAQEIAAOjBAAC0wgAA4EAAAOhBAAAQQQAAAMAAAJJCAACYwQAADMIAAOjBAABwQQAAkEEAAChCAACaQgAAaEIAADBBAABAwAAAIEIAACjCAACuwgAA8MEAAFBBAADgwAAA0EEAABzCAAAwQQAAAEIAAAxCAABoQgAAcEEAAKBBAABQQQAASMIAAKBBAAAswgAAAMIAAKDCAAAQQgAAgEAAAEBAAAAAAAAAuEEAAHDBAACIQQAAoEAAAABCAACkQgAAgEEAAEjCAAAwwQAAKEIAANjBAACwwQAAHMIAAKhBAADgwAAAcEIAANjBAADAwQAAoMAAAJzCAADgwCAAOBNACUh1UAEqjwIQABqAAgAATL4AAAy-AAAEPgAAUD0AAPi9AADKPgAAgLsAAAO_AACmvgAABL4AALg9AAA0vgAAgDsAAAQ-AABsvgAAHL4AAI4-AABwvQAAlj4AAO4-AAB_PwAAUL0AAJo-AAAEPgAA-L0AACy-AAAwvQAAQDwAAAQ-AADIPQAAPD4AAKC8AAAEPgAAbD4AAIA7AADoPQAARD4AAKK-AADOvgAAUL0AANq-AACIPQAAMD0AADC9AABkvgAA4DwAAI4-AACevgAAFL4AAJ6-AAC4vQAAQLwAAIo-AABEPgAANL4AADC9AAAbPwAAPD4AAAw-AADIPQAAhr4AAFQ-AADgPAAAgDsgADgTQAlIfFABKo8CEAEagAIAAAy-AABQPQAA4LwAACG_AACSvgAA-D0AAPI-AADYPQAAqD0AAOC8AACgPAAAXL4AAOA8AABUvgAAyD0AAJg9AABMPgAAGz8AADS-AACyPgAAqD0AADC9AAAMvgAA2L0AAKA8AAC4PQAAoLwAABw-AABcvgAAcL0AAFA9AADYPQAA6L0AAIa-AAAEPgAAED0AAPg9AABUPgAAbL4AABA9AACKPgAAZL4AAHA9AAAQPQAAuD0AAFC9AAB_vwAADL4AAJK-AABAPAAAhj4AAEQ-AADIvQAAML0AAEw-AAD4PQAA2L0AAIY-AACoPQAAiD0AAEQ-AADgvAAAoDwAANg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=rGtHdJYAmfs","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16335766288097340229"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8978740192010191632":{"videoId":"8978740192010191632","docid":"34-1-6-ZEDF64ACD4F983E6B","description":"This video is about Binary Modular Exponentiation...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3660006/5608f58d3f172bfd2572e29e326da53c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_HjwIwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dm2asZMjESHk","linkTemplate":"/video/preview/8978740192010191632?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Congruences | Binary Modular Exponentiation","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=m2asZMjESHk\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFQoTODk3ODc0MDE5MjAxMDE5MTYzMloTODk3ODc0MDE5MjAxMDE5MTYzMmqHFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E6IDggQkAYAEKyqLARABGniBCAb5DAAAAPQD_gIABP8BBvUA-vj-_gDjA_wKCfwCAAINDgYEAQAA9fYABgYAAAD5EP4K_v8AAAYE_QEEAAAAEAb-CPYAAAAbEf8A_gEAAPUGAgIDAAAACA8CCwAAAAD9BQ3vAAAAAAABAQMBAAAADPUABQAAAAAgAC2ZQNU7OBNACUhOUAIqhAIQABrwAX_79AHQ-9L_4fju_8w_7AGlMQP__TDVAMEF_QCuEs3_9wz7APUE4P_4HRYAzRT0ADDY0__60gIAItjx_x3o7wDiAw4BE94EAUACFf_26_YAzx8a_vTR7_8W2dUDHSrl__v8EgANC9sBGxXOAQv0H_8MCCkDHO8RAvfB9QPf_PwC7d_b_gIP7QoC2P_64vYtBwrT_f8NBfP60S_iAwjx-P7z2CH_ByvY_hr6GQYN-gj_5-r-_Av78AogEBH07QH7__P3JALVEvvy6-YFCR7dAvPYB-UJGfX1Cxj0DQT-4wIGBOH5-tMAAfzfDPb94gj17SAALWPLHTs4E0AJSGFQAirPBxAAGsAHTz7Fvn7Y3DwxxrA7TmP7vTfpDL136fC8FNqYvSdPeT0LEYm7by4ePi3gr7xhFZS8i_vPvW6ukDydU-K7xVWFPlQwb72bfyq8hzQqvp5pqD22cmW8TMQ7voKcRbtWMte6msy4PL45gr1_wx88oDTEPabVUL0R_9Y5b4sIvUNHB7oj2Bi93GoZOvURWL0TfFi9TZ-hO8q4c70YjhE97a-IPYPuHL0u2mu7h6_lPPeENrzdoKy8TyRzvLiCHD1aDYm8hFkSPbjnWT1iIBk8SriLva0y07xHUAK8aIBBvWuZsbz-nKO76gd1Pb-ExDux1Qq9aTPzPB5v8r3XJdM6qMghvgJ8HD3o6W087IbtPYz3gz1yW5E77-SzvfeRmz3N_bq8xSIBPTO54rzTRru7BVubPE62YT1JWOU8Yz2KPSAghDz5SIo8kCQQvBDfoz2mYgM9huJOPZD-cr1GoFW8lz0kPUEr8jtPwpa7hwRivTeuej3-Nnq8LY-aPIZ7wDw9Eqs7IY0vPKpHmjy8z3E8RVylPHO49r3kBDc8-limvctQkL0dp667IrCYPRbGcTwju3e8SBgGPm7JZb3t1QW8x3lJvHVnmjrNGyu7baSRPF7Ieb0frDU7KVvkvRv3IT1eq5C7GlUBvYuBHz11LCW8qhyJvCumAj4O6g25mTbSvLxazr0YnC861bx5PZt9-jmC0DQ7kIPSPUaUWz3VHBS4euSqPSNfrrxvSIK50dWRvfU2rLwiJ-E6LolYvd3pM730jaa63WGTPbuXC76lDmg5gQpCPQ_VEDxhzTO4G-qhvbJblT0s2Zk4m3DxO4BEOL22w2k4XFQLvZwV8b3cnnU5xUJjvHjePD2odcO40OErPV9iJz0m7Ly5L1DyvahcnL1DgL-3Pz5puckDkTw5ygK56nYGPlLeXT03OPg11zTKvGwA_Lv3a6-4DbAlvYpyIbrGli45s00ivLVo5jzjbmk3QfEDPXFPwb3XOHs5RZzvOz3R1T3iCUe5MGZLvPk04TtWwxu4wVifPQsZnj29GSM4zZkoPfwcX71dgK82q6xyPbkbwDv_rNG4tJAQvtiMoj2ZewS3DWYNOp2QjLw9M7a4REC0PGpK9DvNYia4eSQ5PVNBRTyRmD22sRUEPsb_-Dsy2VO4VMXUvf97S70YUVe2b0VnvbQWm71OcPi3TTckvY27zD2s7g43U2VOPHtclb1edby3yvRwPSLhKz7xy4o4KZ5pvHjNkD2h5pq4rW3qvRQ7vzxv0uM3VB9ovQgTMD09HIw4IAA4E0AJSG1QASpzEAAaYDz3AAIaJwP0-kzbCM_37cHiAMYjqQ7_6_T_Cg_sHwX78LXyD__u3_0GqAAAACoHxBsNABR1xOXeOg3a4szSvTI6dPgUJdrEAAKw8jL6EeD39hHjfwAX67IKB-zlN0BAHSAALXkBHzs4E0AJSG9QAiqvBhAMGqAGAAD4QQAAIEEAAGRCAAAAwAAAnEIAALDBAADIQQAAgEAAABDCAACAwQAA6EEAABzCAACAPwAA4MAAAPBBAAAQwgAACMIAAMDAAACAwAAA0MEAAODAAAAowgAAiMEAADRCAABAQAAAwMAAAJLCAACiwgAA-EEAAChCAAAQwQAAJEIAABTCAAAQwQAAHMIAAIBAAAAgQgAA7EIAAEzCAAAIQgAAEMEAAETCAADQQQAAcEEAACBCAAAswgAAuMEAAHBBAAD4QQAAiEEAADjCAAB4QgAA2EEAAKDBAAAkQgAAkEEAAMjCAADAwAAA4EAAAIBBAAA4QgAALMIAALDBAAAgwgAA6EEAALjBAADYwQAAIMIAAAzCAAAwwQAAZEIAAIRCAACwwQAAuEEAAMBBAAAAwwAAgL8AAEjCAAAAwAAA8EEAABDCAAA4QgAAFMIAAKBBAADAwQAAFEIAAGxCAAAIQgAAOEIAAPDBAADYwQAAUEIAAIC_AAAkwgAAJMIAADDCAAAcQgAAoMEAAKhBAABQwQAAAMEAAAhCAAD4QQAA6MEAABBBAABEwgAADMIAADxCAAB0wgAAKEIAAGhCAADgwAAAkMEAAKjBAAD4QQAAHEIAAADBAABIwgAAKMIAAOjBAACgwAAAWMIAAHDCAABwwQAAEEIAAOBAAAC4wQAA4MEAAPDBAAAowgAAAEEAAHDCAADgwQAAyEEAAATCAADwQQAA8EEAAGDBAADowQAAAMMAAODAAACYQQAAkEEAABBBAABAQgAAgL8AALLCAADIQQAA8EEAAKDBAABAQQAAIMIAADRCAAD4QQAAFMIAAADBAADAwQAAlsIAAJjCAAAEQgAAWMIAAMjBAACIwQAAsMEAAAzCAACYQQAAQEAAAMZCAABAQQAAQMAAAFDBAACkQgAAYMEAACBBAAC4wQAAEEEAACDCAABgwgAAqkIAAMhBAACYQQAAAMIAANhBAABQQQAAMEIAABzCAADAwAAAoMEAAADBAADAQAAABMIAACTCAACQQgAAMEEAAJRCAABAQgAAWMIAAETCAAAMwgAAAMEgADgTQAlIdVABKo8CEAAagAIAADA9AABQvQAA2D0AAKC8AADYvQAALD4AAAy-AADOvgAAJL4AAEQ-AAC4PQAAEL0AAKC8AAAsPgAA-L0AAAS-AACKPgAAuD0AAAQ-AADiPgAAfz8AAIg9AACevgAAHD4AAIi9AAAUvgAA-L0AAGS-AACGPgAA0j4AAIi9AAAsvgAAuL0AADC9AADgvAAAMD0AAMg9AAAEvgAARL4AAKK-AADIvQAAFL4AAIC7AAAwPQAAcL0AAJi9AACAuwAAML0AAJi9AABUvgAADD4AAKg9AADCPgAALD4AAJ6-AAAwPQAALz8AAFC9AABcPgAABD4AAKi9AACgPAAAyD0AAHS-IAA4E0AJSHxQASqPAhABGoACAADgvAAAEL0AAAQ-AAARvwAARD4AAKC8AACCPgAAJL4AAOC8AACIPQAAQLwAAJi9AAA8PgAAbL4AAIg9AADgvAAAMD0AAEM_AACYvQAAPD4AAAy-AABcvgAALD4AAFC9AABwPQAAML0AAEA8AABwPQAAkj4AAKC8AABAvAAAJD4AAIq-AAAUvgAA2L0AABQ-AAD4PQAAjj4AAFC9AAAcvgAA0j4AANi9AABAPAAAQLwAAKA8AACoPQAAf78AAEy-AACgPAAAgj4AAFQ-AABAvAAAPD4AAAS-AAAkvgAA4DwAADC9AAAQvQAATL4AAOC8AAAMPgAA4LwAACS-AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=m2asZMjESHk","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["8978740192010191632"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6688661299649937457":{"videoId":"6688661299649937457","docid":"34-1-7-ZB07EAD9A0ADF10FD","description":"This video is about Mathematical Backgrounds for Simplex method, Here I discuss line joining of two points, Convex Set and Convex Hull. Mathematics Behind Simplex Method |Part 2| : • Mathematics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3451922/e57ac3f9b5cd686e84365b5abddb9e0c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/GzZmHwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPdoCLCs63LM","linkTemplate":"/video/preview/6688661299649937457?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematics Behind Simplex Method |Part 3| Convex Sets, Convex Hull","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PdoCLCs63LM\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFQoTNjY4ODY2MTI5OTY0OTkzNzQ1N1oTNjY4ODY2MTI5OTY0OTkzNzQ1N2q1DxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E4cIggQkAYAEKyqLARABGniB-wAB-v8CAAP6Dg4GC_oCEwIE-fYBAQD6B__0AgT-APcABfoHAAAAAP8CBf4AAAADAfkF8v4BAAr89wUDAAAACQIAAPQBAAAGDPr9_gEAAPcBCv4CAAAACxQB9P8AAADyC__--v8AAAUCBwkAAAAADPUR_gABAAAgAC1ZJtc7OBNACUhOUAIqhAIQABrwAX_oDgDd97IByvbWANo2GAKoLSP__TLTAMz3_wC598gA9v34Adv28P8XDAz_zi3-_2Lv5P_cxA0AKdgN_xXz8QDSGQkAQgD3ATcnGAAW9_cBxA8LAQTp9P8X19MDFyP6Ag35A_sA_-sA_fjU_RjmKwIOCBYEMPQJAszmAgHoEvIF5PbZ_QsA9Qnss_j-8gkaDAzo_QgeAhUC5QTyAQXZ_AnuAPf6HBvi_RbvBv7bBvwC8Pj-BRj1_QUkCwX_8wLm-ObiHf_XA_n_5fcHABfjHfrjAPcFE-D5CiLuFPkAzPgBBOD5-fIJ8Qr-AOkH4Aj17SAALdFCFzs4E0AJSGFQAipzEAAaYAv2ADLvJvPnFyrl5dPtA-LEF8Tpve3__-v_EiPy5vz44dczNv_-sB3poQAAAD3pyRAlAO9-stXjIAHkEYnP3yYrf80DGcH9KfS_9zoL-ANF-i5BMQDB_qEfVSPILu87KCAALSHWFDs4E0AJSG9QAiqvBhAMGqAGAABAwQAA0EEAAKDBAABAwAAAoMAAACBCAACUQgAA-MEAAGBBAAA4wgAAmMEAAMBAAAA0wgAAoMEAAL5CAADQQQAAgMEAABzCAABQQQAAUMIAAIhBAAB0wgAAGEIAANBBAADQQQAA4EAAALhBAAAAwQAAwEAAAMDBAAAcwgAAUEEAAJDCAADgQAAA8MEAAFDCAACIQQAAlEIAAIDAAAAAAAAAIEIAAIBBAAAUQgAAKEIAAHBBAAAcwgAAGMIAAEDBAACMQgAAiEEAAGTCAACYwQAAkEEAAAhCAABoQgAAwEIAALLCAAAgwQAAZMIAAChCAACQwQAAgMIAAKhBAADgwAAAJEIAAHxCAABQQQAAgMEAAChCAADwwQAAQEIAAGxCAACOwgAAZEIAACBBAADAwQAAUMEAAAjCAACowQAAgL8AAJbCAABMQgAAwMEAADBCAAAkQgAAHMIAABRCAABMQgAAbEIAALDBAABgQgAAUEIAAAAAAAAYwgAA-MEAAPDCAADgwAAAoMAAAIpCAADQwQAANMIAAKZCAABEQgAAosIAAGTCAAAQwQAA6MEAADRCAABgwQAAEEIAAJBBAADAwQAAgMEAAIhBAABAwQAAkMEAAGDCAABYwgAAFMIAAADCAAAcwgAAVMIAAOjBAABUwgAAkMEAAHBBAACAQQAATMIAAPDBAACgwQAA0EEAAAzCAADYwQAAhEIAAHDBAACoQQAAhkIAACRCAAAAwgAAoMIAAIBAAACoQQAAMEEAAIDAAACcQgAAYMEAACDCAADIwQAAmEEAANhBAADIQQAAjEIAAExCAACYQQAAEEEAAARCAABIwgAAqsIAAKjBAACwQQAAgEAAAIhBAAAowgAAwEEAABRCAAAAQgAAQEIAAMBBAABQQQAAMEEAACTCAACIQQAALMIAAPDBAACkwgAA2EEAAHBBAABAQAAAAEAAAJBBAACQwQAAwEAAAMBAAAAYQgAApEIAAIBBAABAwgAAgD8AAFRCAADIwQAAkMEAABTCAADIQQAAwMAAAFBCAAAgwgAAsMEAACBBAACYwgAAoMAgADgTQAlIdVABKo8CEAAagAIAAN6-AAAQvQAAmD0AAKg9AABAPAAA3j4AAAy-AAAdvwAAir4AAAS-AAAUPgAAlr4AAIg9AABQPQAAcL0AAMi9AABsPgAAED0AABQ-AAANPwAAfz8AAIC7AABwPQAAoDwAAIi9AAAkvgAAUL0AAEA8AAAwPQAAND4AAII-AACgvAAAFD4AAHQ-AAAwvQAARD4AANg9AACSvgAAjr4AAKi9AADqvgAAgDsAAKC8AABwvQAAiD0AABQ-AACmPgAAir4AAAS-AACWvgAAED0AAIA7AACKPgAAZD4AAK6-AADgvAAAKz8AAJY-AACOPgAAPD4AAJa-AACaPgAAoDwAABS-IAA4E0AJSHxQASqPAhABGoACAABUvgAA2D0AAIi9AAANvwAAfL4AABw-AAAVPwAAmD0AABQ-AAC4vQAAUL0AAIq-AACgvAAAfL4AALg9AADIPQAADD4AACU_AABsvgAAoj4AAKg9AAAEvgAA2L0AADC9AACAuwAA-D0AAJi9AAA8PgAAVL4AAGS-AAAQPQAAJD4AACy-AAAMvgAADD4AAOA8AACGPgAA-D0AAFS-AABQvQAAvj4AAES-AAAwPQAA4LwAAHA9AACAOwAAf78AAIq-AACWvgAAEL0AAGw-AABUPgAADL4AAKC8AABcPgAAFD4AAOi9AACWPgAAqD0AACQ-AAAUPgAAHL4AAOi9AAAUPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=PdoCLCs63LM","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6688661299649937457"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17897524586469138321":{"videoId":"17897524586469138321","docid":"34-0-9-Z511D74829A6F16DF","description":"This video is about Mathematical Backgrounds for Simplex Method. Here I will talk about Vectors, Hyperplane, Polyhedron. Link to Mathematics Behind Simplex Method |Part-1|: • Mathematics Behind...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2976332/d39f20555b821c846cc907341738d977/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/IyjCMQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dg60HFdaq6jI","linkTemplate":"/video/preview/17897524586469138321?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematics Behind Simplex Method |Part-2| Vectors, Hyperplane, Polyhedron","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=g60HFdaq6jI\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFgoUMTc4OTc1MjQ1ODY0NjkxMzgzMjFaFDE3ODk3NTI0NTg2NDY5MTM4MzIxatUQEgEwGAAiRBowAAopaGhjaXlpcGdrYnRqcGppaGhVQ1MyczVpSnhXclV5NXhFckpoaTdhSncSAgARKhDCDw8aDz8TxgqCBCQBgAQrKosBEAEaeIHq-Pz7Av4A-_z_EAEJ-wIeAPz-8wMDAPX6-_z-A_8AAPf4Ag0AAAAI_vEJAgAAAPcG-v3z_wEABAT3CAQAAAAQ-vz09QAAAAYbBQb-AQAA9foG-AIAAAAHAwX3_wAAAPIF9gP6__8B7RoBBwAAAAAJEA3__wAAACAALY5Oyzs4E0AJSE5QAiqEAhAAGvABfwgIAeAQxQLFE-IA3CELAocKK__8NNIAzeTrAbj2xwD-GPMA4v3XACMbFv-1Kfj_M9XQ_wTK4gAuugwCNQPxAOwL-wAu6O0AOCgZAP4F6P_eJBL_Cdr7__3H3gAaGt0ABQT-_9QJ1wDtA8ICGeUsA_8cFgUsAg3-3bD9Ad37_ALi8u_-DPgGA_u4DfzYBCICC9D9_g8FCPTkBPEBDAME_uraEAAdG-H9_9gGC-wN8ADZ9_4GDgn_CRMTBgH5Ee8E--kZ_vYF_esA-PsEKfEcANry8AL4z_MPEQkI_vbFCAf_0-YH5gLuAuwK6gbgCPTsIAAtjbsTOzgTQAlIYVACKs8HEAAawAdqFtC-rJQZPVMN97tmTge-_iqfu4L4pbzjoLm9HG2LPF4FI7zakB8-pgUzO-etmTocQhW-UPCDPJtIH70KL2E-F3GwvEHTxjmHNCq-nmmoPbZyZbxEGF--1GRnO6WdPzw4L848zm3CvDFvnzyydZo9pcvRvC3oAbzomYM8JFT6PJspI72xnM68l5xJvLbtYL0bf4c81zebva6pYruYrbs92RshPNm84DzO9g09c4vUvN_RsbvWMTO9jVL4PDQ_yLyaP4Y96dVAPYTZ37vr-4W9PmhMvYc7ETxVil29HOOUvI0FCr3f_MY97BvzPIdZPr1i9Iw9nn7Qvb52XbuoyCG-AnwcPejpbTzkhv89OXb1PIxvnjx8mtO9saImPX1esbxa1wk8MWCJvO6ayjtgIRM9G9yBPU6IzjtjPYo9ICCEPPlIijwFKi08RkEQPd3zVzyG4k49kP5yvUagVbyEjgw9H4IqvJaVprwD3769LN8JPefyEztPXG49kbc8PWF8B7vkGpe6PHLaO3qJljwFI6U91gI7vknlmjrgvNi9d2GAvT59ArzQoPw8UInQPIpxALyLy5w9pBd6vV94Srz50A-9196nun5a3jvRMho854xIvdk8MzzeAum9mJOGPOnkmLrYv8a8xN5VPH_xMbzEknY732-kPVxAwzpsAee7MEfvvT-aoLrVvHk9m336OYLQNDujbYE9kuOTPcOJHLhJDn09RcD8vCsy17ssQla9SGP-vKFdDTvMYbe84y1cvRLwgjfdYZM9u5cLvqUOaDn-t5I8BlwBPdsdLDhe-Fy9jYK7PKbBWjfub5o8oywyvbz3m7jLovC8W0IevjcF4zmsaD08SKkkPSXJ8rnKegA9OahuPdwSmDo-Qp296KpUvZaHTrmdUjS9N59_PZiEkrgUfK49K8KNPeBkZTidm5u83m5uPA-9CLg9_ZQ7HB0BvS-lorhhZmm8Na0-PQDuibi8hiq9qROQvQDKqDgUBA89EF0APo3Dcbi6F3O99DLKPJLaErWDuNc8GX8TPAtFlDga5-U8XQ9rvbiwjTc1gII9V7CNPOXzq7a45Ci-0X-FvJ34GrmaEv-8vbImvRW6x7fOJQs8u2VivIG8mbYW89g8Sr-zPGWFlbfB4ys-3KVovAeJdLmoJqe9VD3EvRy4g7g455a8RsA3vWriA7jmOzi9qC1_PcoQyLJDIsg8pU3VvVAHd7jK9HA9IuErPvHLijg5oQu90RCEPeXT1bi0Afi9tVhFPVHgXDjOK6i8-qkHOj1V4zcgADgTQAlIbVABKnMQABpgA_0APt4R1_o9IPHs19wS2O4k1h_d9_8c8v8TIfYQCyLk0Q0R_xitJtyqAAAAJdPeBA0A23PX7eUvE_w4yL3qEBp_6wUtxioi2crrSRz_2TwAHSEjAMQAnyBLDKkozjoyIAAtUGAfOzgTQAlIb1ACKo8CEAAagAIAAPi9AAAsvgAAmD0AAKA8AADYvQAAgj4AAFC9AAAHvwAAXL4AAHC9AAA8PgAAHL4AACQ-AABAvAAALL4AAFS-AABkPgAA4DwAAIo-AAAFPwAAfz8AAIA7AAA0PgAALD4AAOC8AACGvgAA4LwAADA9AAAkPgAAVD4AAFQ-AAC4vQAAiD0AAEQ-AADIPQAAwj4AAEw-AABUvgAAqr4AAKi9AAAHvwAAgDsAABC9AAC4vQAAoLwAAFA9AACiPgAAbL4AAMi9AACqvgAAmL0AAIi9AACWPgAAgj4AADS-AABQvQAAEz8AADQ-AABQPQAAED0AAGS-AAAUPgAAUD0AAIg9IAA4E0AJSHxQASqPAhABGoACAADovQAALD4AADC9AAAbvwAAjr4AAIg9AACqPgAAcD0AAIg9AABQvQAABL4AAJ6-AAAQvQAADL4AALg9AABAvAAA4DwAAAk_AAB0vgAArj4AAAQ-AAA0vgAADL4AADy-AAAQPQAAoLwAAPi9AACIPQAA6L0AAIA7AADgPAAA6D0AAPi9AAAEvgAAuD0AAIA7AAAEPgAA6D0AADS-AADgPAAARD4AANi9AAC4PQAAED0AAKi9AABAvAAAf78AAEC8AABcvgAAoDwAAOg9AADYPQAAuL0AAAQ-AAD4PQAA6D0AAJi9AABMPgAAoLwAAAw-AABQPQAAuL0AAOg9AACoPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=g60HFdaq6jI","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17897524586469138321"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16493714761218133036":{"videoId":"16493714761218133036","docid":"34-4-4-Z757B7DFEFDAC2E03","description":"This video is about Two Phase Method. Here we continue our discussion of the Two Phase method and gave examples of LPP which has feasible and Optimal solution for different cases.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/966066/c3cd82cb3d675752a8cce3963188acf7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BD2EJgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVWZkHveDQPo","linkTemplate":"/video/preview/16493714761218133036?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplex Method |Part 11| Two Phase Method (Feasible Optimal Solution)","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VWZkHveDQPo\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFgoUMTY0OTM3MTQ3NjEyMTgxMzMwMzZaFDE2NDkzNzE0NzYxMjE4MTMzMDM2arUPEgEwGAAiRBowAAopaGhjaXlpcGdrYnRqcGppaGhVQ1MyczVpSnhXclV5NXhFckpoaTdhSncSAgARKhDCDw8aDz8TyAmCBCQBgAQrKosBEAEaeIHuAfn9_AUA-QEACfcG_gIZAAEJ9QICAPn_BQD6BP4A_fz9_QcAAAD4_wEN_QAAAAMA9AD9_gEACfYBBAMAAAASAAUE_AAAAAYD9gH_AQAA__wJ-wMAAAAN_v_4_wAAAAANAfr9_wAA9gb-CgAAAAAP_QkEAAAAACAALXGG3js4E0AJSE5QAiqEAhAAGvABcfgO_9EW7ADdEOAA1g3pAYEiCv4QFdQAv_vqALz3ygAADeEA5P7aAAcXJf-5J_n_MNjT_-3i-wAo2Q0AH-IOAAANDQAj2woAShUPAf4F6f_dDhr_HdwCARHd-AAb_9z_DPkD-_Ht1_4O_9cDF-cqAhsMGwEZ9_n74OwYBP7-8wjl9tr98wcTCwfPDAHi9i0HCs7sBA4FCPWoLwkCGQf9-vP0Gvn7OOb6E-gQDvf-8gTlAu8GCA_oAxQfIf75Fdv9--oX_sXS-Pfy9f__K9MQAvnw9AkH2wgSGPQNBPbaAPzx3PoJ5w8DB98B_gjpDAjuIAAt_yEdOzgTQAlIYVACKnMQABpgJvoALOQZ2u49KPvw3tUby80m4wi56v_t-P_3PCcT9hEJrWn3_zzwGOqeAAAAPPvVBvwAAH_m7u0l5BItlLrpExFp6wH4vvgm1c0WKwb__Tz0FUQ5AMnijypj5Mop9E4YIAAtMsUUOzgTQAlIb1ACKq8GEAwaoAYAABzCAAD4QQAAqMEAAJDBAACAPwAAIMEAAOJCAAAgwgAAgL8AANhBAAAgQQAAoMAAAKjCAABwQQAAYEIAAIA_AADowQAARMIAAIhBAADgwAAA-EEAAIDBAABMQgAAgEEAAIhBAAAwwQAACMIAALDBAAAAAAAAZEIAAMBBAADgQQAAMMIAAHjCAADcwgAAYMEAAJjBAACOQgAAOMIAADBBAACAPwAA4MAAADRCAAAIQgAAIEIAACjCAABAwQAA2EEAAHBCAAAkQgAAgL8AAKBBAAAwQgAA0MEAAGBCAABUQgAA2MIAAOBAAADAwQAAAEAAAAAAAACgwgAAuEEAAKDBAAAcQgAAgEEAAMDBAACgwQAAVEIAAMjBAABwQgAAkEEAADjCAAAAQgAAgEEAAJDCAAAAwgAAUMIAAGxCAACYQQAAgMIAALJCAAAgwgAAUMEAACBCAAD4wQAAqEEAAIJCAACCQgAANMIAANhBAACCQgAAoMAAAHjCAABgwQAAtMIAAMBAAAC4QQAAhkIAAMjBAABkwgAASEIAAChCAAAswgAAjMIAAKBAAABQwQAAcEEAAIbCAACGQgAABEIAAAxCAABcwgAAIEIAADjCAAA4wgAAJMIAAFDCAABgwgAAYMIAAATCAAAwwQAAsMEAAFBBAAAAwQAAIEEAAKBAAABswgAABMIAAPBBAABAwQAAAEAAAJTCAAC4QQAAiEEAAOBAAAA8QgAA4EAAAODBAAB0wgAACMIAANjBAACAQQAAEMIAAGBCAAB4wgAADMIAAEBBAAAQQQAA4EEAANjBAAAgQQAAFEIAAKhBAAAQwQAA4EAAAKDBAAB0wgAA2MEAAHxCAAB8wgAAkMEAADDCAACgwAAAMEIAADDBAABAQQAAQEIAADBCAABAwAAAoEAAAMBAAACQwQAAgMIAAADBAAD4wQAAEMEAAFjCAADAQQAAqMEAACRCAACgQAAAUMEAAEhCAABEQgAAuMEAAODAAABgwQAAfEIAAKjBAACWwgAAyEEAALBBAAD4wQAAOEIAAOjBAAAAwAAAwMAAAEzCAAAQQSAAOBNACUh1UAEqjwIQABqAAgAAQLwAAFy-AAAkPgAAiL0AAFC9AACYPQAA4LwAAPa-AABsvgAAcD0AAKA8AABQvQAAMD0AADQ-AADYvQAA2L0AALI-AACgPAAAoj4AAAc_AAB_PwAALD4AALg9AABsPgAAVL4AAOi9AAAUPgAAqL0AACQ-AAAcPgAAoDwAAIA7AADYvQAAmD0AAFw-AAAMPgAA-D0AAKA8AAAkvgAAZL4AAHS-AAAQPQAABD4AAAQ-AABUvgAAHD4AAPg9AADovQAAoLwAAEy-AABwPQAAyD0AAKo-AACCPgAAlr4AAHC9AAAxPwAAcD0AAKA8AAC4vQAAuL0AAIo-AAAwPQAAFL4gADgTQAlIfFABKo8CEAEagAIAALi9AACAOwAAqD0AACW_AACCvgAAcD0AAO4-AAC4PQAA-D0AAPg9AACYvQAAfL4AAIC7AACCvgAABD4AAKC8AADoPQAAHT8AAKK-AAC6PgAAUL0AAMi9AACCvgAAUD0AAFA9AABQvQAA4LwAAIg9AACIvQAAgLsAAIC7AACoPQAAuL0AAGS-AABkPgAAND4AAII-AAD4PQAAjr4AAIY-AADoPQAADL4AAOC8AABQPQAAcL0AAIi9AAB_vwAABD4AANK-AABkvgAAoDwAAKA8AAAcPgAA6L0AAAQ-AADoPQAA4LwAACQ-AAAQvQAAoDwAABA9AABAPAAAiD0AAHw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=VWZkHveDQPo","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16493714761218133036"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14445384845133714382":{"videoId":"14445384845133714382","docid":"34-10-10-Z9938C5A1E599D6E9","description":"In this video, Generating Functions are found for various sequences. Complete Playlist of this topic: • Enumerative Combinatorics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4628534/d442e62ed956b6993a806b5d2074f0de/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xcvCgQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFFFA_GKMzsY","linkTemplate":"/video/preview/14445384845133714382?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Generating Functions | Part 2","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FFFA_GKMzsY\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFgoUMTQ0NDUzODQ4NDUxMzM3MTQzODJaFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyasAPEgEwGAAiRBowAAopaGhjaXlpcGdrYnRqcGppaGhVQ1MyczVpSnhXclV5NXhFckpoaTdhSncSAgARKhDCDw8aDz8T9wWCBCQBgAQrKosBEAEaeIH0CPsH_QMA8AML-_wBAAELAPAB9v__AO78BvoGAAAA6wMGAAL_AAD9AvsFAQAAAPb-_v78_wAAEvUBAAMAAAAM9wgC-wAAAAAH_QD_AQAA9fv-_AMAAAAWBf4GAAAAAPwMB_8CAAAAERD1BQEAAAAG_Q0BAAAAACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABf-3oAuH46wHvBtoA4Cz9AK4qIf_qINcA2O8K_773zADuGPcAAvzaAAYbEQDMAfD_L9nV_wPNE_8m2gwAItfwAeQRBAEY6_YBMyUXAA0B5v_eDhn_CN38_xba1gIONvr99_38_AD_7QAaFM8BIfwqAef6KQQK5hX-98L1A9zc6wLu4Nz-BBX9BePO9_wI9ScE_bgFAR8HBP_zLeX9EPcC-_PZIP8aGeT-EOUCBgvwAgTc-P8G9fL0BhsjCfvj8-wA480iBu_-9PnZ4f8GM-wP_NseAQcUDPwQBvsMAxvs-gsT3-4C-uv4AOAM9v3oF-HzIAAtzDIiOzgTQAlIYVACKnMQABpgK_4APegq_fjvJ-QD2e3888EaDT3o5f_W_QAJLfX2Igz4ngMk_xbW9_u0AAAAFwsTMv8A92IL7BEs-Tr54sEF9yl_AwYB9d4zD-vhAQ8T5ED7B9NDAAINux03-7RWBD0mIAAtRHcxOzgTQAlIb1ACKq8GEAwaoAYAAGBBAAAEQgAAJEIAAKDAAACYQQAAYEEAAABCAAAQQQAAmMEAAGDBAACAQgAAXMIAAMDCAABQwQAAgEIAAEDBAAAkwgAAiMEAACDBAAAMwgAAgD8AADTCAADoQQAAcMEAAOhBAACgwQAAmMIAAGjCAADAQQAALEIAAEBAAAB4QgAAnsIAACDCAABswgAAYMIAAEBAAABsQgAAwMEAAGBBAADYwQAAIMEAAJhBAACYwQAAcEIAAIzCAADAwQAAwMAAAMRCAAAMQgAAhMIAABhCAADYQQAAQEAAAFRCAABgQQAA_MIAAOBBAACAQAAAYEEAAFBBAABgwgAAQEAAABTCAAAAQQAAkEEAABTCAABQwgAA4EEAAKDBAACKQgAArEIAAEzCAAAwQgAAAAAAAIzCAAB8wgAADMIAADRCAAD4QQAAPMIAAFRCAAAQwQAAcEEAAIC_AADgQAAAyEEAAKBBAABgQgAAeMIAABDBAAB0QgAAQMAAACTCAAAAQQAArMIAAKjBAAAAQQAABEIAACDCAACIwgAApkIAADBBAAAgwgAAUMIAAJhBAABgwgAAqEEAABDCAACgQgAAgkIAANhBAACGwgAAAAAAADBBAADAwQAAIMIAAAAAAABEwgAA0MEAAAzCAABwwgAAIMIAAKjBAABQQQAAAEIAAIDBAACYwQAAXMIAAKDAAAAoQgAAUMEAAAzCAAAYQgAAQEEAAIBBAAAQQgAACEIAAPjBAAC2wgAAPMIAADDBAACAQAAA4MEAAHhCAAAEwgAAPMIAAEDAAABAwAAA4MEAAIC_AABAQAAAGEIAALBBAADgQAAA4MEAAAjCAACUwgAAHMIAAKZCAADgwAAA8EEAALjBAADgwQAAcMEAAIhBAAAAQQAAnkIAAAxCAAAUQgAADMIAAJJCAADgwAAAQEAAAADBAADwQQAAmMEAAJBBAAAsQgAAmEEAAFBBAACIwQAAmEEAAAAAAAAUQgAAAMEAALjBAACYQQAAoEAAABTCAAAkwgAA2MEAAABAAAAIwgAAYEIAAEDAAADgQAAAHMIAALzCAAAAwCAAOBNACUh1UAEqjwIQABqAAgAAMD0AAKA8AADoPQAAFL4AAOi9AADKPgAA4LwAAOq-AACCvgAAPD4AACw-AADgvAAAQLwAAII-AABEvgAAUL0AAGQ-AADgPAAAuj4AAB8_AAB_PwAAPL4AAFC9AAAUPgAAfL4AAOA8AAC4PQAAQDwAACw-AACuPgAA2D0AAOi9AAAwPQAA-L0AAJI-AACIvQAAQDwAAIi9AABEvgAAgDsAADS-AAA0vgAAMD0AAJK-AAAEPgAAVD4AAEw-AAAEvgAAiD0AAPi9AAAkPgAAMD0AALI-AAC4PQAAED0AADA9AAA9PwAA2L0AAJ4-AACYPQAAEL0AAMg9AABQPQAAuD0gADgTQAlIfFABKo8CEAEagAIAALg9AABwvQAATL4AACG_AAAUvgAA2L0AAAw-AAAMvgAAuL0AAHw-AABcPgAAiL0AAKA8AABMvgAAQDwAAMi9AADgvAAAFT8AABS-AACWPgAAML0AAIA7AACgPAAAJL4AADC9AABQvQAAyL0AAIC7AAAkPgAAqD0AAPg9AAAMPgAAjr4AAHC9AAAEPgAAmD0AAHw-AACOPgAAgr4AAEC8AAC-PgAAQLwAAJK-AAAUPgAA2L0AACw-AAB_vwAAQLwAAOA8AABQvQAA2D0AAPi9AADYPQAAgLsAAPg9AABwPQAAQDwAAIC7AAAkvgAAuL0AAIC7AAAMPgAAEL0AALi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=FFFA_GKMzsY","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14445384845133714382"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9776418811693863935":{"videoId":"9776418811693863935","docid":"34-1-5-ZEB9F89D37BC2FE8B","description":"In this video we discuss Generating Functions of Partitions of a positive integer, and it is equivalent to find the no of ways to distribute r-identical objects into n-identical boxes .","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1024500/ac524b8152f3fdd5becf93236b3640a3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/PbvUFQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dubh1GIxGZrA","linkTemplate":"/video/preview/9776418811693863935?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Generating Functions| Partitions of a positive integer|Identical objects into identical boxes","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ubh1GIxGZrA\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFQoTOTc3NjQxODgxMTY5Mzg2MzkzNVoTOTc3NjQxODgxMTY5Mzg2MzkzNWqHFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E4oSggQkAYAEKyqLARABGniB-wv-AP8BAO0BAvb9_wIADAD7-vYAAADtBwcAAf8AAPELAvv5AAAABgz_BQQAAAD2_vsI9P8BAAv2AAH6AAAADPH9__kAAAAAF_YH_gAAAO4BBv8DAAAAHgII-_8AAAD3Awz8AQAAAAMA-v8AAAAADPQS_gABAAAgAC0IYdU7OBNACUhOUAIqhAIQABrwAX_3D__j7csBwRTgAMYk9wCaNwT__DfQAMUCEACjFcf-6xz2AAL81ADiEyYBtO3rATbTzv4A2PUAPf0E_znECwDw_wsAFMMDAEgDGP8I4-v-3iMw_enqMgIs39UCCA3t_hkAFf7x--D6C-m0CRD-QgHsCxoGIQMZ-_DCCP_KAwL6_OTc_RAg5wLv2__56hc-AQvI6gUA7AT-2C_zAhwI_fnp2BABCDHS_TPq7QkV6xL58dsC-vzg9QYXIyX-zyH3B-TgH__iCPv34_cIAD_YAPfI_vn-HPTzDTYdA_cO2_oE_wj17s0BAfzaDvX9-x_w-iAALU78Czs4E0AJSGFQAirPBxAAGsAHuqP3vjGDpzwifF485hBnvRaoQL0sH4O9-DM8vIdLMz3EwZS7kKIePkoS3zy3QwE89pZivgV4gTx5Pw28_b10PpJUS70Dsew8dXT8vS8Tmj0LAhC9TMQ7voKcRbtWMte6yTM0PTjoXL1QkDO84Nl-PVJxTb3NN0e8IZWivIZEkLxO3ra8iUf9vJOdqL1rcBG9_tVDPWA-eb181rU8VmynPf8IwzzVUsq8h6_lPPeENrzdoKy8yL_FvA5ANDoSjrC7Xv-Fuaj3uTyr9dU7BHZwvV6sXjyo66S8qncAvC7lmTtr6DA8D3uGPey5kT05oSu9ZUOdPXc1tL2QdjK9qMghvgJ8HD3o6W08qPwLPqWDlT0kjoa80lebvd1IVD0a9C27xSIBPTO54rzTRru7z3yjPbgyUj2n0FQ8Yz2KPSAghDz5SIo8qh5GuoCBgD1U02Q8IEuqPagW9rxcdoi8hI4MPR-CKryWlaa8h4C4vSqriT1XB6M7gjDBPD_1-jvShLO77N7KPFOeDz3hqnw8RVylPHO49r3kBDc8dfhVvcH-K70XKn-8ajYNPJ97Kj0xyW28i8ucPaQXer1feEq8SeNmvYoS_jxmtvG6Dj4DPec6yL0vM2w8UAKmvXofQj0EwUq7_GVBvIXs2buHQjq8y5jnvFoNuT3sjIg7bAHnuzBH770_mqC6mxuoPcfJsztOqBY7qISMPI0fND2K0rW7ElDBPcF4Qb1h0wq6hHUNvYvYDL2_I3C7X5SFvPC0RrxsyF-47nScPazizb0q_705cPcoPVQKsDwjTiM5rDzhvWlDVD2VW7I4_8V5u2-QmrzoBDa5HF2lvD0ybL39Fcs4A4vBOcGYIz0hy9O4nj-SPaED3Dw7brG5PkKdveiqVL2Wh065o0cjvD10izxaUko5gxPRPSHz9bswSxA4vweUvCKqi7yyRQa53c_pvHfkfry_NrW4i6sIPOgBAj1xNU43Wq-DPQGPw72m0Vo5FAQPPRBdAD6Nw3G4_6fJO5M3AL291Ha4e5KqPC-CSz1hDe-4sRODPLaxs70Vqek4s4qIPSCPKrxbI4U3aHUyvmSkKD0Xyky3FA9evDOeEr0clje3WfqQvFA8grwTlHK3b7eJPEJRajyHQik4kl0ZPtlPUL2swj-5iBc_vXKTx7x3zya4b0VnvbQWm71OcPi3MguzvRL-QD2ycrY3HZcMPUkPQ75UMU25yvRwPSLhKz7xy4o4KZ5pvHjNkD2h5pq4Wu3GvQ8UMz1o2_s3mAlQvHJr0jwD9nw4IAA4E0AJSG1QASpzEAAaYBYFAD78HAr17T7gEtbxCNXIIfMW7_r_2M8ACibS_wkazbHfKQAWyAzoswAAAB0OAkoAAA5n6O_rHRc8_dqt5gROf9kOLtX0I-m0ziQICvsMEhXxPADk_bAKOgjSPR0UMiAALY5CKTs4E0AJSG9QAiqvBhAMGqAGAABAQAAAAEIAAMhBAAAwwQAAiEEAAFBBAAAcQgAAiMEAADDBAADAQAAAVEIAAHDCAAC0wgAA0MEAAIZCAADAwQAAIMIAAIjBAADAwAAAIMIAACDBAABIwgAAHEIAAODAAAAsQgAAUMEAAGjCAABswgAAiEEAABBCAACAwAAAiEIAALDCAAAcwgAAlMIAADTCAACgwAAAlkIAAAzCAADYQQAAwMAAAADBAADAQQAAwMAAAFhCAACWwgAASMIAAAAAAACqQgAAAEIAAILCAAAIQgAAcEEAAIDAAAAcQgAAIEEAAADDAAAQQgAAmMEAAHBBAACoQQAAPMIAAABAAABIwgAAIEEAAEBAAABswgAAQMIAACxCAACwwQAAdEIAAJpCAAAowgAAHEIAABDBAAB4wgAASMIAAAzCAABsQgAA-EEAAHzCAABoQgAAgMEAAPhBAAAgQQAAAMAAACBBAADoQQAAZEIAAGjCAACAQAAAeEIAABBBAAAcwgAAQEEAALTCAACgwQAAgMAAABhCAAAUwgAAcMIAAJJCAACwQQAAaMIAAPjBAACoQQAARMIAALhBAACQwQAAjkIAAGRCAADIQQAAJMIAAEBAAADAQAAAkMEAADDCAAAwwQAASMIAAAjCAACIwQAAbMIAAAjCAAAEwgAAwEAAABxCAABQwQAAmMEAABDCAACAvwAATEIAABDBAAAAwgAAuEEAACBBAADAQAAABEIAAOhBAAAswgAApsIAAAzCAABwwQAAYEEAALjBAACAQgAA6MEAAEzCAACwwQAAiEEAAMjBAAAAwQAAkEEAABxCAABAQQAAgD8AANjBAAAEwgAAoMIAABDCAACQQgAAmMEAAAhCAAD4wQAAAMIAAIDAAADQQQAAMEEAAIxCAAA8QgAAEEIAANDBAACGQgAAgD8AAABAAAAgwQAAyEEAAKDAAAAEQgAATEIAADBBAADIQQAA4MAAALBBAACQQQAAUEIAAOBAAADYwQAAMEEAAABAAAAYwgAAUMIAABjCAACAwAAAGMIAAEBCAABAwQAAgD8AAEjCAACswgAAwMAgADgTQAlIdVABKo8CEAAagAIAAGS-AAD4vQAAgDsAAIq-AACYvQAApj4AABw-AAAhvwAAyL0AAHC9AACIPQAAjr4AAHA9AACyPgAAVL4AAEC8AADoPQAA4DwAACw-AAAtPwAAfz8AAPi9AAAwPQAAQDwAAJ6-AAAQPQAATD4AAKi9AACqPgAAvj4AAFw-AACgvAAAPL4AAIA7AACGPgAA-D0AAAQ-AAAEvgAAiL0AAHy-AADuvgAAkr4AABQ-AAB0vgAAQDwAAKg9AACoPQAAqr4AAKi9AACGvgAAFD4AAEC8AACKPgAA-D0AAKi9AACIvQAAbz8AAIi9AACKPgAAXD4AAPi9AACIPQAA4DwAAHC9IAA4E0AJSHxQASqPAhABGoACAAAEvgAAgLsAANi9AAAbvwAAqL0AACS-AAAcPgAAuL0AANi9AACGPgAAHD4AAOi9AACYvQAAVL4AAIC7AABwvQAAUD0AABc_AAAQPQAAtj4AABA9AADgvAAAUL0AACS-AAAQPQAAUD0AAEC8AAC4PQAAEL0AAKg9AAC4PQAADD4AALi9AAC4PQAADD4AANi9AAB0PgAAwj4AAFy-AABAPAAA9j4AABC9AADYvQAAoLwAAPi9AABQPQAAf78AAFC9AAC4vQAAgDsAABQ-AABQvQAAuD0AAIC7AADIPQAAMD0AAOC8AADIPQAABL4AADC9AAAwvQAAgDsAABy-AADYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ubh1GIxGZrA","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9776418811693863935"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8676765850758613245":{"videoId":"8676765850758613245","docid":"34-10-9-Z6B2D0C8C9F24F499","description":"This video is about introduction and use of artificial variables. While applying Simplex method, we find initial BFS using initial identity matrix available in coefficient matrix. But if this...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4333727/17d3fa0de9eb6d7d85c2122cabf7890e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/rQO7JQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSiN1UjrM99w","linkTemplate":"/video/preview/8676765850758613245?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplex Method |Part 8| Introduction and Use of Artificial Variables","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SiN1UjrM99w\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFQoTODY3Njc2NTg1MDc1ODYxMzI0NVoTODY3Njc2NTg1MDc1ODYxMzI0NWqHFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E9cDggQkAYAEKyqLARABGniB9vv7-_sFAAMABQYBCPwCCwkHAPcBAAD5-wIN_AT-AAf7CAH7AQAAAgf_Af0AAAABBwH-8v4BAA79_gMEAAAAFgT8_QMAAAAOA_j-_gEAAPLzAQH2AgABBgAIAAAAAAAGEgYC_gAAAPUQ_v4AAAAAC_7-AQAAAAAgAC1ZkeI7OBNACUhOUAIqhAIQABrwAX_6BAPR-9L_4fju_98fCgLEHy___TDWAMciDQHc8doA7wcFAM4B4P8HGxEAuib5_xLbugL2tvcAN9_8AB3o7wD06gEAKuruADgSKv8E9_EA3g4a_-Lf6wEW2dYDCSnvAAzjD_8HFOcC7gPGAhUDHADn-ioEKQIM_93a9wLi8QgF0N_P_PUL8_7x4P_69uQmBAvREf4h-_z_9RP4APH2BQcO2gv8BUb3_QPuCwQHFvAF4e3wBQ4ACwEtEw0C6QLwB8r0E_bQCBcB5ez38Qn-AvXTFuj5-9cDBRj0DQTo5xQED-7zAPrr-AD-AOoH4gf17iAALa6gHzs4E0AJSGFQAirPBxAAGsAHTz7Fvn7Y3DwxxrA7d2UnvhVEk7xBye68qOEbvt8W7DyH20Y8IJbCPQqjGb0QBp68oUcMvlLcjLywLAK9Ci9hPhdxsLxB08Y5dXT8vS8Tmj0LAhC9FRxOvqxNyDw1lx87msy4PL45gr1_wx88oDTEPabVUL0R_9Y5YYJgu28WCj0Yum283GoZOvURWL0TfFi9TZ-hO8q4c70YjhE9_1htPfSHhzo8VZk87cgCPSsSODyRNiO8t9WsO-fMMT3ZPgS9kFEZPXqEPz38Ziw9WP68vcXZnr0qS187BmJ-vR2lXLwE5r46rGMLPQ0GMjxa7Ju8YvSMPZ5-0L2-dl27seFJvi6S9jxPCJ083bQZPj0W0TwDYPq7A3NZvQ3mmj0vYy-8nNlTPNCx6LzHVZI5PSZXPXcRpjwjtgA9iReaPdUCHrwhFKW6_XGxPHhEtT21V3o8huJOPZD-cr1GoFW85kDPPe9IqzxRwLa8fJ10vTbCDD2ifdc5LY-aPIZ7wDw9Eqs7RU78u5J1GD2dJtg8YGeEPfkRv709axI8CkKDvWy_u70Mg-g7Yy-fPSb_oz24YjW8bvzpPUzkrb0rc6m7-dAPvdfep7p-Wt47ZLZgu6gEj72aNBm7NtPIvXyUNjwucxu8v2unuzrDuTzWNX-8r2Z4vC03kj2eVQ87mTbSvLxazr0YnC861bx5PZt9-jmC0DQ7-5trPfYLVj0OKye6gVv3PQhLlr34X-44Ls6DvWEIL72oqMq5QZoRvVk1Y70zSAe5bQPXPbWj2L0Mn685kMLQPMm7WT2eNh45qSiYvf3xAz3LRX04PSzvPLh-MLzY1cS3XFQLvZwV8b3cnnU5x-aVO5EvvDxFfIo6kgIwPNE2kz2mRfQ4EvVCvSIY5714Guo3rL4EvVKfHz1Jkbw5OBTePYs9nz0yrbe4Z0iAvUqQ2zy6oL23DbAlvYpyIbrGli457xjDPOQGLjtrvcQ466RjPKKMor2_UmQ5F755PX9Urj05MdU4snBIPH_pgz3b_YA36NgBPRITVD2qnIK2gTpKPW3YQL05Hq-3yaqNPSOe7DrQ47Y4IvsAvsZfJD0XmGU4Klj3uKwJOL22cms3WDx1vJalqbtg58i2h-mxPNfqAT3O9KQ2kl0ZPtlPUL2swj-5uF2Tvc-rkL3adUS4f4mDvQ7Y9b0L0RK4m0tbvZI8pz1tcIE4SfeOPK1QxL1znPK4yvRwPSLhKz7xy4o4KZ5pvHjNkD2h5pq4tAH4vbVYRT1R4Fw43gEevRmxjTvVAz44IAA4E0AJSG1QASpzEAAaYCrpADz8DNruNhnn6-3vA_fp_ecmuOj_29n_AUDvCgLpCdMBBgAl2xHrtQAAADP63iHoAA9i2vvpFPAYJLnC4wcLf_EF-ankFwmsCP8R7fUQ_BAyXwDZAroLMgrW-_ULKCAALWIgNTs4E0AJSG9QAiqvBhAMGqAGAAAYwgAA8EEAAIDBAACgwQAAgL8AAADBAADsQgAAEMIAAADAAACoQQAAMEEAAADAAACqwgAAoEEAAGhCAAAAQQAA6MEAAFjCAAC4QQAAAMEAAARCAACIwQAASEIAAFBBAABAQQAAUMEAAAzCAAC4wQAAAMAAAFBCAADQQQAA8EEAACTCAAB4wgAA3MIAAJDBAABwwQAAhkIAACTCAADAQAAAgMAAAADBAAA0QgAA6EEAACxCAAAwwgAAoMAAAOhBAAB4QgAAGEIAAEDAAACIQQAAMEIAALDBAAB0QgAAZEIAANLCAAAgQQAAiMEAAIBAAAAAAAAApsIAANhBAACowQAAIEIAAHBBAAC4wQAAoMEAAFBCAADIwQAAbEIAAKhBAAA8wgAAAEIAAIBBAACIwgAAAMIAAFDCAABcQgAAoEEAAHjCAAC2QgAAHMIAAGDBAAAgQgAA2MEAAKBBAAB4QgAAgkIAADjCAAD4QQAAeEIAAMDAAABkwgAAmMEAALbCAADgQAAAqEEAAIZCAACQwQAAbMIAAEhCAAAgQgAAJMIAAJDCAAAAQAAAgMEAAIBBAACIwgAAiEIAAPhBAAAMQgAAYMIAADBCAAA8wgAAOMIAABzCAABEwgAAaMIAAFjCAAAQwgAAUMEAALDBAABwQQAAMMEAAMBAAACgQAAAaMIAAPjBAAAAQgAAcMEAAKDAAACWwgAAsEEAAJhBAADgQAAAQEIAAIBAAADgwQAAaMIAAADCAACwwQAAqEEAACTCAABwQgAAbMIAAAjCAACAQQAAwEAAANBBAADAwQAAgEEAACxCAACwQQAAEMEAAEBAAACwwQAAeMIAAPjBAAB0QgAAdMIAAIjBAAAowgAA4MAAADBCAAAwwQAAwEAAAFhCAAAwQgAAQMAAAEBAAACAQAAAcMEAAIzCAAAQwQAAAMIAABDBAABMwgAAqEEAAKjBAAAkQgAAQEAAAHDBAAA8QgAAKEIAAODBAAAQwQAAiMEAAIZCAACQwQAAjMIAAOBBAACoQQAA-MEAAEhCAADQwQAAAEAAAODAAABQwgAAIEEgADgTQAlIdVABKo8CEAAagAIAAKC8AAAZvwAA6D0AAKg9AADovQAAij4AAAS-AABDvwAAhr4AAEA8AAC4PQAAuL0AAIC7AACKPgAApr4AAAw-AAB8PgAAmD0AAK4-AAAxPwAAfz8AAIi9AAAwPQAADL4AABS-AADGPgAALD4AAEy-AACAuwAAuD0AAGQ-AACWPgAABL4AACQ-AACePgAA1j4AAII-AAB0vgAAqL0AAOA8AACGvgAAgLsAAPi9AABAPAAARD4AAOg9AACgvAAAFL4AAKA8AACevgAAiD0AAEA8AACCPgAAZD4AADA9AACgvAAALz8AADC9AAAkPgAAPD4AAMi9AACYPQAAgLsAAAw-IAA4E0AJSHxQASqPAhABGoACAABUvgAAPL4AAGS-AAAZvwAAqD0AACQ-AADOPgAAgLsAAOA8AADYPQAAFL4AABC9AADgPAAALL4AABw-AABAPAAAVD4AAAk_AAD4vQAADT8AAES-AAD4PQAAFL4AAKg9AACoPQAA2L0AAJI-AAAQPQAAJL4AAOA8AAAQPQAAFD4AABS-AACgvAAAcD0AABS-AACSPgAAcD0AAJq-AABMPgAA4DwAAEy-AABAPAAAND4AAKC8AABwvQAAf78AADy-AADOvgAA2D0AAIC7AAAQPQAA2L0AAIi9AADYPQAA-D0AAIC7AAAEPgAAVD4AACw-AAAEPgAAuD0AAOi9AADgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=SiN1UjrM99w","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8676765850758613245"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13120838655797268994":{"videoId":"13120838655797268994","docid":"34-11-4-Z87DD79917C21F606","description":"This video is about solving LPP without artificial variables. Here is my earlier videos on topic Simplex method/Big M/Two Phase Method: • Simplex / Big-M / Two-Phase Method...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4088583/4c93b545bdda6f1a10e680cf96d0a57e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fA-MVAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPvUZKla2jJU","linkTemplate":"/video/preview/13120838655797268994?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplex Method | Part 15| Solving LPP without artificial variables","related_orig_text":"MathPod","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"MathPod\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PvUZKla2jJU\",\"src\":\"serp\",\"rvb\":\"EqwDChI5MDk4MDI4MTg4NzY2MzUwNDcKFDEwNDA2MzcwNzUyOTM5MDQxNjk5ChM5NTEwMjM1OTMxNTgyODAxOTk2ChQxNTQzNjgzMDU0ODgwNjgxNTEzMQoTNDUzOTU2NDE5NzUwOTM0ODM3MQoTOTg2ODMxMDk1MDM4Mjg0MzM4OAoUMTE0OTc2NTk1MDgyMzU1MDA0NDQKEzYxMzk1NTkxOTUzMTAwNDIyMDYKEzk5NTI5OTgwOTEzNjE2NTkzMTAKFDE2MzM1NzY2Mjg4MDk3MzQwMjI5ChM4OTc4NzQwMTkyMDEwMTkxNjMyChM2Njg4NjYxMjk5NjQ5OTM3NDU3ChQxNzg5NzUyNDU4NjQ2OTEzODMyMQoUMTY0OTM3MTQ3NjEyMTgxMzMwMzYKFDE0NDQ1Mzg0ODQ1MTMzNzE0MzgyChM5Nzc2NDE4ODExNjkzODYzOTM1ChM4Njc2NzY1ODUwNzU4NjEzMjQ1ChQxMzEyMDgzODY1NTc5NzI2ODk5NAoTNjEwNTg2OTYxNTA3NDE4OTgyMwoUMTc1NDIyNjAyODIzMjY3Njk1NDgaFgoUMTMxMjA4Mzg2NTU3OTcyNjg5OTRaFDEzMTIwODM4NjU1Nzk3MjY4OTk0aq4NEgEwGAAiRBowAAopaGhjaXlpcGdrYnRqcGppaGhVQ1MyczVpSnhXclV5NXhFckpoaTdhSncSAgARKhDCDw8aDz8TtQaCBCQBgAQrKosBEAEaeIH0_Pb-Af8AA_X7CQcJ-wIXBgUC9QICAPj6Aw78BP4ABAEB_f8BAAD-CPMH_AAAAPkH-vL2_gEAEvX4CAIAAAAZBPwK_wAAAA0B-AMJ_wEBAf__A-0EAAEI-QL8_wAAAAcN_wD5_wAB-Bv2_QEAAAAP_gH1AAAAACAALYVB0Ts4E0AJSE5QAipzEAAaYDjsAEAS9-bHSiv5qg74CAcHDfgAr_j_4Mz_BWEeAvUF47cy-v915hEMlwAAABri7BLUAC198AvJFSMfK5fW0hwXf97fqMkaMAW2_h7x-voy9RFPSQCX9OT7TOYN9Nf1ICAALcivDzs4E0AJSG9QAiqvBhAMGqAGAAAcwgAAAEIAAKjBAABgwQAAAEAAAEDAAADgQgAAHMIAAIA_AADgQQAAAEEAAMDAAACywgAAkEEAAHBCAAAAAAAA8MEAAGTCAACQQQAAQMEAAPBBAACIwQAAOEIAAKBBAACgQQAAgMEAAATCAACgwQAA4MAAAGhCAADAQQAAoEEAACzCAACAwgAA1MIAAHDBAACgwQAAhEIAADDCAAAwQQAAgEAAAMDAAABQQgAAGEIAAChCAABEwgAAiMEAAMBBAACAQgAAGEIAAMDAAACQQQAAHEIAAODBAABYQgAAYEIAANrCAAAQQQAAuMEAAOBAAABAQAAAnsIAALhBAADIwQAACEIAAFBBAACowQAAyMEAAFBCAADYwQAAcEIAAJBBAABMwgAABEIAAJhBAACMwgAACMIAADzCAAB0QgAAiEEAAFzCAACoQgAAIMIAAIDBAAAgQgAA2MEAAIhBAACGQgAAeEIAADDCAAAAQgAAfEIAAADAAACAwgAAoMEAALLCAACgQAAAuEEAAI5CAADAwQAAgMIAAEhCAABAQgAAKMIAAITCAAAAAAAAmMEAAEBBAACGwgAAjEIAANhBAAAgQgAAWMIAABxCAAAwwgAAOMIAABTCAABIwgAAZMIAAFDCAADwwQAAEMEAAKjBAABQQQAAAMEAAFBBAACgQAAAZMIAABTCAAAEQgAAgMEAAIA_AACGwgAA8EEAAFBBAACgQAAAMEIAADBBAAAEwgAAZMIAAPDBAACwwQAAsEEAACTCAABcQgAAdMIAAODBAAAQQQAA4EAAAPBBAAAIwgAAcEEAACRCAADIQQAAIMEAACBBAACwwQAAeMIAABDCAAB0QgAAYMIAAJDBAAA0wgAAMMEAAEhCAACAwAAAgEEAAEBCAAAcQgAAQMAAACBBAAAAQQAAoMEAAITCAACAvwAAEMIAACDBAABYwgAA6EEAAJDBAAAMQgAAAEAAAODAAABMQgAAUEIAAODBAADgwAAAiMEAAIZCAACYwQAAjMIAANBBAACYQQAA-MEAADRCAADowQAAgMAAAIC_AAA4wgAAgEAgADgTQAlIdVABKo8CEAAagAIAABA9AACGvgAABD4AABA9AABQPQAAoj4AALi9AAAXvwAArr4AAFA9AACgPAAAMD0AAFA9AAAMPgAAED0AAAy-AABMPgAAuD0AAKg9AAAJPwAAfz8AAMi9AAAUPgAAPD4AAEA8AABwPQAAgDsAAFw-AACgvAAABD4AACw-AAAkPgAAmD0AAKI-AAA8PgAA1j4AAHA9AAAcvgAAqr4AAKi9AABcvgAAqD0AAKi9AAAsvgAAUD0AABA9AABwPQAAoDwAADC9AABkvgAAuD0AABC9AAD-PgAALD4AAAm_AAAQvQAAQT8AALg9AACoPQAAmL0AADy-AABkPgAAyD0AAHA9IAA4E0AJSHxQASqPAhABGoACAAB0vgAAgDsAAOA8AAAhvwAAmL0AAIg9AACSPgAABD4AAIA7AAA0PgAA4LwAABS-AABAvAAADL4AALg9AABAvAAABD4AACM_AAAMvgAAvj4AABC9AADIPQAAFL4AAEA8AACgPAAAEL0AAIA7AACIPQAA2L0AAIC7AACAuwAAFD4AAKA8AAA0vgAADD4AALi9AABsPgAAHD4AAHy-AAAkPgAAMD0AAEy-AACYvQAAoLwAAOA8AACovQAAf78AADA9AAB8vgAAcL0AACQ-AAAwPQAAuD0AAIA7AAAUPgAAqD0AAIA7AADYPQAA-D0AANg9AADoPQAAiL0AAKC8AAAkPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=PvUZKla2jJU","parent-reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["13120838655797268994"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"909802818876635047":{"videoId":"909802818876635047","title":"Arithmetic Functions |Part-2| Multiplicative Function","cleanTitle":"Arithmetic Functions |Part-2| Multiplicative Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=E6S2_22CLWI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/E6S2_22CLWI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":684,"text":"11:24","a11yText":"Süre 11 dakika 24 saniye","shortText":"11 dk."},"views":{"text":"22,1bin","a11yText":"22,1 bin izleme"},"date":"24 mayıs 2020","modifyTime":1590278400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/E6S2_22CLWI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=E6S2_22CLWI","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":684},"parentClipId":"909802818876635047","href":"/preview/909802818876635047?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/909802818876635047?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10406370752939041699":{"videoId":"10406370752939041699","title":"Extended Euclidean Algorithm","cleanTitle":"Extended Euclidean Algorithm","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mbrfypBXznI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mbrfypBXznI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":712,"text":"11:52","a11yText":"Süre 11 dakika 52 saniye","shortText":"11 dk."},"views":{"text":"16,6bin","a11yText":"16,6 bin izleme"},"date":"31 tem 2020","modifyTime":1596153600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mbrfypBXznI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mbrfypBXznI","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":712},"parentClipId":"10406370752939041699","href":"/preview/10406370752939041699?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/10406370752939041699?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9510235931582801996":{"videoId":"9510235931582801996","title":"Arithmetic Functions |Part-4| Mobius Inversion Formula","cleanTitle":"Arithmetic Functions |Part-4| Mobius Inversion Formula","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=khfIH1H6iUg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/khfIH1H6iUg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":690,"text":"11:30","a11yText":"Süre 11 dakika 30 saniye","shortText":"11 dk."},"views":{"text":"34,2bin","a11yText":"34,2 bin izleme"},"date":"24 mayıs 2020","modifyTime":1590278400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/khfIH1H6iUg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=khfIH1H6iUg","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":690},"parentClipId":"9510235931582801996","href":"/preview/9510235931582801996?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/9510235931582801996?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15436830548806815131":{"videoId":"15436830548806815131","title":"Mathematics Behind Simplex Method |Part-8| Optimality and Feasibility Criteria","cleanTitle":"Mathematics Behind Simplex Method |Part-8| Optimality and Feasibility Criteria","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=H3CPlsoEyHI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/H3CPlsoEyHI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1133,"text":"18:53","a11yText":"Süre 18 dakika 53 saniye","shortText":"18 dk."},"views":{"text":"16,2bin","a11yText":"16,2 bin izleme"},"date":"17 haz 2020","modifyTime":1592352000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/H3CPlsoEyHI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=H3CPlsoEyHI","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":1133},"parentClipId":"15436830548806815131","href":"/preview/15436830548806815131?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/15436830548806815131?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4539564197509348371":{"videoId":"4539564197509348371","title":"Logic | Part 2 | Discrete \u0007[Math\u0007] Structure","cleanTitle":"Logic | Part 2 | Discrete Math Structure","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=blFuDLHyUfM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/blFuDLHyUfM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1644,"text":"27:24","a11yText":"Süre 27 dakika 24 saniye","shortText":"27 dk."},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"10 ağu 2021","modifyTime":1628553600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/blFuDLHyUfM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=blFuDLHyUfM","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":1644},"parentClipId":"4539564197509348371","href":"/preview/4539564197509348371?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/4539564197509348371?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9868310950382843388":{"videoId":"9868310950382843388","title":"Mathematics Behind Simplex Method |Part 4| Some Basic results on Convex sets","cleanTitle":"Mathematics Behind Simplex Method |Part 4| Some Basic results on Convex sets","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HR0ruBOVZpg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HR0ruBOVZpg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":799,"text":"13:19","a11yText":"Süre 13 dakika 19 saniye","shortText":"13 dk."},"views":{"text":"15,9bin","a11yText":"15,9 bin izleme"},"date":"15 haz 2020","modifyTime":1592179200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HR0ruBOVZpg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HR0ruBOVZpg","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":799},"parentClipId":"9868310950382843388","href":"/preview/9868310950382843388?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/9868310950382843388?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11497659508235500444":{"videoId":"11497659508235500444","title":"Finding Coefficient in an expansion| Generating Functions","cleanTitle":"Finding Coefficient in an expansion| Generating Functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=N5c1uG2hwg4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/N5c1uG2hwg4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"https://www.youtube.com/channel/UCS2s5iJxWrUy5xErJhi7aJw","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":692,"text":"11:32","a11yText":"Süre 11 dakika 32 saniye","shortText":"11 dk."},"views":{"text":"8bin","a11yText":"8 bin izleme"},"date":"11 nis 2021","modifyTime":1618099200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/N5c1uG2hwg4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=N5c1uG2hwg4","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":692},"parentClipId":"11497659508235500444","href":"/preview/11497659508235500444?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/11497659508235500444?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6139559195310042206":{"videoId":"6139559195310042206","title":"Counting using Bijective Principle Techniques","cleanTitle":"Counting using Bijective Principle Techniques","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4NIJ3ZJhwXI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4NIJ3ZJhwXI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":879,"text":"14:39","a11yText":"Süre 14 dakika 39 saniye","shortText":"14 dk."},"views":{"text":"4,1bin","a11yText":"4,1 bin izleme"},"date":"21 şub 2021","modifyTime":1613865600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4NIJ3ZJhwXI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4NIJ3ZJhwXI","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":879},"parentClipId":"6139559195310042206","href":"/preview/6139559195310042206?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/6139559195310042206?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9952998091361659310":{"videoId":"9952998091361659310","title":"Generating Functions | Part 1","cleanTitle":"Generating Functions | Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tA2cqfNh5EM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tA2cqfNh5EM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1866,"text":"31:06","a11yText":"Süre 31 dakika 6 saniye","shortText":"31 dk."},"views":{"text":"3,6bin","a11yText":"3,6 bin izleme"},"date":"30 mar 2021","modifyTime":1617062400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tA2cqfNh5EM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tA2cqfNh5EM","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":1866},"parentClipId":"9952998091361659310","href":"/preview/9952998091361659310?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/9952998091361659310?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16335766288097340229":{"videoId":"16335766288097340229","title":"Mathematics Behind Simplex Method |Part 7| Fundamental Theorem of LPP","cleanTitle":"Mathematics Behind Simplex Method |Part 7| Fundamental Theorem of LPP","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rGtHdJYAmfs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rGtHdJYAmfs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":840,"text":"14:00","a11yText":"Süre 14 dakika","shortText":"14 dk."},"views":{"text":"19,4bin","a11yText":"19,4 bin izleme"},"date":"17 haz 2020","modifyTime":1592352000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rGtHdJYAmfs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rGtHdJYAmfs","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":840},"parentClipId":"16335766288097340229","href":"/preview/16335766288097340229?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/16335766288097340229?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8978740192010191632":{"videoId":"8978740192010191632","title":"Congruences | Binary Modular Exponentiation","cleanTitle":"Congruences | Binary Modular Exponentiation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=m2asZMjESHk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/m2asZMjESHk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":418,"text":"6:58","a11yText":"Süre 6 dakika 58 saniye","shortText":"6 dk."},"views":{"text":"14,8bin","a11yText":"14,8 bin izleme"},"date":"14 eyl 2020","modifyTime":1600041600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/m2asZMjESHk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=m2asZMjESHk","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":418},"parentClipId":"8978740192010191632","href":"/preview/8978740192010191632?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/8978740192010191632?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6688661299649937457":{"videoId":"6688661299649937457","title":"Mathematics Behind Simplex Method |Part 3| Convex Sets, Convex Hull","cleanTitle":"Mathematics Behind Simplex Method |Part 3| Convex Sets, Convex Hull","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PdoCLCs63LM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PdoCLCs63LM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1031,"text":"17:11","a11yText":"Süre 17 dakika 11 saniye","shortText":"17 dk."},"views":{"text":"21,2bin","a11yText":"21,2 bin izleme"},"date":"13 haz 2020","modifyTime":1592006400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PdoCLCs63LM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PdoCLCs63LM","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":1031},"parentClipId":"6688661299649937457","href":"/preview/6688661299649937457?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/6688661299649937457?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17897524586469138321":{"videoId":"17897524586469138321","title":"Mathematics Behind Simplex Method |Part-2| Vectors, Hyperplane, Polyhedron","cleanTitle":"Mathematics Behind Simplex Method |Part-2| Vectors, Hyperplane, Polyhedron","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=g60HFdaq6jI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/g60HFdaq6jI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1350,"text":"22:30","a11yText":"Süre 22 dakika 30 saniye","shortText":"22 dk."},"views":{"text":"21,9bin","a11yText":"21,9 bin izleme"},"date":"13 haz 2020","modifyTime":1592006400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/g60HFdaq6jI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=g60HFdaq6jI","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":1350},"parentClipId":"17897524586469138321","href":"/preview/17897524586469138321?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/17897524586469138321?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16493714761218133036":{"videoId":"16493714761218133036","title":"Simplex Method |Part 11| Two Phase Method (Feasible Optimal Solution)","cleanTitle":"Simplex Method |Part 11| Two Phase Method (Feasible Optimal Solution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VWZkHveDQPo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VWZkHveDQPo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1224,"text":"20:24","a11yText":"Süre 20 dakika 24 saniye","shortText":"20 dk."},"views":{"text":"20,4bin","a11yText":"20,4 bin izleme"},"date":"1 tem 2020","modifyTime":1593561600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VWZkHveDQPo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VWZkHveDQPo","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":1224},"parentClipId":"16493714761218133036","href":"/preview/16493714761218133036?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/16493714761218133036?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14445384845133714382":{"videoId":"14445384845133714382","title":"Generating Functions | Part 2","cleanTitle":"Generating Functions | Part 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FFFA_GKMzsY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FFFA_GKMzsY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":759,"text":"12:39","a11yText":"Süre 12 dakika 39 saniye","shortText":"12 dk."},"views":{"text":"2,1bin","a11yText":"2,1 bin izleme"},"date":"30 mar 2021","modifyTime":1617062400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FFFA_GKMzsY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FFFA_GKMzsY","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":759},"parentClipId":"14445384845133714382","href":"/preview/14445384845133714382?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/14445384845133714382?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9776418811693863935":{"videoId":"9776418811693863935","title":"Generating Functions| Partitions of a positive integer|Identical objects into identical boxes","cleanTitle":"Generating Functions| Partitions of a positive integer|Identical objects into identical boxes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ubh1GIxGZrA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ubh1GIxGZrA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2314,"text":"38:34","a11yText":"Süre 38 dakika 34 saniye","shortText":"38 dk."},"views":{"text":"4,6bin","a11yText":"4,6 bin izleme"},"date":"21 nis 2021","modifyTime":1618963200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ubh1GIxGZrA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ubh1GIxGZrA","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":2314},"parentClipId":"9776418811693863935","href":"/preview/9776418811693863935?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/9776418811693863935?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8676765850758613245":{"videoId":"8676765850758613245","title":"Simplex Method |Part 8| Introduction and Use of Artificial Variables","cleanTitle":"Simplex Method |Part 8| Introduction and Use of Artificial Variables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SiN1UjrM99w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SiN1UjrM99w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":471,"text":"7:51","a11yText":"Süre 7 dakika 51 saniye","shortText":"7 dk."},"views":{"text":"21,3bin","a11yText":"21,3 bin izleme"},"date":"26 haz 2020","modifyTime":1593129600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SiN1UjrM99w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SiN1UjrM99w","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":471},"parentClipId":"8676765850758613245","href":"/preview/8676765850758613245?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/8676765850758613245?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13120838655797268994":{"videoId":"13120838655797268994","title":"Simplex Method | Part 15| Solving LPP without artificial variables","cleanTitle":"Simplex Method | Part 15| Solving LPP without artificial variables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PvUZKla2jJU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PvUZKla2jJU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":821,"text":"13:41","a11yText":"Süre 13 dakika 41 saniye","shortText":"13 dk."},"views":{"text":"9,1bin","a11yText":"9,1 bin izleme"},"date":"30 ağu 2020","modifyTime":1598745600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PvUZKla2jJU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PvUZKla2jJU","reqid":"1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL","duration":821},"parentClipId":"13120838655797268994","href":"/preview/13120838655797268994?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","rawHref":"/video/preview/13120838655797268994?parent-reqid=1765323198184206-17299164547743832263-balancer-l7leveler-kubr-yp-klg-63-BAL&text=MathPod","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"7299164547743832263763","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"MathPod","queryUriEscaped":"MathPod","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}