{"pages":{"search":{"query":"Optimall Analysis","originalQuery":"Optimall Analysis","serpid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","parentReqid":"","serpItems":[{"id":"4704361185488908828-0-0","type":"videoSnippet","props":{"videoId":"4704361185488908828"},"curPage":0},{"id":"9488841925022039501-0-1","type":"videoSnippet","props":{"videoId":"9488841925022039501"},"curPage":0},{"id":"2335970228616862084-0-2","type":"videoSnippet","props":{"videoId":"2335970228616862084"},"curPage":0},{"id":"11840028498667296749-0-3","type":"videoSnippet","props":{"videoId":"11840028498667296749"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE9wdGltYWxsIEFuYWx5c2lzCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","ui":"desktop","yuid":"7591368431765326837"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"17413450433767128710-0-5","type":"videoSnippet","props":{"videoId":"17413450433767128710"},"curPage":0},{"id":"2458122330420486684-0-6","type":"videoSnippet","props":{"videoId":"2458122330420486684"},"curPage":0},{"id":"506651397127346226-0-7","type":"videoSnippet","props":{"videoId":"506651397127346226"},"curPage":0},{"id":"5660679754488415141-0-8","type":"videoSnippet","props":{"videoId":"5660679754488415141"},"curPage":0},{"id":"15337004660909585554-0-9","type":"videoSnippet","props":{"videoId":"15337004660909585554"},"curPage":0},{"id":"9003786443843205884-0-10","type":"videoSnippet","props":{"videoId":"9003786443843205884"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE9wdGltYWxsIEFuYWx5c2lzCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","ui":"desktop","yuid":"7591368431765326837"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"1451401569420097311-0-12","type":"videoSnippet","props":{"videoId":"1451401569420097311"},"curPage":0},{"id":"9075878586696813494-0-13","type":"videoSnippet","props":{"videoId":"9075878586696813494"},"curPage":0},{"id":"7088306704201488711-0-14","type":"videoSnippet","props":{"videoId":"7088306704201488711"},"curPage":0},{"id":"835652694470268945-0-15","type":"videoSnippet","props":{"videoId":"835652694470268945"},"curPage":0},{"id":"6604110938573684277-0-16","type":"videoSnippet","props":{"videoId":"6604110938573684277"},"curPage":0},{"id":"4196127599224235917-0-17","type":"videoSnippet","props":{"videoId":"4196127599224235917"},"curPage":0},{"id":"16156935647519029100-0-18","type":"videoSnippet","props":{"videoId":"16156935647519029100"},"curPage":0},{"id":"2088230761435717584-0-19","type":"videoSnippet","props":{"videoId":"2088230761435717584"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE9wdGltYWxsIEFuYWx5c2lzCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","ui":"desktop","yuid":"7591368431765326837"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DOptimall%2BAnalysis"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"2646952399656174937216","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1405820,0,23;1426276,0,68;1193347,0,25;1402154,0,37;1436972,0,32;1437713,0,67;1436030,0,25;1429981,0,7;1427780,0,26;1434896,0,34;1419696,0,11;1427956,0,89;123851,0,82;1418739,0,91;1437708,0,51;1425921,0,42;1282205,0,20;1417819,0,1;1430621,0,29;1435996,0,29;1420352,0,87;1146114,0,38;1430625,0,10;1425581,0,69;120692,0,66;1426814,0,24;1422262,0,17;1433911,0,65;912221,0,67;124069,0,47;45971,0,90;151171,0,40;1281084,0,61;287509,0,54;1254304,0,9"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DOptimall%2BAnalysis","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Optimall+Analysis","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Optimall+Analysis","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Optimall Analysis: 2 bin video Yandex'te bulundu","description":"\"Optimall Analysis\" sorgusu için arama sonuçları Yandex'te","shareTitle":"Optimall Analysis — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"ydbe1504795be49c39df604f768900019","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1405820,1426276,1193347,1402154,1436972,1437713,1436030,1429981,1427780,1434896,1419696,1427956,123851,1418739,1437708,1425921,1282205,1417819,1430621,1435996,1420352,1146114,1430625,1425581,120692,1426814,1422262,1433911,912221,124069,45971,151171,1281084,287509,1254304","queryText":"Optimall Analysis","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"7591368431765326837","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1441146,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765327077","tz":"America/Louisville","to_iso":"2025-12-09T19:37:57-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1405820,1426276,1193347,1402154,1436972,1437713,1436030,1429981,1427780,1434896,1419696,1427956,123851,1418739,1437708,1425921,1282205,1417819,1430621,1435996,1420352,1146114,1430625,1425581,120692,1426814,1422262,1433911,912221,124069,45971,151171,1281084,287509,1254304","queryText":"Optimall Analysis","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"7591368431765326837","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"2646952399656174937216","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":147,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7591368431765326837","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"4704361185488908828":{"videoId":"4704361185488908828","docid":"34-4-4-Z550E5AF69AC2D33E","description":"In this video, Addition of a constraint in LPP-Post Optimality Analysis is discussed.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2954431/268cad5fa81fa64bf2977da13acb52e2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AxFmJAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7XWU13Yog4I","linkTemplate":"/video/preview/4704361185488908828?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Post Optimality Analysis (Part-6)-Addition of a constraint","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7XWU13Yog4I\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFQoTNDcwNDM2MTE4NTQ4ODkwODgyOFoTNDcwNDM2MTE4NTQ4ODkwODgyOGqHFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E8cJggQkAYAEKyqLARABGniB9wX3_P4CAPQJDwkFBvwBAQzv__b-_QD1BfX99QL_AO4ABf8NAAAACPv-BwEAAAAC_v328_0BAAgKBAIFAAAAHPACAfoAAAAEEQz8_gEAAPTy_wED_wAADwAI-_8AAAAACAL3AwAAAPMQ8ggAAAAAAPX0_gAAAAAgAC1aINg7OBNACUhOUAIqhAIQABrwAXP-BP3B-cL_z-0H_9QpDgK3JhgAFhvGAJn-AQCu5dcB1iTnAA0I4f65-yz_zzDWABjPogPZ3woALczs_vDABQAMFPQB9Ov6Ak8aBP_rA-__vykj_fb4MgHy294C_Br6ABD3BPlJ-gwDxOTiAAwmQQMx-QoIAsY9_O-8TQEcx8sAwNO_-hAzIQPbrxn-2fI7CQPTyQAS8v74tBn5BRzb_v7v8SP3CjnK_UH42wMi6AoI8vvk_8Pp6AQqfwcA2BLrA-DsHvfN3__2C_HsCSfrBvXnEOj4SLjvBgsb_QcrJwUW6dUA9N8UBAngGfsF2Ary5yAALWc77jo4E0AJSGFQAirPBxAAGsAHu-7VvtsZJryC8UI7o1M8vfTIG7zrTTG8FNqYvSdPeT0LEYm7p834PewkrLy1hhe9M0irva54dD2GcLG8xVWFPlQwb72bfyq8WMfRvQy8iTxsA3y9_Qeyvb-txzt7DhO8CPeEvT27N73G6BA70R8qPuqwIr1Qwsy8XRe-vV2WpbySzVW9Vj_AvBf4Rb07eYm7Zz0CPAASGbymBwc8a2v-u8ptu7xJGQy8QsFWPdeEGb3VUeG7peI6vcEqKLxXqUq9dWYsPaaLwzz_dKg8_Vq9vYIDVjvXnn68IKbzvBqI5bzPZeo7E2fBu5aGL7vnT0C8YpOpO3EqyL3Iaqm8rfkBvlSlkjwh0d87Puq_Pei0-Dx2Co-37-SzvfeRmz3N_bq8G9xxPcH6RL3MYmK8APKEPYkrAj34Ky48RBTTPEfSiTxfFsk8_XGxPHhEtT21V3o838sUPC87r70YiC-8RoGZPaGgND1S32i78ofVvKZpaz0Y9Lm8gjDBPD_1-jvShLO7O38kvM8627r8QIs7cArrPEXvub32R-W5ldw8vTzxwb1D6ea7HW3BPTlpED0uBX-8bvzpPUzkrb0rc6m7kS4yO6KU9Ty3_uk7wz6bPROPNb0lJBI8NtPIvXyUNjwucxu8_H8mvQBKbT2Slue7hSe0vCxG3Ty5kGQ7KcSrOyfrob1sBno729wIPp7CwLyvTI06-5trPfYLVj0OKye6VPqePZroOL14Wk849-ojvdYpxTy8-ke6kWGlvSVGir30qLs57nScPazizb0q_7051ZN5PGsWnjxJJ1g5Jmy0vWRA1j1cJhA4p4Iju2Y_3DwXNDM6HhGovc78Sr4Byw45_vWFPQFtC73u9h26mmpaO4cGGD2zP9Q6zCDDvdQNBL4IU4U5umVqu9fdvLzuAcq4OBTePYs9nz0yrbe4ox4nvUYcvLyEj6m3QxWTve4csTvSQ9w57yZuvVMBHLv_WmW4TKgAPcfwnb3-7jA5YkOcPMMdiT1YsKE5ZOTRPMUPhD3eov63cjPcPSJUCT4bC6o5sC44POZ2T70ZLZw4eETlPYq8dj2M0i25tJAQvtiMoj2ZewS3ibbjvKyPh7wU2v04AXuWPZbz_zvmDeU3XETKu33Fwzt9XZM3kl0ZPtlPUL2swj-5ClwIveLDkb08pVi4h2cOvfRlLr3N0hC4lrgIPPOvBT6pyT2zaVLKPBdLTL2SAFu4yvRwPSLhKz7xy4o44hiuPG-loj1MJ1K4XIllvWQz0TynvaA3zWdvvSH0Ir2jUNK3IAA4E0AJSG1QASpzEAAaYAb2ABXZD8v6HzziAffjEeL44NkX7wsA9MgACQvz7SgS7q4bxf8iCjDpswAAAB8Zxy3fAOdfyCP0He8LK6zN-AwKfyzxLe6zHuzdyxoQDu4QEOYjJQD16t0VAvK2MgMlDiAALSynNTs4E0AJSG9QAiqvBhAMGqAGAACAPwAAiMEAAJBBAACowQAABEIAAEDBAADiQgAAiMEAANDBAAAwQQAAgEAAADDBAABAwgAA6EEAAExCAADgwAAAsMEAABTCAAAcQgAA0MEAAIBBAADAwQAAwEAAACRCAAAoQgAA6MEAALBBAADYwQAAEEEAAIJCAADAQQAAoEEAAHzCAADgwAAAlsIAAODBAAC4QQAApEIAACDCAACwQQAAREIAANBBAAAsQgAAEEEAABxCAACWwgAA8MEAAIBAAABkQgAA6EEAAODBAAAgQQAAMEEAAMDBAAAEQgAAIEEAAHDCAACAwAAAgD8AAOBBAABwQQAAnsIAAKjBAAB8wgAAYEEAABTCAADYwQAApMIAAGDBAAAQwgAAhEIAACBCAABcwgAA4EEAAABBAADQwgAAEEEAAGDBAAA8QgAAOEIAAAzCAACSQgAAwMAAAJhBAABAQgAAmMEAAChCAADwQQAAyEEAAGjCAAAwQQAAvEIAAPDBAAAMwgAAYMEAANbCAAAcQgAAgEAAAIBCAADIQQAAoMEAADRCAAAQQQAANMIAADzCAAAAQAAAAMAAAGBBAADAwQAALEIAAMBBAADAQQAACMIAAFBCAACgQAAAMEEAAIjBAAAIwgAAsMIAAJDCAAAEwgAAVMIAANjBAACAPwAA0EEAAJBBAACAvwAAcMIAADzCAADIQQAAiMEAAAzCAACqwgAAOEIAALDBAAAUQgAAYEIAAGDBAABwwgAAOMIAADDBAADQwQAAHEIAANjBAAAEQgAAQMAAAGDCAACoQQAAyEEAANDBAAAswgAA4EAAAFhCAAAAQQAA6MEAAABBAAAwwgAAqMIAAFDCAACMQgAAAMIAAEDAAABMwgAAJMIAAMBBAADIQQAA4EEAAHxCAADwQQAAUMEAAEDBAAAgQgAAMMIAAJ7CAADAwQAABMIAAAjCAAAUwgAAkMEAADDBAAAgQgAAoMAAABzCAACMQgAAeEIAAODBAAA4wgAALMIAACDBAADAwAAAQMIAAEBAAADQQQAAmMEAAJBCAACAvwAAwMAAAADAAABkwgAAYMEgADgTQAlIdVABKo8CEAAagAIAAAS-AAAsvgAAbD4AAEw-AAC4vQAAUL0AADA9AACmvgAA6L0AAIC7AABEPgAAQLwAAOg9AADoPQAA4LwAADC9AAA0PgAAuD0AANg9AACmPgAAfz8AAKo-AADovQAAij4AAPi9AAAQvQAAgLsAAES-AABsPgAAUL0AABA9AACAuwAAFL4AADy-AADoPQAA2D0AACQ-AAC4vQAAZL4AACy-AABcvgAAUL0AADA9AABAPAAA2L0AAAw-AABwPQAAJL4AABw-AAC4vQAA2D0AADQ-AACOPgAADD4AAHS-AACIvQAALT8AABy-AAAUPgAAyD0AABA9AABQvQAAED0AAKi9IAA4E0AJSHxQASqPAhABGoACAAAcvgAAML0AAOC8AAAVvwAAiL0AACQ-AACoPQAA2D0AAEC8AADaPgAAoDwAAIC7AADgvAAAmL0AAAw-AADgvAAAND4AAEE_AAAwvQAA0j4AAPi9AAAQPQAATD4AAMi9AACgPAAALD4AAKg9AABMPgAAgDsAAHC9AAAwvQAA6D0AAFA9AABMvgAAVD4AABA9AADYPQAAxj4AAFC9AACAuwAA5j4AAOC8AABEvgAAFL4AADC9AADYvQAAf78AAEA8AACgPAAAgj4AAEC8AABwvQAAqL0AAJY-AACSPgAAMD0AAKA8AADgPAAARL4AAJi9AADIPQAAmD0AAEQ-AACoPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7XWU13Yog4I","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1342,"cratio":1.4307,"dups":["4704361185488908828"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9488841925022039501":{"videoId":"9488841925022039501","docid":"34-6-17-ZDD707431ECB40EE4","description":"In this video, I have given introduction to Post Optimality/Sensitivity Analysis.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3926960/5e98af04375a912fdda4a4de0e6fcf70/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZcIJFQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAv6qTFJqurA","linkTemplate":"/video/preview/9488841925022039501?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is Post Optimality (Part-1)/Sensitivity Analysis","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Av6qTFJqurA\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFQoTOTQ4ODg0MTkyNTAyMjAzOTUwMVoTOTQ4ODg0MTkyNTAyMjAzOTUwMWqHFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E4QHggQkAYAEKyqLARABGniB9wX3_P4CAPv-Av8DBP4BDBH9BPUBAQD8AfsF_QX-AP8CBvn_AQAABPgIBAAAAAAB9gEE9f0BAP__B_kEAAAAE_kC__cAAAAFFAD6_gEAAP_y-wED_wAAGPsC9f8AAAD5DwTxAP8AAPUF9gQAAAAACPP5AgAAAAAgAC1aINg7OBNACUhOUAIqhAIQABrwAX__1QDC6QH-9PLlAMsYBACd9wwA_DfQAKHm_v-09sQABicLAPr66QDUGz4AxxbzAEP1x__76_cAJLz1__H88AEPCBkALbb0AUgDGP_lFvP_xRM7AQTdDgAE6dgAJ_r--ukMCQH5AcT_9jDpAif7MQEOCS4E-PAYBOf1Gf7p_dsB69vX_QkIEgjguxb-_hEgA-7U5_0QBgnzyCr_-QjZ-PgL2_r5F0Po_w8JFgYIGe4G1vb-B-gH0wP3TQIDBP3r-vL2KALy3wHuEu_9_w7lCf349Pn9-tEDBhb1A-3z8_r91-L96fEJ7wrrC-kH3gn06yAALUPuCzs4E0AJSGFQAirPBxAAGsAHY0Pvvg_Bp7zTgIM7moKbvam1F7wDBV69zKWXvXGq9Tw9PJU80v_SPWkqdT1UlAW8oUh3vnNWujykNjG9xVWFPlQwb72bfyq8WMfRvQy8iTxsA3y9FAdQvpN2fjyKmh69msy4PL45gr1_wx88Cp0XPpObFbwRiq28b4sIvUNHB7oj2Bi9Twh8O3LSRb3fikS8cEKhPYRtfrtfHpc8yNQYPWzLRb2IXJm75m0WvXIP0zwJh4O7EawFPFZbGDy8Kuu8L012PcaViT3C60Q8KEJvvULRp72hf6e7TLQavY-RB7yttg087tYNvZuCRjwH3fM72MIHPUTHmb3yO7K8bazkvaYRLj2UTsE7Puq_Pei0-Dx2Co-3LnC5vATGij1fRjG6Q3m6PLdSOb2soDO8r2d-PcFCHDxCeR08meJgPDXpOz05nxM8Y2A9PQ8uyD19-e48_h_xPHz-ar1cGM6854FZPTIVKDu7Heu8hwRivTeuej3-Nnq8gjDBPD_1-jvShLO7-HU7PZwOCT2WXCS7Y5bBu4PmKb3N8aM7ldw8vTzxwb1D6ea73cF-Pby7JD2Ie5G8FAibPavnpDzYWPQ7oRGNu7mwJLzgwvS6wz6bPROPNb0lJBI8UAKmvXofQj0EwUq707arPLA6kj2J8fW7Qj0iPC1xaT1Z6aQ7fMCXvFq_VL0v4-A7C6ixPfHD97yYjPu5h8uAPWmOLDwB12C6CyToPasBL73sydM5BMomvb13bbtN5oo6I5olvdChp7ymi2I7oZ3TPVGBmL2XnVE5SC8vPRvUfrwCxga5CH8VvVtErz2Ygfg42j_qPAlG77xybWq6XFQLvZwV8b3cnnU5GU10u1RrhjxQyLy5YqrPPFYw6LqpI1w45YySvZO5A73jfZ65xAAuPP4PsDxEu6y3BfmpPcIkuz1a2703WZgvvW4fDb0vOF65vRiKvNnUVLyQe0M4BYQcvFm6JzzIAxu2QfEDPXFPwb3XOHs5xFY1PXlhxj225i64aomlPRvFiD3Pr9A3cjPcPSJUCT4bC6o5088IPGYx0b0-S5c2HaGgPTSgXj0DScK4tJAQvtiMoj2ZewS3SYxUvO9KjL15K9c2_YYJPSbI57su76S3ly0DvS9q97xaKdw3kl0ZPtlPUL2swj-5gduoOnigyjp2xzm4iwg1vJYByrvQHEA3lrvHOzlHWD2eNgO45NWevHqJ8b1lVTC4yvRwPSLhKz7xy4o4UqSxvIQiZz2d6RO4n8e4vQocf72bN9i3lRGyvGUwqzyLFY82IAA4E0AJSG1QASpzEAAaYDHoAAbfG8HxEkDeJfX4Duzj9eQBBPwACAD_2jDe4AoM-9cc1v9DFTrrrgAAAPXx7R3GAPZrtwrs7u_-CafB5xb2f2HyHtixD9PTs-wr8dwTCfcIOwDq88gUDOulMwX-EyAALYbuJzs4E0AJSG9QAiqvBhAMGqAGAABAQAAAikIAAIC_AACAPwAAQMAAAExCAAA8QgAAGMIAAMrCAAAswgAAKEIAAIDCAABAwgAARMIAAIDBAABAQQAAuEEAAHTCAACYwQAA-MEAALhBAAAAQQAAgL8AAMhBAAAAwQAAoMEAAMbCAABEwgAAmEIAAEDBAABgwQAAgEAAACzCAACoQQAASMIAAAjCAABAQQAAsEEAADTCAAAQQQAAgMAAAPBBAAAQwQAAmMEAAKjBAAAAQAAAyEEAAGDBAACOQgAASEIAALDCAAAwwgAAAAAAAOBAAAA8QgAAKEIAAKbCAAAAAAAAYEEAAABAAAAQQQAAPMIAADDBAACuwgAAkEEAAHDCAABwwQAAUMEAAEzCAAAcwgAAPEIAAIJCAABwQQAA4MEAAATCAADAwAAAxMIAAIBAAAAcQgAA4EEAAKDAAAC2QgAAyMEAAJhBAACAPwAAYEEAAFhCAADYwQAAWEIAAEDBAABUQgAAQEIAAIDCAACAwgAADMIAANDBAAAQwQAA0MEAABBBAACwQQAAvsIAABhCAABIQgAAIEEAACjCAAAAQgAA-MEAABRCAAAgwgAAHEIAALBBAACgQAAA0EEAAIhBAAAAAAAA4EEAABhCAAC4wQAA2EEAAABBAAAIwgAAPMIAAIC_AABUwgAAAEAAANjBAADIQQAAHEIAAKhBAAAQwQAA8MEAAGjCAACAPwAAwEAAAAjCAADwQQAA8EEAAIA_AAAQQgAAQEAAAKDBAAAEQgAAIMEAAPjBAADcQgAAQEIAAEDCAABYQgAAREIAAAjCAABAQAAAmEEAANhBAABgwQAAcEEAAJjBAACQwgAAoEAAAKBAAAAAwgAAYMEAAIhBAAC4wQAAEMEAANBBAAAAwAAA4EAAAIRCAABQwQAAAEAAAIA_AADYQQAAMEEAAFTCAAAUwgAAWEIAAIA_AACQwQAAAAAAAFRCAACowgAAksIAADTCAAAQQgAA5kIAAADAAABkwgAAbEIAAIBAAADAQQAALEIAAFDBAADwQQAA6EEAACzCAABwQgAAiEEAAJjBAABsQgAAgEEgADgTQAlIdVABKo8CEAAagAIAAKi9AACovQAAqD0AABw-AABkvgAAQDwAAJi9AADavgAA-L0AAHC9AAAEPgAAqD0AAPg9AADgPAAAXL4AAIi9AABsPgAAcD0AACQ-AAD2PgAAfz8AAKY-AADgPAAAmj4AABy-AAAwPQAA6L0AAOi9AABcPgAAgLsAAIg9AAA8vgAANL4AALi9AAAwPQAAoDwAAAQ-AAAUvgAA2L0AADy-AADYvQAALL4AAHw-AACIPQAA2L0AAAQ-AAAQvQAAsr4AABA9AAC4vQAAND4AABw-AAAcPgAA-D0AAKi9AACovQAAOz8AANi9AAAwvQAAyD0AAMg9AABwPQAAUD0AAIK-IAA4E0AJSHxQASqPAhABGoACAAA0vgAAuD0AAKi9AAA_vwAAQLwAADA9AACYPQAAUD0AAOA8AAC2PgAAXD4AAFA9AABwvQAAFL4AADw-AADIvQAAMD0AAEE_AAAwPQAAyj4AAAy-AADgPAAAmj4AAAy-AACIvQAAHD4AAPi9AAAkPgAA4DwAAKi9AABQvQAAUD0AALg9AAD4vQAAnj4AAAy-AAAwPQAAuD0AAHC9AAAEPgAAgj4AAMi9AACyvgAAED0AACy-AABAvAAAf78AABC9AAAwvQAAgj4AAHC9AADgPAAAML0AAKY-AABsPgAA4DwAAIA7AAAkvgAAQDwAAGy-AACIPQAAPD4AAFQ-AADgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Av6qTFJqurA","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9488841925022039501"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2335970228616862084":{"videoId":"2335970228616862084","docid":"34-5-10-ZBE78B75DA95DAE5C","description":"Change in Cost Coefficient-Post Optimality Analysis...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1780019/864005b15381e24baf65350ad2018d5d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cpHVRAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_7pV-V0X4oI","linkTemplate":"/video/preview/2335970228616862084?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Post Optimality Analysis (Part-2)-Change in Cost Coefficient","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_7pV-V0X4oI\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFQoTMjMzNTk3MDIyODYxNjg2MjA4NFoTMjMzNTk3MDIyODYxNjg2MjA4NGqHFxIBMBgAIkQaMAAKKWhoY2l5aXBna2J0anBqaWhoVUNTMnM1aUp4V3JVeTV4RXJKaGk3YUp3EgIAESoQwg8PGg8_E-sGggQkAYAEKyqLARABGniB_vsC9P0DAPX-CgwCBv0BDgzyBPUAAADxAf8F9gEAAO35EPz9_wAA_f_8BvYAAAD-_Qr-9P4BAAj9_v0DAAAAFvn8AP8AAAAFFAD6_gEAAPb_AP35AQAAHQIH-_8AAAD3Awv8AQAAAPMQ8wgAAAAAAv_y_AAAAAAgAC0ccts7OBNACUhOUAIqhAIQABrwAX8HDQDZ9eUB2vbq_8Eo9gCRPAT__DvLALsUKQHT7dEA3QnxAN390QD8ERQAu07yADvPyf4kwgkBRNf7AOzk7QAADxABKtMNAWX7-wHuBdT_9_gw__ba6f79vtkAHg74_wkCEP4vBtL-8hjTAhzhMwMQCRoFH9EuBtfCDgHk0QoE9fe9_tsPDATyvgQC6BlDAQzJ_P4UG_r94_7aBRDyCwfwzyn_Mj7P_z_8AgUHB_MKzv3q_-QI5f43OQQFywnL_frmHP24yPf1FfsT_EHnEvv7GuX5EekDFQHt7w7sGwj2Bdr3-MkBAfvZ2fT2zPYD6iAALVzRADs4E0AJSGFQAirPBxAAGsAHH7zOvrESmDtG7cA7NW7AvdFS3rxFM4m7vMravUAYwz0iT7O7SRPPPSImFzuwr3W9HEIVvlDwgzybSB-9LQtWPrCKXL1BLSa9huMJvt8g9TysASq95_4qvl3L_zxIdCo8al0TPEZ8J70gcw670R8qPuqwIr1Qwsy8yi59vUnnrjvglx-9-Ua5vVOXnL1lmt-851rPPMv0C72R9S89t59nPEUxlLyQAQ-8NDzHPHADk731XTa8zBtUu_YlG7z1GQa9BTTxPRUkDbw2Q186_3-3vZ1zBj0-KMO8SkXfuw339rzPKpu5RywYPLYtirxEHAS8YpOpO3EqyL3Iaqm8L4byvXSQfLz9Iaw8JxcTPk_Vcz0VqbA8Klwqvbdr-DygUqW8KnCSPWVxf7wb9la8z3yjPbgyUj2n0FQ8meJgPDXpOz05nxM8LQ4fvFVWLj0QQhs9UIQau432g71FwpK8VkduPX_oeD2rE8a8lWJHvOmbFD2x6Iy8LY-aPIZ7wDw9Eqs7-HU7PZwOCT2WXCS7xTVDPfhRDb4Jbyy7Yyp9vKNFzL2HKka83cF-Pby7JD2Ie5G8bvzpPUzkrb0rc6m7Mc5fvASeaj2jZDG6AsiKPTiMjb0Ux2S7UAKmvXofQj0EwUq7KHJSvXQwMT0-qf67Qp--PFwxjT1He5M7xWUGPfoMCL5VIQO6rNr_PBLYwbwdYjQ7kIPSPUaUWz3VHBS4aeTTPcnSvbxSsAa4NA6au43AzjzNJ4s5Z7yYvXrr8rzUFAw50NCkPPbTn72EWbI5WZNdPFhS8jtzYJy6Cr9PvSYe0D2AIzm5p4Iju2Y_3DwXNDM6y6LwvFtCHr43BeM5EUOhPHyInbt1NHo6O5gDPc4K-7u9Meu6SgsXvgrcmr2pquG27UCivbN7crtOd_e4nlCePdjpLD2Z_HW4vZicvJBtVL2cVIC5o4uSvRhA17txa7k5lT2zvRhh5Ty2zQK5ja73vMDJy72hpYE5RZzvOz3R1T3iCUe5ZYTcvKyXlT16Lwk3ogipPTxQ5z3EjfY4FRSQPHPlgr2P6Xw4eETlPYq8dj2M0i25tJAQvtiMoj2ZewS3_huqvH17Mr2oPs83vjA5PaNLrjzwjkY4eXqAvEkI_zu4Hmc4kl0ZPtlPUL2swj-5qp7HvXqdjr2STdU31V2ZvBGXgr0HcQO4pNAIvSRECT6bFsE2FPRNPbS9p72Xl423yvRwPSLhKz7xy4o44hiuPG-loj1MJ1K4tAH4vbVYRT1R4Fw4OOhcvQBoHrwkjFE3IAA4E0AJSG1QASpzEAAaYCr2APn7NeMSIUDk5__c8d_4uswM-AQA_e4A7h7g7y8b56Mz6v8mGjvfqQAAAPwL5xPNAM5v4zT-6-lEJsrM6CT8f0PlJdTGEuvZyBgK-fQr-wIrRgDg9tAtBP2rXPgFHSAALevMIzs4E0AJSG9QAiqvBhAMGqAGAAAAQAAAwMEAAIBBAADQwQAA4EEAAEDAAADgQgAAsMEAAPjBAABgQQAAwEAAAIC_AAA8wgAAsEEAAGxCAAAQwQAAyMEAACTCAAAcQgAA0MEAAIhBAACYwQAAAEEAACBCAAAsQgAA4MEAALBBAADowQAA4EAAAHhCAADAQQAAsEEAAHDCAAAAwQAAmMIAAPDBAADAQQAAlEIAABDCAAC4QQAASEIAANBBAAAwQgAAQEEAADhCAACYwgAADMIAAMBAAABwQgAAwEEAAOjBAAC4QQAAQEEAAOjBAADIQQAAMEEAAHDCAAAAwAAAEEEAANBBAAAwQQAAnsIAAIjBAACAwgAAUEEAAEDCAADQwQAAuMIAAJjBAAAgwgAAjEIAABhCAAB8wgAADEIAAOBAAADEwgAAQEEAAEDBAABgQgAAIEIAACjCAACOQgAAQMAAADBBAAAgQgAA4MEAACxCAAAQQgAAmEEAAGjCAACAvwAAyEIAAMjBAADgwQAAAMEAANrCAAAwQgAAQEAAAIhCAADoQQAAMMEAABBCAAAAQQAAGMIAADjCAADgQAAAoEAAAFBBAABQwQAAIEIAALhBAADIQQAAEMIAAFBCAAAQQQAAUEEAAKDBAAAEwgAAqMIAAIrCAAAQwgAAXMIAALDBAAAgQQAA2EEAAIBBAACAPwAAaMIAAEzCAADAQQAAiMEAABjCAACcwgAAIEIAAKDBAAAAQgAAUEIAAKDBAACAwgAALMIAAODAAACowQAAHEIAANDBAADoQQAAAEAAADjCAACAQQAA6EEAAPDBAAAowgAAgEAAAFRCAADgQAAAwMEAAOBAAAA0wgAAkMIAAGjCAACCQgAA0MEAAIC_AAA4wgAARMIAAJhBAACwQQAACEIAAHRCAAAAQgAAcMEAAIA_AAAkQgAAHMIAALTCAAC4wQAAFMIAAPjBAAAwwgAAiMEAAIjBAAAIQgAAAEAAABDCAACMQgAAbEIAABDCAABEwgAAJMIAABDBAAAAAAAARMIAAADAAADwQQAAmMEAAIJCAAAAQAAAIMEAAIC_AABcwgAAwMEgADgTQAlIdVABKo8CEAAagAIAAPg9AABEvgAABD4AAJg9AABcvgAAMD0AAFC9AAD2vgAAQLwAACQ-AABMPgAAmD0AADA9AADIPQAAHL4AAIK-AAAkPgAA4DwAAEA8AADqPgAAfz8AALY-AAAcvgAAoj4AABS-AACYPQAAqL0AAES-AAAkPgAAqD0AAKC8AAAsvgAAyL0AALg9AAAcvgAAoLwAAIA7AACIPQAAZL4AABC9AACKvgAAqD0AADA9AABAPAAAPL4AAKC8AACIPQAADL4AAOg9AADovQAAuD0AAKI-AACuPgAAFD4AAI6-AADovQAALT8AAJg9AABwvQAALD4AAHC9AACIvQAADD4AAKC8IAA4E0AJSHxQASqPAhABGoACAAAsvgAAQLwAAIi9AAATvwAAgDsAADA9AADIPQAAgDsAAHC9AACCPgAAHD4AAMi9AABwvQAANL4AAGQ-AACgvAAAPD4AAC0_AACovQAAij4AALi9AABwPQAAuD0AALi9AADIPQAAnj4AAEC8AACYPQAAUD0AAEA8AAAQvQAA-D0AANi9AABEvgAA6D0AAOg9AABAPAAARD4AAMi9AADYvQAAgj4AAJi9AAAMvgAAMD0AAFC9AADIvQAAf78AAKi9AACIvQAADD4AAEA8AAAEvgAA6L0AALg9AAAcPgAAQDwAABA9AAAwPQAAHL4AAIA7AAC4PQAAML0AADw-AABwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=_7pV-V0X4oI","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2335970228616862084"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11840028498667296749":{"videoId":"11840028498667296749","docid":"34-9-11-Z75C877F0C231BF1B","description":"Rate-Monotonic Scheduling,Properties required by schedulability analysis,Processor Utilization Factor,Tests Based on RM Scheduling,The Exact Schedulability Test,Optimality for RM Approach...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/897749/e6459c2bca0971d48650e0d43ded63e9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xgIAHwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7MCDJ2S8a3E","linkTemplate":"/video/preview/11840028498667296749?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Schedulability Analysis and Optimality of RM by Dr. Saroj Hiranwal","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7MCDJ2S8a3E\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFgoUMTE4NDAwMjg0OTg2NjcyOTY3NDlaFDExODQwMDI4NDk4NjY3Mjk2NzQ5arYPEgEwGAAiRRoxAAoqaGhyYXBuZm13dXpocXF3Y2hoVUM3OHUyNkRDdmNuVENQZEZHZFpzczF3EgIAEioQwg8PGg8_E40GggQkAYAEKyqLARABGniB9Pz2_gH_APgHBQkAB_0CAAT_-Pj-_gD5_PEDBQT-AAH9Dwn_AQAAAP8CBf4AAAD1AQP78_8BAA4EAf4EAAAAFvgQ-fcAAAAIDg0H_gEAAO3-9PkCAAAAHgMI-_8AAAD3-A3yAAAAAPkDDPsAAAAA-Pnz9wD_AAAgAC2FQdE7OBNACUhOUAIqhAIQABrwAX8H6gLFLwT-VQzgAPEq7QCjE_MAFh3oALb39QDMAukAGRflAO7oAQD5CB0A7RXr_zjm8v4k6fgANff6ABH-_QDyDQoAFvz6ADEK8gD_9un_7_oBAA_sCwAS_AkA_xQO_goUBAHfB-EAFvMAAAf9DQTyCBMECOsR_vf6AvzyDgEECwECAwbrGfzqAgj34A4HBPr6__wD-v4C--QCBgsVBPf-5xH9IAn8AiHzBAUX8ev78wEHAAX48vwnFB4H9PvoCBrtBQII-vf-1yAJBB_0FQD0AQ35AfgQCBgP7v8S8BX73fkE_vgVB_3-7AUD9xAJ-SAALakURDs4E0AJSGFQAipzEAAaYC30ABMZCezNSkDp4PcYBPrt9PIr8h4AJdX_Eej86yMoAalQ-P9BAQH3owAAAPbP3y0aAOty_wHF6OgBFNbr6xz9f1cnOMPnFwXqysUbFc4d1Sf6TAD1-K3_SM-l9CI-9CAALRMrHzs4E0AJSG9QAiqvBhAMGqAGAACQQQAAwMAAAGxCAAAgwgAAfEIAADhCAACaQgAAAMIAAADCAAAAQgAAgEEAABTCAAAEwgAAwEAAAEhCAADAQAAAiEEAAMjBAACoQQAAiMEAABTCAACQwQAAKMIAANhBAAAowgAA-MEAAOjBAACcwgAAVEIAAOBBAABQwQAADEIAAKjCAAAAwQAAzsIAAJBBAADAQQAA9kIAAKjBAAA8QgAA2EEAAARCAADoQQAAJMIAAEhCAAAAwwAAIMEAAGRCAABoQgAAAEAAADjCAABAQQAAoEAAAABBAAAAQQAAiEEAAOTCAAAEQgAAQMEAAFBBAADwQQAAzsIAACTCAAB4wgAAYEEAAGTCAABMwgAAgL8AANDBAAB8wgAALEIAALRCAABYwgAAQEIAAIjCAACIwQAA8MEAADjCAAAAQQAAqEEAAPDBAACsQgAAEEEAAIxCAACoQQAAyEEAAJhBAABAQQAAaEIAAKDBAACAwAAAlEIAAEBBAADAwAAA0EEAAMDBAACIQQAA4MEAAIBCAAAMQgAAaMIAALBBAAAkQgAAcMEAACzCAAAQQQAAwMAAACBBAAAAwQAAKEIAAJBBAAAcQgAAkMEAAJjBAADgQAAALEIAAIDAAABkwgAARMIAAKDBAADwwQAAKMIAAGDCAAAAwAAAEMEAAKBAAAAAQAAAYMIAAABAAACAPwAAcMEAAPDBAADgQAAAFEIAAKjBAADIQQAA-EEAAIDAAABAwQAAuMEAAABAAACAvwAAJEIAAEDCAAAcQgAA-EEAADjCAAAAQAAA4EEAAFzCAAAswgAAJEIAAEDAAADAwAAAQEEAAFTCAABEwgAAgMEAAEzCAAAQQQAADMIAAIBBAACYQQAA4MEAAIBAAAAwQQAAQEAAAIJCAACAQgAAMEEAAIA_AADoQQAAAMAAAEjCAAAcwgAAkMEAALhBAADQwQAAqEEAABBBAACYwgAAhsIAABTCAAAUQgAAWEIAAFzCAABUwgAAXMIAAJhBAABgwQAA4EAAACzCAADgQQAA6MEAADBBAAAUQgAA4MEAAAAAAADAQAAAgMAgADgTQAlIdVABKo8CEAAagAIAACQ-AABsvgAAgDsAACw-AADYvQAAQLwAAOA8AAABvwAAUL0AAHw-AAAcPgAAqL0AACw-AAB0PgAALL4AAKC8AAAQPQAAUL0AAHA9AADSPgAAfz8AAFQ-AABAPAAA2D0AAAy-AABUPgAAgLsAAFC9AAD4PQAAQDwAABQ-AACmvgAAlr4AAMg9AACqPgAA-L0AAAw-AACIvQAArr4AAPi9AAAsvgAABD4AADw-AAC4vQAARL4AACQ-AACWPgAAhr4AAIg9AADWvgAAHL4AAIg9AABsPgAAND4AAIA7AACIvQAAJz8AAIK-AACYPQAAmj4AALg9AABAPAAA4DwAAIK-IAA4E0AJSHxQASqPAhABGoACAABwPQAAdD4AAOC8AAAzvwAArr4AAEQ-AACIPQAAoj4AAOi9AAD6PgAAcD0AABy-AAA0vgAAVL4AABw-AADgvAAAmD0AAEE_AACOPgAADz8AAKC8AACAOwAAmD0AACS-AAAUvgAADD4AAKC8AAAkPgAAXL4AAFC9AACYvQAAcL0AAGw-AADovQAA-D0AAAS-AAAQPQAAXD4AADy-AAAEPgAA6D0AAAw-AADovQAA2L0AAHC9AABMPgAAf78AAAS-AABwvQAAqD0AACS-AABQPQAAgDsAAII-AACSPgAAUD0AAIC7AACovQAAUD0AABC9AAC4PQAATD4AAMg9AAAUPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7MCDJ2S8a3E","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11840028498667296749"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17413450433767128710":{"videoId":"17413450433767128710","docid":"34-6-2-Z97BA36229198C68D","description":"#fundamentalanalysis #technicalanalysis #investyadnya #yia In this video, we have given a comparison of Fundamental Analysis vs Technical Analysis. Fundamental analysis is a method of evaluating...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1611928/226310f1f84c39985f7731434115882f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9OLj7AAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DN5wCtvRNSZ0","linkTemplate":"/video/preview/17413450433767128710?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Fundamental Analysis vs Technical Analysis | Parimal Ade (with ENG subtitles)","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=N5wCtvRNSZ0\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFgoUMTc0MTM0NTA0MzM3NjcxMjg3MTBaFDE3NDEzNDUwNDMzNzY3MTI4NzEwarYPEgEwGAAiRRoxAAoqaGhkdnRxdHpzYmN5dmRtYmhoVUNQb2hiU1lxNElYaHYweXhpeS1zVDRnEgIAEioQwg8PGg8_E7MEggQkAYAEKyqLARABGniB_QL7-fwEAPn--QQMBf0BBwMJCfj__wACCPv9_wT-APkKC_n_AAAADAX7AgIAAAAE-_wL__0BABH_8AcCAAAADPr5_P4AAAAGC_r9_gEAAP_8-_8D_wAADP79AQAAAADwBAT8_v8AAO3-BQwAAAAAFvP_DAAAAAAgAC2I7947OBNACUhOUAIqhAIQABrwAWwE_AG_-g39Igr0AO4V-wGBBQv_IfjvANcBCwC0Afn_-R70AeLfDgAHBSoAAw37_xME4P9A_BIA_uUM_xsO9gAOBgUBWfX1ADD18QADBd0AAO4SACf2_f8d6gUAFBTmABUQAv7bBM7_7f0EAAzfBAQd_AYFDgMFBff6AvzoGAAC6gD9AAsDBAD6Avb97CQaAQH8DQLoDhL99-vwBAwa6P8UBfQAHPb1AAwR_QDu-vL-7ib1_Aoc_f4U_wf99A8E-gPhAvgS6_cBBiAJByLdDQEG5QoF5vkC-AMK9gIC-P78Fvb9Aer2AgL3DgUC5PoAAiAALW4nSDs4E0AJSGFQAipzEAAaYBQGAAYQJ-vdDiT3Iwjr7gAa6AMT5A0A3dcA_QnpyREb47zsEgBGyAQIuwAAAAX-8iYJAPlaCATmE_AG_tCx9kHofyscDdnZBeHV59st_OXx7usVFgDv_r4SL9ypMgsoDiAALWgKQTs4E0AJSG9QAiqvBhAMGqAGAACwQQAAsMEAABhCAAD4wQAAdMIAAJDBAAAUQgAAIMIAABDBAAD4wQAAdEIAACBCAAC8wgAAJMIAABxCAABQwQAAiEEAAMDBAAAgwQAAQMEAANhBAADgwAAALMIAAPhBAACOQgAAEMIAAPDBAAAowgAANEIAAJZCAACYQQAAgkIAAHjCAAC4QQAAfMIAAOjBAAAwwQAAkEIAAAAAAADgQQAAgMAAACBCAAAUQgAAAEAAAPBBAADwwQAACMIAAKBAAAD4QQAA8MEAAKhBAAAQwgAAEEIAAExCAACMQgAAGEIAAILCAABwQQAAGMIAAADBAADoQQAAoEAAAKLCAAAUwgAA8EEAAKBCAAAkQgAAyMEAAIjBAACgQAAAAEIAALjBAACAwQAAikIAAKBAAACSwgAAYEEAANjBAADIwQAA0MEAAPjBAADAQAAAqEEAAMpCAAAQwgAAoEIAAJjBAADgQAAAyEEAAGDCAACgQQAAcEIAAIBBAAAAwgAAAEEAAL7CAADgwAAAQEEAAGBCAAC4QQAAkMEAAOZCAACgwAAAaMIAAJTCAAAAwgAAAAAAAKDAAAB8wgAA-EEAAJ5CAACAwQAAAMIAACzCAAAoQgAA4MAAAHzCAAAwwQAAIEEAAFjCAADgQAAABMIAAEDAAAAUwgAAkEIAAGRCAACAPwAAqMIAAMBBAACAvwAA4MAAACTCAADwwQAAYEEAAIBBAAAQwQAAsMEAAChCAAAcwgAAwMEAABDBAABcQgAAAMIAAGDBAABgQQAADEIAAMDBAABEQgAA0MEAACBBAACAwQAA6EEAAEBBAAAYwgAAYMEAAAhCAACAwAAAUMIAABBBAADyQgAAgsIAACBBAACwwQAAPEIAAJBBAABAwQAAOEIAAAxCAAAYQgAABEIAAFDCAAAAQQAAwMAAAADCAAA0QgAAUEEAAChCAABAwAAACEIAAMBBAAAQwQAAQMEAAJDCAADoQQAAoEAAADTCAACKwgAAkEIAAEjCAAAAwQAAoEAAAAhCAACAvwAA8EEAAGhCAAC4QQAAIMEAAAjCAABkwgAABMIgADgTQAlIdVABKo8CEAAagAIAAFS-AABcvgAAND4AAHA9AACyvgAAoLwAAHC9AAAHvwAAgLsAABy-AACKPgAA2D0AAPg9AADgPAAAsr4AABS-AABcPgAAuL0AAHQ-AADuPgAAfz8AAIC7AAA0PgAAMD0AAFS-AACoPQAAEL0AAPg9AABwvQAA4LwAAFw-AAAQPQAAnr4AANg9AABAvAAAuD0AAEQ-AAAwvQAAjr4AACS-AABEvgAA4DwAAI4-AAC4vQAAoDwAAJg9AAB0PgAAPL4AAKg9AAAkvgAAJL4AAHA9AACYPQAARD4AACy-AACIvQAAOT8AAOA8AACYvQAAfD4AAOC8AAAsvgAAgLsAAKA8IAA4E0AJSHxQASqPAhABGoACAAC4vQAAoDwAAIC7AAAJvwAAor4AAMg9AAAsPgAAhj4AAIC7AABcPgAAqj4AAOi9AABQPQAAfL4AADA9AADIPQAAmD0AAE0_AACgvAAAhj4AAO4-AACIPQAA4DwAAPi9AACAuwAALD4AAKC8AADOPgAA4LwAADS-AADIPQAAEL0AABC9AAA8vgAAuj4AAEC8AADIPQAAdD4AAMq-AACovQAA4j4AAMi9AACYPQAAbL4AAFQ-AACgPAAAf78AAFQ-AAAQPQAAnr4AADS-AABcPgAARL4AAJg9AADiPgAAFD4AAKi9AAB8PgAADD4AAFC9AADIvQAAFL4AAFQ-AAB0PiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=N5wCtvRNSZ0","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17413450433767128710"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2458122330420486684":{"videoId":"2458122330420486684","docid":"34-10-0-Z9A95D894A6CD3520","description":"OIM Analysis™ has been established as the premier microstructural visualization tool for interrogating and understanding EBSD mapping data. Analysis options include comprehensive greyscale and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1600117/40f206b5bb11f82589df12ce5d6fc2b8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/4jf6CgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DyMULpLThiAo","linkTemplate":"/video/preview/2458122330420486684?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Optimize Your EBSD Results Using OIM Analysis™ v8","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yMULpLThiAo\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFQoTMjQ1ODEyMjMzMDQyMDQ4NjY4NFoTMjQ1ODEyMjMzMDQyMDQ4NjY4NGqIFxIBMBgAIkUaMQAKKmhoZW16aW9jdGZpdm9lamNoaFVDX1pheHZZQ1ZMYmZTcWl3QU1JVkc0QRICABIqEMIPDxoPPxPeHIIEJAGABCsqiwEQARp4gQIFBfcG-QD2_Qn9-wT_AR0AAQv0AwIA8hP5AwcC_wDm_BIFBQAAAO0KAAEAAAAAAPrwDvj9AAAQ_P4EBAAAAAf5_f_5AAAACwf2Cf4BAAD48gzvAgAAABQJA_L_AAAA_xP-A_7_AAD9EfICAQAAAAb5-f379P4AIAAt-rDAOzgTQAlITlACKoQCEAAa8AFkBQoA197RAPoJ8ADtF-oAgQAC_wbyBACW8wwB5wsFASYp-gHc1xH_FBoDAOH_8P83FPIA4AwaAPn7I_8jBg8ABv8OAeHmJgAn_OwB7dbyANXX_f3j4OwBBPQY_9b_9f4hCuz9Khfv_8wY-QHU3QUEFP73_SHQCwEyHwMBGzEM_uYP9QXj-QgFLP3l_vjvDgbY9uP-IPz8__HD-QL-Ggr5H-vwAiYp8QEx_QEEAi0A-QsJBfwgA-v9HwbvAR8X9AHh_AgGIvEH9RgWDvgIDAMEDuMbAhcT9v32GPn4KfD9_wcp-_blEgj1sh75B_DgBQEgAC2_TyQ7OBNACUhhUAIqzwcQABrABw1wAb-WP588Fr6uvSanhj0fOPy7gTL4O_gzPLyHSzM9xMGUuz6py71hZJM8IjYYvQ3jtr4GLm-9azPnOzsZbD6uDOo8gowlPMZvir7fafQ71WgoPfXxcL7__oC6HKZMPSZnsj2zMQY70dObPNaiLz1UPfS82qQqu3xi_T33fpm8V4uZvH2Xgr1lRks7LYCEvNfqwT038JS9CekfPO2viD2D7hy9Ltpru27rPT2AwJy7RKqDvNLOj73nKaG8EN_wu4_97D20FWU9_GRguggoaD1Yrz295VluPOVeAL1NmLq82P9vvIx4Dzrw4wO927IyPF1OLj0xA_q8rXesOxfF4Tx1enk92sh1PLtLHT24bQQ9E3HEPFD-rry9EFw9moKQvKwDQL1Tvpa84Nz6PBOCdT5eqJe9CspmunoApjxi4FS9xB9JO6BUVjyrmhs9cNY7vFVkiT32l909mPJGvEdiOLxtG4Y8JzKUO6smozxUUBO8J7jcuyJlpT0xNj69aOc0PCFfPb1HMnU87k_Su7YDoruSWNK8J03Fu8g0RD1mF5c9PpcpvHzQ2DvRgf672lDWuqOmgryw7s48KXaTO-cWH72NR6m8-QOzuuvm_bztT728EdecO3vRuD0cH1K73nooPAmZVT2qR5o8-QkQvEWAkzxPMC09be2zO2j2Dz3iirC8spRyu9_55T1NlIy7eSvgOo0jezxV7zq8sJFBO_NZ3j1u9uw8-oGcuM8ElDw0eo-9J5kIuiuaWD2BIdA8sK6iuUDWgbp_yIa9ux4bucbgYbwJTuA6miMvu6d1mzy_Oli9hQVFtjoBDztXAzm8CnQfOjRlpzxTDEo7RBdZuWblLb1JdEC9pV-zOYOdpz31jR698kcsudhblL3EPia8kpHUuvFCoTt1YHQ9pbhsOVrkLb1wJgY9N5S1uEXqhz2V9LA83mj0t2Gog7w3eWA9U8H1t7FVG7y01oa89h5ruBDf07xD_Ak7jExotznlm7x9b908GLf8t-cfOD0P77k9tGi5OOUOGztlcNK7GCdnuK6DXrxrg-68OSgOOKYuFL0n7kI9umgJtwf8K73Z3XK9DjYqOMJL8D0GzMu7_sA1OZuvbT0z4p28V-abNz1brLyRIQy9eqxAOB-fAD6k5JC9Feg6uSdpXToLFyi8GalIuGapED25a-48qtKmNl70lbwA8Wm9kFZJtR2XDD1JD0O-VDFNuUBNLTy0a2w9frvBN-IYrjxvpaI9TCdSuE63bDzGJmO9RdoMN-6cgT1WzsM8M00nuCAAOBNACUhtUAEqcxAAGmAL-wAI4CX85Ckx_Prk4Av1BtrTFM0PAAHPAPb58f30C8jLMAMAJwoc_7oAAADo__AJ3AADWe732w_pEuGoyvJD-n866hXc3QMI0OUGCRnf-fzpJyYA_AXK9UPTuAkGKSggAC37QkA7OBNACUhvUAIqrwYQDBqgBgAAAEEAAAzCAABAwQAAQEEAAOBAAABYQgAAAMEAAHTCAABAQQAAoEAAABBBAACMwgAArsIAAEBAAABcQgAAcEEAAGRCAAB8wgAAEEEAAMjBAAAAQAAAFMIAAHBCAABAQgAAYEEAAKDBAAB8wgAAcMIAAADCAAB4QgAAwMAAADBCAAAgQgAA6MEAALDCAAAgQQAAMEEAAKJCAAAAwQAAgEAAAFDBAACYQQAAgkIAABDBAABwQQAAdMIAAMBAAAAcQgAAoEEAALhBAADYwQAAcEEAAIjCAAAwQQAAqEEAABRCAABEwgAAMEEAABzCAACQQQAAJEIAAHzCAAAIwgAAgMAAAI5CAADQwQAAAMIAAMBAAAAIQgAAFMIAAAxCAAAIQgAAbMIAAChCAAD4wQAA8MEAAKrCAACwwQAAEEEAAIhBAABEwgAAmEIAALhBAAAgwQAAgMAAADDBAAAMwgAA4EAAAHxCAAAgQQAAiEIAAIhCAACgQQAASMIAAAAAAAC4wQAAcMIAAChCAACaQgAAJMIAAJDCAABYQgAALEIAAJDCAADQwQAAFEIAANDBAAA4QgAA0MEAABhCAAAEQgAAMEEAAHDBAAAsQgAANEIAAPDBAADIQQAAOMIAAIC_AAA4wgAAgEIAAMjBAAAYwgAA4MAAALDBAADQQQAACMIAAKhBAACAvwAA2MEAAJLCAAAAQQAAMMEAAABBAACAPwAAOEIAAFBCAACCwgAA6EEAAHzCAADQwQAARMIAABzCAAAYwgAAAAAAAEDCAADQwQAAyMEAAJJCAABQQgAApMIAAIhBAAAcwgAAIEEAAHBBAAAUQgAAAEAAAHzCAAAEwgAAkMEAAADBAABAwQAAKMIAAODAAAAAwAAAUMEAANBBAAA0QgAAiMEAANhBAABsQgAAOEIAAEBBAACKwgAAgEAAAI7CAABgQQAAAMEAAHxCAABQQQAAwMEAAAzCAADgwQAAoEEAAAxCAAAcwgAACMIAAATCAAAAQgAAyEEAALbCAAA8wgAABEIAAIrCAAAQQQAAoEAAAKrCAACQQQAAZMIAAKBBIAA4E0AJSHVQASqPAhAAGoACAACAuwAAuL0AACw-AADgvAAAZL4AAKC8AACIPQAAAb8AAFS-AABAvAAALD4AAEA8AABQPQAA4DwAAES-AABEvgAAmD0AAEA8AAAsPgAA0j4AAH8_AABEPgAAoDwAAMg9AADIvQAABD4AAHC9AAA0PgAAZL4AAIC7AAAsPgAAZL4AAAS-AADoPQAAqD0AAIA7AABEPgAA2L0AAK6-AACgvAAAVL4AAMg9AADIPQAAmL0AALi9AABQPQAAPD4AAES-AACSPgAAQDwAAKA8AAAsPgAArj4AABw-AADIvQAAcL0AACU_AADovQAA6D0AABQ-AAC4vQAAiD0AANg9AACIvSAAOBNACUh8UAEqjwIQARqAAgAATL4AAOA8AAA0vgAAD78AABC9AACGPgAAiD0AAFA9AADIvQAAqj4AAOC8AABQvQAAyL0AAPi9AAA8PgAAQLwAAKg9AAAzPwAAuL0AAMI-AABwPQAAoDwAANg9AABwvQAA4DwAAII-AAAwvQAAyD0AAEC8AAAQvQAAUD0AAEC8AACAuwAADL4AAIY-AAAwPQAAgj4AADw-AACWvgAAJL4AACw-AAD4PQAA2D0AAFC9AAAQPQAAoDwAAH-_AAD4PQAAQDwAAEA8AADgvAAAdL4AANi9AABkPgAAnj4AAKg9AACYPQAA6L0AABC9AAAcPgAAiD0AAEA8AABMPgAAHD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=yMULpLThiAo","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2458122330420486684"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"506651397127346226":{"videoId":"506651397127346226","docid":"34-3-12-Z2CA2CAC4FDFD1A09","description":"🔥1000+ Free Courses With Free Certificates: https://www.mygreatlearning.com/acade... Looking for a career upgrade & a better salary? We can help, Choose from our no 1 ranked top programmes.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2352623/77ed46805f9455362f0497243a6dad7b/564x318_1"},"target":"_self","position":"7","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVs2bzT07GlM","linkTemplate":"/video/preview/506651397127346226?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Multivariate Analysis | Data Analysis Tutorial | Statistical Analysis | Great Learning","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Vs2bzT07GlM\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFAoSNTA2NjUxMzk3MTI3MzQ2MjI2WhI1MDY2NTEzOTcxMjczNDYyMjZqiBcSATAYACJFGjEACipoaGp0bnJ6aWJ1Z2lrYWFkaGhVQ09iczBrTElyRGpYMkxMU3licU5hRUESAgASKhDCDw8aDz8T1hiCBCQBgAQrKosBEAEaeIEEAv_5_AUA9QgA_QwC_gACCwD_-P__APQR-gIGAv8A_P8HAwEAAAAEBvcBAgAAAAH-AgP-_gEADAb1AwMAAAAYAv0A-AAAAAYL-v3-AQAA8u4J_QIAAAAW-_z-AAAAAPsEBP0AAAAA9QX2BAAAAAATAfkAAAAAACAALa2G4Ds4E0AJSE5QAiqEAhAAGvABdfkMAt0HAgDX-eAA7hX7AYEFC_8eEOsA1wELAJwI1f7a-_wA5vYDARX4LwDZ-g0A9_nz_0YTKALr7goAJwL1APMNCgBE-QwBJPf7ABXh-__mCQj-GQITAA7fBQEfGAb_MwgBAOHr2gDt_QQA9vcPABYKFQEKAhAB9QUJAe4O9QTWDwD-CxbuAfL58P8DHQf_DgrwAR4R4_73D_oAAPn7Bv0I6_8r9_D8FiQBAvX2-vnzAQYAHAP-Bwbs7_4IDPD_8QEF_Pzx5P_wBPz2G_0D_gH4EwjwCwkHC_7-_QwRAgX0EQf_5gIV_QAFCQEA-fb-IAAtbidIOzgTQAlIYVACKs8HEAAawAfBpwW_1JUVPHLD77xcVww9r0mSPDU1HLyazJ28612yvFzDFDz-Ddo9Xy1SPJz047ybHaG-RqGbvMhnqDzdJ58-Get2PZQNkDwoYea9vk5JO1dPdzz1oYO-PHfxOy7Flzvf4VY-fl8yvflLCz0cDEU-Vcy1uhDvFD1viwi9Q0cHuiPYGL34oRo8H4XrvbyRebwecP09d4Cru9HvGLsg6wk-xW3ZvKqZNbxXBwC-HyVAPLCMzbzk9_a8YxXnO0tq8jwr2fE9PX0EvS8BUzzu0DC9WHqIvIsqz7s7k5E9Qusfu2ZjSjwOBHc9C74jO94hhTw4oZA8zFiZPESL7LtsutQ7XZWaPQPoPTtGCuU9o5YgPFPN7jsSHTi8SUCWvG-PrzyH58C9IDaiPCWwubx9E5k9D3AUu0o_oztEFNM8R9KJPF8WyTytOkY92F6wPKKfhLxWDcI8aMU8PR6JuDtQCDM9Cb8avCRQVLuoFLC9JmMmvUl7C7ygvro9PVl7vJqhpzzVI809grxovLZYmzzWwcY9I5QIvHWgWjuszRy7xHacPGEQvbzRx987M92rPJdDAbyjpoK8sO7OPCl2kztMule9UeeAvPkyLLwCyIo9OIyNvRTHZLuZKc09rQiYPeNAlbdp9Z89acjlOMsI97uno029aYVuPUOKBTtl3xc8vco1PALNrTvm9oE8NalSPWGC4Dtsnjm9tMYlvbMqfDuDwEo9zM6muwA3C7vsQKe8IUqou8-3CTvQXwg96RAYPXd9fbkG8Ds9AMsGPGFN5Lm1WZC9GbQrPQJNkzib10I9XaAxOsKxYLoC7yk9zRm2vJ0lFTj-Lgc9fdksvV2SOblAuCe9432mPNyBIjpAhSM9GvBDvMmgsjmpBBq97wdXvX_mRboy4529GsCbPA_A9DjIg-M8dQzjPL4c2bfGsgu8b11WvHQwkLcPUia8YO7NukJYJzhBlHk8IsKeuso_TDci3XS817OQOw-0-LhJd9860yTCPAtdFjYAWhA71pdbPGu8KLgCZEi95AnKO1UJIrnTzwg8ZjHRvT5LlzZ3suU73_uLPVrn1Lf1orG9qGz9vGewmrjCdVu9ujDSvTbDu7VHj988x_XPPfjf2DgXiYQ9R31IPMw1AbhuMiq8_FarPOQoOLjLODo7KlwKPeuwgzcdEzM9iPF6Pc9XJjWttDa9D_60vKhKsLey6VI9R5W8PCzxzLfOfeY7PB-UPb0SvziJ8M-9k1G1Pe148bgv0lW84efkPGKkMrdf0ti8Sam6vJHqC7cgADgTQAlIbVABKnMQABpgJAIAJ_4iyvAoFt77AOnyEhbr9iLXIQDS9wDx-vDUDyTdvO4E_0L4KQm2AAAA_envJAMA-GP25vPr6PkJ1J7SK-d_DQAYxtUg_tji7iP3-_fp8E45AOfuwAY148kzFdIQIAAtMUw3OzgTQAlIb1ACKq8GEAwaoAYAANBBAACwwQAAWEIAAPDBAABUQgAAgMEAAGDBAADIwQAAyMEAAIC_AAC4QQAAEMEAALzCAABkwgAA-EEAAIDAAADoQQAAgEAAADBBAABQwQAA6EEAADzCAABAQQAAWEIAAHxCAACwQQAAFMIAADTCAACEQgAAtkIAAJjBAADMQgAAGMIAAADCAAA4wgAAgD8AAMDAAADoQQAAoMAAACBBAACIQQAAAMEAAKBBAADAQQAAwMEAAITCAAA8wgAA0EEAALZCAACgQAAAoMAAADDCAABAwQAAsEEAABRCAABgQQAAEMIAAMBBAABQwgAA-EEAAAxCAABwwQAAAMAAAFjCAAC4QQAA-EEAAAxCAABkwgAAjsIAAFBBAABYQgAA8EEAAHjCAABMQgAAoEAAAGDCAADQwQAAAMAAACBBAADgwQAAgsIAAKBAAAAIQgAAOEIAABBBAABgQgAA4MEAABDBAACQwQAA6MEAANhBAADwQQAAUMEAADjCAADgwQAACMIAAADBAAAkQgAAgEIAAKDBAABAwQAAeEIAAAxCAADqwgAAKMIAAABCAADCQgAABEIAABBBAAAAQgAADEIAACDBAAD4QQAAQEEAAEhCAACowQAAsEEAAIA_AABAwgAAssIAAKDBAAAUwgAAOMIAAGDBAACgQAAAdEIAAKBAAADAwAAAJMIAACTCAAAYwgAAmMEAALhBAABsQgAA0EEAAMDAAAAsQgAAiEEAAIDBAAAgwgAAkEEAAJBBAABgwgAAgL8AAAAAAADwQQAAZMIAAJhBAACQQQAANMIAAABCAAAUwgAAcMEAAFjCAAAAQgAAqMEAAAxCAACewgAAoEAAANhCAACSwgAAmEEAAMDBAACgwAAAgsIAACDCAAB4QgAABEIAAExCAACAPwAAIMIAAIBBAACAvwAAkMEAACRCAACIQQAADMIAAHDCAACaQgAAgD8AADhCAACYwQAADMIAAOBAAAAQQgAAAMIAAETCAACOQgAAMMIAAMDAAADKwgAAcMEAAChCAACIQQAAAEIAAMDBAABMwgAAQEIAADjCAABgwiAAOBNACUh1UAEqjwIQABqAAgAAJL4AABS-AAAkPgAAUD0AAHy-AAAMvgAAyD0AAAW_AAAMvgAAcL0AAHC9AAAQPQAAcL0AADQ-AADovQAAyL0AAIo-AACYvQAALD4AAPI-AAB_PwAABL4AAPg9AACgvAAAuL0AABw-AADYvQAA2D0AACy-AAC4PQAATD4AAPi9AADIvQAAQLwAADw-AAAUPgAAuD0AAKA8AAAcvgAAqL0AAFC9AACAOwAAgj4AAMi9AADIvQAADD4AALo-AAB0vgAAgDsAAPi9AADIvQAAUD0AAFQ-AAAMvgAATL4AAOC8AAAnPwAAMD0AAIg9AAAkPgAAmL0AADA9AABQPQAAPD4gADgTQAlIfFABKo8CEAEagAIAAIq-AACAOwAAEL0AABm_AAAwvQAAND4AALg9AABwPQAANL4AAEQ-AACYvQAAHL4AAHS-AAD4vQAAcD0AAHA9AAA0PgAANz8AAEC8AACKPgAArj4AAEw-AABQvQAAUD0AAAy-AABEPgAANL4AADw-AAC4vQAAuD0AAOg9AADoPQAAgDsAAIi9AABcPgAAMD0AANI-AAAUvgAAsr4AAES-AADYPQAABD4AAJi9AABwPQAA2D0AACw-AAB_vwAAoDwAAMg9AABwvQAAiD0AAKA8AAAMvgAAoj4AAIY-AAAUPgAAmD0AADA9AAB0PgAAFD4AAKA8AAAwPQAA-D0AAJg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Vs2bzT07GlM","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["506651397127346226"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5660679754488415141":{"videoId":"5660679754488415141","docid":"34-2-1-ZD4F97AA1EE2EAC2F","description":"animation, app, dotsub_education, edu, education, technical...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2835879/683acc88f339b231eda97f8c00eb6daa/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jneUwgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtWvnAfT4yAk","linkTemplate":"/video/preview/5660679754488415141?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Fundamental Analysis vs. Technical Analysis","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tWvnAfT4yAk\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFQoTNTY2MDY3OTc1NDQ4ODQxNTE0MVoTNTY2MDY3OTc1NDQ4ODQxNTE0MWqSFxIBMBgAIkQaMAAKKWhoZXN1aGVuZ2hscWtwZGhoVUNMQzRQdUZseUt3SzAzU2MyOVlMRUdREgIAESoQwg8PGg8_E7cBggQkAYAEKyqLARABGniB9wT6_voGAPn--gQMBf0BBwMJCfj__wD2B_z__wL_APICDvsGAAAABAX3AQIAAAAE-_wK__0BAAwC-A8CAAAADPr5_P4AAAAGCQEJ_gEAAPn39_0D_wAADP7-AQAAAAD4Awv8AQAAAPcG_gkAAAAAEfsAAfz1_gAgAC1aVOQ7OBNACUhOUAIqhAIQABrwAX8AGgO7Cu_-9_MEASH1CgGnEvMALhfpAMgRAQGeCNX-7A4cAPj8EAAP7xwAzRIGAPP_BgAgAiMAFvkVAC0BEQDqEC0ATAcFAg8HCgAU7wD-CQoG_xL5CwAX4RIBBxEB_hjgCv_95ugBGhz4AvfzGAIoF_kA4Qoc__oE-AHVCggA6wz3BCYHEQAV_Or_Ax0H__37-QTuCfT56fcB_-wSDwEF9f378PHpAf0f8AL19vr5HQwL-R8VAfz2AOUFCRAOCPsJ_vcFCPMF7_v3-xwQBAMR9_z8-gUC9woX9vT-9vD89BAH_-0MAgUADwgQ8_j6_yAALR4eSzs4E0AJSGFQAirPBxAAGsAHjPb4vl4CJjzxDeq8GKmgO3f8sjzDiR47TTiavdCkYrtIwRO97rK_PbewUz1WNVe9-MGBvn_o-LxEaU89Ub-LPh1sFj2b6HM9v0T8vZh19byCWfy8FAdQvpN2fjyKmh69B5oPPlbehLxFeMU8ILQuPhMvKr29qF08zvoUPamVE72UOVG9-KEaPB-F6728kXm8KeimPT0vgL3_Py49L1H9PbEFYLqfq628j1DzvfVRobwwlSO9mSntvdUpCzzyobo8HejBPYb8frnqSY88PKwmPODWnTz-eiq8zZpOPcfTF71FgFO8cbW5PfonOLxP6gu9caSdPSQG5jxASQW8mhWAPCFY9T2Kx0W85Ib_PTl29TyMb548ofLvvQmZdbw2Jp88x9TdvaY3bTwElas7asM8PaU6k717TwQ8meJgPDXpOz05nxM8oZFZPf47rLzJ1xS88KCbuy05Uz2u9Fo8H8QpvAnK6bqSy2K7Ko4jvbcYkr0Sv3-7nPrgPUD9Ar0Mddg7xsHlPR1Vjb2M__G6IZ_GPWLMJ70Kzgc8X2OSPagafztqkDg8CxJ2Pd2hdjtbiW27oH1GuuTdyzvt85S5KHbZvFcIq700iIu7QdgJPUJYor3kPyK6uQAvPdnP4j3Hd7U6TyeEPcbuCjwCy1u8ofwYPdF8ST12Kio8OHGovBliC72lOpE6Qt0RvTnSCT7b0lA68VZMvEwS8Lw2Y6g7wW2zu48cabxmlJm7NA6au43AzjzNJ4s5EWBHPOPpkD1bADA5ZrZQPYnu2b0hlb05AbuPvYeSv7z2QH04naANPXCQVT0lwIi5BF-HvMWaIL1G4T85NJP5vH4sLj0s3eO4IJiTPTaDDbviGvM5JCYtvbQjEzv6bN24Ph_KvHVcCD2mezS54KJOve5IoD10Cvu3sPOwPRPffTsTLJ-3JhgOPZMFh721cgW5-acvPGIgmby9kO24E4gyPO1KpjwoIag497b0vHlWNz2curK4efmpu6clxj3Erv-4NWIhvTmmXTyE0MK3Hp7Ou_yUGT1rbM63sRODPLaxs70Vqek4yUM6vB9Zmj038wY3Kr7LvaiyPr3nRpU3TdpUvYb3lr03gwG34ZaPPOnipT04DLA4bBPdPJBSJD2Ldek4lcBBPXu80DzELwq5KgQPvIwiVT2WUtw35R-wucPArTrs5882CjWePBm3J71pc503YBvYO2HdXT0Pgpi4qFO-PSJ0qzxXKZw4KGXSvTYdgT31H9S4LWclvJ7iwj2wfCu4wHJpvfg7r7xQuLS3IAA4E0AJSG1QASpzEAAaYDMBABjhUe3cMVDZCO_h6PP_0dkN4Bb_3u__-OzGv_4o5Lbe9P9VzS0SnwAAAOL33DrgAPh_4zTqKhP2Iear-U7XcDMoD9Hg2eDQ8P8k3MX6-dUbLADb7q0xUM6WWyswGSAALa5lEjs4E0AJSG9QAiqvBhAMGqAGAAAgQQAA4MEAAJRCAABgQQAAoEAAAEBBAAB8QgAADEIAAKLCAADgwAAAikIAACDBAACAwQAAoMEAAOhBAACAwAAAUEEAADDBAABUwgAAQEAAAChCAABIwgAAgEAAAAAAAABQwQAAmEEAAFTCAABgwQAAGEIAALjBAABwwQAAcEIAANLCAAAQwgAAXMIAAIjBAACgQQAAuEEAAKpCAADoQQAAAMEAAIhCAADYQQAAdEIAAJhBAACgwQAABMIAAIC_AACcQgAAuEEAAKDBAAAAwgAASMIAAKDAAAAcQgAAlkIAAAjCAABAQQAAyEEAAMBAAABAQAAAmMEAAODBAAAgwgAALMIAAIBAAACowQAA0MEAADDBAAAgQQAAREIAACBCAAC4QQAAuMEAAAjCAACywgAAqMEAAHDBAAAAQAAAtMIAAIrCAAA4QgAA0EEAAADAAADwwQAAoEEAAJBBAAAYQgAA2EEAADzCAAA0QgAA0EEAAChCAACEwgAA4EEAANTCAAA4wgAAfEIAAODAAAAkQgAA4MAAAMhBAAAQQgAA6MEAAEjCAADQQQAAYEEAAABCAACcQgAALEIAACxCAAAwwgAA0EEAAJjBAABIQgAAIEEAAAhCAADIwQAARMIAAHDCAABIQgAAUMIAAIDBAAA0wgAAUEEAABBCAACAPwAAgMEAAEjCAABgwQAAQMAAANhBAABcwgAAwEEAABBBAADAQAAAoMAAAOBAAAAAwgAAsMIAAKDAAABAQQAA8EEAAChCAADYQQAAEMEAAGDBAAAgQQAA-EEAAPhBAAAwwQAAhsIAABBBAAB0wgAAVMIAADDCAACGwgAAwEAAALDBAABEQgAAPMIAACBCAAAwwQAAwMAAAIDAAAAwwQAAvEIAAAhCAACIQQAADMIAAMjCAAAMQgAA2MEAAFBBAABwQQAAyEEAAKhBAAAEQgAAgD8AALRCAACSwgAAAMAAAJDCAACAQQAAQEEAABhCAACgwQAAxkIAAADBAADYQQAAjMIAAEBAAACwwQAABEIAAEDAAACIwQAAUEEAAJDBAACowgAAiMEgADgTQAlIdVABKo8CEAAagAIAAJi9AABUvgAAij4AAPg9AACevgAAHL4AAAS-AADSvgAAqL0AAOC8AABcPgAAgDsAAMg9AADYPQAAXL4AAKi9AABcPgAAgDsAAGQ-AAC-PgAAfz8AAIi9AADgPAAAHD4AAEy-AAAQvQAAQLwAAFA9AABAPAAAgDsAAMg9AABAvAAAFL4AAFA9AADIPQAALD4AAMg9AABEvgAAXL4AAHC9AACSvgAATL4AAHw-AADovQAAML0AAOi9AAAsPgAA2L0AAMg9AAAQvQAAgDsAANg9AAC4PQAALD4AAAS-AABwvQAALT8AAIi9AABQPQAALD4AADA9AAD4vQAAyD0AAPg9IAA4E0AJSHxQASqPAhABGoACAABwvQAAiL0AAKC8AAAfvwAANL4AACQ-AADIPQAAhj4AALi9AACWPgAAPD4AAPi9AACYPQAAFL4AAKg9AACgvAAAgLsAAD0_AABQPQAAhj4AABQ-AABwPQAABD4AAFC9AABQvQAA4DwAABA9AAA0PgAAPD4AAPi9AADgvAAAQLwAAIA7AABUvgAA6D0AAHC9AAC4PQAABD4AAGS-AACoPQAAHD4AAMi9AACAOwAA-L0AAIg9AAAMPgAAf78AAFQ-AAAcPgAAcL0AAAy-AACYvQAAcL0AAKg9AACqPgAAiD0AABA9AABQPQAAFD4AAEC8AABAPAAAJL4AAKA8AAAsPiAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=tWvnAfT4yAk","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5660679754488415141"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15337004660909585554":{"videoId":"15337004660909585554","docid":"34-11-4-ZB572F06D2D7937D8","description":"New investors often ask, "How do I know which stocks to buy?" Don't just guess—learn how investors can use financial statements to help determine the best possible investments. Subscr...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4238826/153f0f10c6318a3b48700f8f459220b6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mLIvRAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3BOE1A8HXeE","linkTemplate":"/video/preview/15337004660909585554?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Investing Basics: Fundamental Analysis","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3BOE1A8HXeE\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFgoUMTUzMzcwMDQ2NjA5MDk1ODU1NTRaFDE1MzM3MDA0NjYwOTA5NTg1NTU0atUQEgEwGAAiRBowAAopaGhjaW9hd2x6aHVmd3BjaGhVQ1RvZTNkc3BaeXcyTF9KWS1KbVAzTXcSAgARKhDCDw8aDz8TygKCBCQBgAQrKosBEAEaeIH7AAH6_wIA-_4C_wME_gEQCAML9gEBAAAJ7_4DBP4A-QoL-f8BAAAFDvQKBQAAAA_7_gv3_wAADQL4EAIAAAAZAv0A9wAAAP4G_gr_AQAA8vP49QIAAAAM_QQA_wAAAO0OCf3_AP8A-gIEBwAAAAAP-BAMAAAAACAALVkm1zs4E0AJSE5QAiqEAhAAGvABYgcYAfAFEwLkBwcA-RjkAYEFC_8-AP4Awg4PAb8O2P_gFQQA3e8LAAcFKgDRFjH_BPnzADYMDQDu4hT_LgERAAwRHAA76QoBNxPlABvq-P8PDCP_J_b9_xjgEgElC_D_EAAg_uL46wD5AfkFD-sAAR8h-wMKFw8BAfv6_84oDQHqAP0AIer__egD9_rwCAED-fTq_fIC9ATfBOwCCvcHBfkF9wAL-voFHAkFCgAG9_zt6A36IhEMBfYA5QXvEvj37yMGAxMJ9_wHE_QF--oB-AnzBQbq-wEHAgPy8-P7B_rgDwwE6xIS__IGCAUJ8fwFIAAtbidIOzgTQAlIYVACKs8HEAAawAeJCfK-766OvD0W0bwd4kQ8QiEiPSfAsDztftW9O-qDvOeUW7x2Ggk-WwA_PaQN0byz8HW-x9CWvEVkQDn-1Ys-IMSfPIapMTu6ngi-1mDQOsmEKTwx6iq-unDWOkESEb1HyFA-Sqc_vF9SRjy1awI-xJNdO6BYo7v9s-67-HptvWMWcL30Hy09P7m3vZ4_Er0Fw_k9MYtavQuIHz14JTk-ohEJPHZyALwYQPi9Kjt9PEXPtTu6EZa9GTwIPL59Bz29jc09SpmUvEnvAL3_LCw9tOZnPdQWsjtLLI89W4p1vHMXm7uBiYk9hBJBvJWsVLzSo449maQNvVDfsjyoyCG-AnwcPejpbTzdtBk-PRbRPANg-rv8ShG9QTZ_vK4MqjxiTiu99H3Au8M0AjzfiK49BIkSPE4YILw8lDI8St-aPJ5rrTs4fZI9H56lPO8hPLyRxP27NNDhPN3hgLyX3uO87vHdPKVhvrsqjiO9txiSvRK_f7s7xQo-VoMrvV_w5TuPVP89XRjpvfVQNrwXU589LTiou2fQ8TuVq6k8Ch4VvSmwwjsvdQY9fnttvQIw-bqh-KE9HjiCPb-24Ts5xXS8qM45vSGz8bsDvSY9NL_1vJRQuDt-wxQ-EQINPTkzjzrbLnq7L_-6Owa5TbvLmOe8Wg25PeyMiDu2vDK9K9YVve6udbs1Iv282XZavBs-djpfLp29-cR1vfTKwTgX3os9IpnAO7cokrsuzoO9YQgvvaioyrm8e3s9pHGIPbFawbn3nqE7PxCqvTjs7bcK9wo9zwYqPfatvTlUNuw8WVY1vdzFIzlRbqY9SmxtveaCBjl9vjy9swH9PD-MSbmfidk7MKdfPZXJ4DjWd7i7JoqAPYqmlDjvuR292FeovG86IboezlK9c-yFvPwaFbm3JKw8H7kVvdMaDTl30Da95hBnvaN-TTlDFZO97hyxO9JD3DlDEsc8TRC1PLW7gzjanmq8baQRPSFriLjd81c9x1dRPQd6Hze50Kq7XI0svSSlfbhjn7o7Co6BvJFQwLewLjg85nZPvRktnDiYvKI7IuuAu1lwwDgqvsu9qLI-vedGlTeOiLU62cpwvf8JZzeLUde6NadcPZSiQTiWSFg8rkjMPB9HUDgCasU88uB4PXIp_biU_Y68xAF5PdkGw7e77YK8l-ahvfo4_7fQJQG90ES7O-Uw0Lechsk7cDIAvcMdGTchMrY8OznjPQQbBjkYJzm9lEOlPWWUx7hvvQG9j4mUPTSh2zdy8ky94R5QvQHSDbggADgTQAlIbVABKnMQABpgLv4AJP46yeL0N_QPCQb3__nG40rkCP_b___gCMvY1ALeqNUD_2DkLOmgAAAA7SboO-oA_3_n_dIQ0Bzss7YBOsl_TwMe3efR9dr-LEEP3tbr0ypqAPIHsgRB_Y5SERwkIAAtomMROzgTQAlIb1ACKo8CEAAagAIAAPi9AACKvgAAcD0AAPg9AABkvgAAgDsAAEC8AAALvwAALL4AAEC8AACYPQAAbD4AABS-AAAcPgAAhr4AALi9AAA0PgAAQLwAAEQ-AADOPgAAfz8AAAS-AACCPgAAUL0AAPi9AAD4vQAAqL0AAAw-AAAcvgAADD4AAIo-AABQvQAAHL4AAKC8AACIPQAA2D0AAHQ-AAAcvgAA4r4AAKg9AAAUvgAAmL0AAEQ-AAAUvgAAqD0AANg9AABsPgAADL4AAHA9AABEvgAAuL0AABC9AABAPAAAoDwAAIA7AACAuwAANz8AABA9AACAOwAAkj4AAAw-AABQvQAAUD0AAFA9IAA4E0AJSHxQASqPAhABGoACAACgPAAAND4AAOA8AAD-vgAA-L0AAEA8AABQPQAABD4AADA9AACuPgAAPD4AACy-AABkPgAAhr4AAKA8AAAQvQAAMD0AAD8_AAAwvQAAbD4AAHQ-AAAwvQAAZD4AANi9AADgPAAADD4AAJi9AAB0PgAAuD0AAIC7AABAvAAA4DwAALi9AAAkvgAAoDwAAOC8AABUPgAAFD4AAEy-AACIPQAAZD4AAES-AACAOwAAiL0AABw-AABMPgAAf78AAKg9AABkvgAAoDwAAJi9AACgPAAAQDwAAKA8AAAcPgAAiD0AAFC9AABwvQAAQDwAADA9AACgvAAA-L0AAHA9AACYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=3BOE1A8HXeE","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15337004660909585554"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9003786443843205884":{"videoId":"9003786443843205884","docid":"34-3-14-ZD92DBF07C891CCDA","description":"With the help of correlation analysis, the linear relationship between variables can be examined. The strength of the correlation is determined by the correlation coefficient, which varies from...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4077329/bc366c908c5fecdf81b7f03aaa9a56bd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ai6oywEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dqo1FVrlvW1Y","linkTemplate":"/video/preview/9003786443843205884?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Correlation analysis","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qo1FVrlvW1Y\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFQoTOTAwMzc4NjQ0Mzg0MzIwNTg4NFoTOTAwMzc4NjQ0Mzg0MzIwNTg4NGqIFxIBMBgAIkUaMQAKKmhoYWppdHloY2ZnaG5rb2RoaFVDM1V3cld0QUZsQWtGbF8zTmlhNzU2ZxICABIqEMIPDxoPPxPTAoIEJAGABCsqiwEQARp4gfL8__X-AgD4_PoHAQb9ARQK_Pz1AgIA9AsDBv0C_wD0CgsFCQAAAPoI-hACAAAA_PwE-_z-AAAGBP0BBAAAABn29Qj9AAAAEQD88P8BAAD09wcCAwAAAAv1-___AAAA_PIL_QAAAAD3____AAAAAP_2_gf89f4AIAAtHT3WOzgTQAlITlACKoQCEAAa8AFZ7_gAAeb7AtsB7wDv99kAgfD7_xEH7QDa6g0BwQ7Z_9kV-wDlAhgBCx8QAL3--gD3-fP_HQr4AAjtAf8bGB8ABv4AACfvDgA8DvYA9fEE_vQWFgAY7yIBDd8ZACIa8QEr8wz-4uvbAOYI4QH7EhQBDRUSABzzAAHpJgf-6RcAAuL0Af77DAP96QcC_wkR_v8T_-v9DRH8_uER5AD0-AQF9Ob-_xPsBAQpLfoD7AgI--73Dv8RAvcB-wj4B_sTDQH5AxD1Ff7y-gET_f0f8QUEDO__EvvqDgcO_fYG8gP__OwKDfrZGQsFBA4GAwjy-fkgAC2Q-k47OBNACUhhUAIqzwcQABrAB4z2-L5eAiY88Q3qvMl3hLrVNeQ8-_HNvC6pn70DC7u8U_BvvKZIPj6dvEg9-JKhO5sdob5GoZu8yGeoPDsZbD6uDOo8gowlPIbK371fk9q6BaXovE94kb5nFUw9qeaLun0D0z1XAow7q3ZNPan4Tz4SgwC91GGFPOiZgzwkVPo8mykjvU8IfDty0kW934pEvPgNvT0o-Ye82T05PeGXCj5xqJS9uqtsu7uNp73ypHs9I2UwvPt4qDyXNIy7tXd8PP5ukD3H7HI7oXMNPRfLvrx6srC7Y8IgvLuQWD1cIN47h9iFPBxy_TyFrX4914T8N2T5wrv5kRG9nOgpvMYqb7y3nTE9x-PYPCcXEz5P1XM9FamwPCYMdL1dRrs9TCy6PEfcvb36fqq8IQSiO16WID0q9wy97xlLu2M9ij0gIIQ8-UiKPKW8Fj0Xw4-78_jHvLm_Hz3n-Yg9G82bPEXU6Tyo0dq8nGCsuxsUaL3mrM881lyJvCJlpT0xNj69aOc0PNUjzT2CvGi8tlibPEuDkT3rbdg8ZghPO-sB8zx9dXq8oIPTu0usELxnXN27_ugju3Y0Dj1phwS9sjJYuwrbz7wqcBW8T3zSu2N1wD19UQy9WmciOt0rvj2_CjU9MubPO1JfFj3sarK84Yc5vP9YSL3cNoI8b8HOujuJDLwEaRC9QRaeO2OknT1qBic9kJ_wOqvJeLzXcwo8uZGuO7tcST0clds81lT1OnkhHb1Ut2m8l87BOoIQ2rwnvOQ9fVKIucwSOD1PeXS8lqQdOkyzDLxAo_Q8xBXludv2kj0-MXw8PVOAOD2ayj3E2Ii96JtSuBiTAz3ef3q9Qr8AOHm2w7uizmE9VgUTucXEizxsVPG8VfaDubQROb03KAu9rX4QOYH94bzAKBy8NWqxN8Ki4jwGuKC8HrEkuEjFf7wzjIu9VN-HOQ0zuLu6-Ju8sL4JuquzmrxN-0E8WKtDt62Ka72LpvO8ApC2uGfS5jwC7TM98EqDOf6SHjzNhLA8t9GVteUOGztlcNK7GCdnuJWjO71FmwO-DdozN6dtjTxo3EU94PbGuEN-vL2bRkm8eEvIN2kVAr2QvCO-zYOEuAqFyLxE9HA96sXGN7CvtTyz5py96qksNqtf6bkIK8Q8BkQ_uJYfGbxcLZE90_gYNtewhT2pFtG8p_hDN5_7Nz1BO3E7FUc3uLf2GT0OVUe9bKlYuKAXDj0XJb09KH8AOV68D75ZNP09v3vKuAahfL1gHIE8YXy1N45bzDxwP6C8MSS8NyAAOBNACUhtUAEqcxAAGmArBAAGADzY4ihE8gPz_O0DAN_KGeA0_9Dr_xDeFAMNH--_-ez_SvJV2KkAAADtBNoltAA2bsUV3vTVBQvKyvg46H8LDCbbyuIF7d5CJ-7pAPj-G20AAPq3HDHevTkLAkUgAC3j2CA7OBNACUhvUAIqrwYQDBqgBgAAgMAAAOBAAAAwQQAAKMIAAMBAAABgwQAA4EEAAKhBAACYwQAAqEEAAERCAABEwgAAPMIAAJBBAABwQgAAnsIAAHDBAADQwQAA4EAAAEDBAABYwgAAMMEAAEBBAACAvwAAoEEAAMhBAABMwgAAisIAAKJCAABQQQAAwMEAADxCAACmwgAAUMIAACjCAAAowgAABMIAACRCAACIQQAAUEIAACRCAAB4QgAAyEEAADBCAACQQQAAIMIAAHTCAACwQQAASEIAAABCAABAwgAAAAAAAKjBAADYQQAAQEIAAABAAACUwgAAYEEAACTCAAA4QgAAGEIAAIDAAACwwQAAbMIAAFBBAAAgwgAAmEEAAKbCAADgwQAAAMIAAGBCAACMQgAAQMEAAKBBAABIQgAA2sIAACDBAADAwAAAfEIAAGTCAACUwgAAMEEAAFBBAACAwQAAgEAAAAjCAACIQQAAJEIAACBCAACWwgAAUMEAAOBBAABQQQAAqMEAAABBAACqwgAAiMEAAIpCAACMQgAAiMEAADTCAABgQgAAuEEAADDCAADwwQAAdEIAABBBAADIQQAAwEEAAKJCAACwQQAA-MEAAIC_AACgwAAA6EEAADxCAABUwgAAQEAAAAzCAAAQwgAAAAAAAJDBAAAYwgAACMIAAIxCAABYQgAAqEEAAGDBAADwwQAAiMEAADDBAACwwQAA0MEAAIhBAAAAAAAAMEEAAARCAADAQQAA2MEAALTCAAAIQgAADMIAAABCAACYwQAAcEIAAMBAAAC4wQAANMIAAMDAAAAwwQAAUMIAAODAAAAsQgAABMIAAHDCAAB0wgAAZMIAAATCAACgwAAAaEIAAFjCAACAQgAAyMEAAHTCAAAwwQAAYEIAAGhCAAAYQgAAJEIAABDBAABUwgAAWEIAANBBAAAAwAAAQEAAAJhBAABQQQAAgEAAAJ5CAAC4QQAA8EEAAOhBAADAwAAA4MAAAFxCAACgwAAAsMEAAOBBAAAowgAAmEEAAPjBAABQwQAAPMIAACDCAACwwQAAAMEAADjCAABwwQAAjMIAALzCIAA4E0AJSHVQASqPAhAAGoACAABwvQAABL4AALg9AADgvAAAlr4AAJi9AAD4PQAAxr4AAAS-AAAkPgAAQDwAAAQ-AACovQAAMD0AADy-AACAuwAABD4AAOC8AAAsPgAArj4AAH8_AAAkvgAA2D0AAKA8AACqvgAAoDwAAFy-AABEPgAAgLsAAOg9AADoPQAA6L0AAAS-AACgvAAAcL0AABC9AADIPQAAuL0AAEy-AACIPQAAmL0AAFC9AACCPgAAUL0AAEy-AABwPQAAQLwAABS-AAAQPQAA4DwAAEC8AADoPQAATD4AAOC8AAAkvgAAUD0AAB8_AABwPQAAgDsAAPg9AAAQvQAAqL0AAAQ-AABAvCAAOBNACUh8UAEqjwIQARqAAgAALL4AAGQ-AAAsvgAAMb8AABC9AACIPQAAdD4AABS-AACAuwAA5j4AAAw-AACovQAAiL0AACy-AADgPAAAQLwAAIC7AAAbPwAAED0AAK4-AAAQPQAAyD0AADQ-AADovQAAuL0AAFQ-AABsvgAA6D0AAFC9AAAEvgAAQDwAAMg9AABQPQAAPL4AAIC7AADIvQAAoj4AABw-AAAMvgAAJL4AAHQ-AACYPQAAFL4AAMi9AAC4PQAAVD4AAH-_AABwvQAAuD0AADw-AABcPgAAuL0AAMg9AABEPgAAyD0AAJg9AABAvAAAjr4AAFA9AABQvQAAmD0AABC9AAAwvQAAHD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=qo1FVrlvW1Y","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9003786443843205884"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1451401569420097311":{"videoId":"1451401569420097311","docid":"34-3-9-Z9989E20327B85A23","description":"📊 Get FREE Trading Tools when you sign up with Oanda: https://tinyurl.com/yc47sch5 //Disclaimers This video expresses our personal opinions only, and is NOT in any way financial advice.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4340917/cbb601328e7b57b273e739958f0f6c74/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AbVjLgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrYxdZccrEHY","linkTemplate":"/video/preview/1451401569420097311?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"THE Truth: How Institutional Traders Really use Fundamental Analysis...","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rYxdZccrEHY\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFQoTMTQ1MTQwMTU2OTQyMDA5NzMxMVoTMTQ1MTQwMTU2OTQyMDA5NzMxMWqIFxIBMBgAIkUaMQAKKmhob2ZycnhsbXlobndhbGRoaFVDUENQRTVNb0k3RFMxV2lWQl8tbXpOdxICABIqEMIPDxoPPxOrCYIEJAGABCsqiwEQARp4gfr__PcB_wD-CggBBQb9AREIAwv1AQEA7QrwAAUAAAADBBD9_gEAAAv7CgoHAAAA_gP_Eff-AQAXEPYIAwAAABT4Av73AAAADhr6Av0BAAD25v77AgAAAAby-vj_AAAA8PsK-_7_AADwAgEFAAAAABX_9g4AAAAAIAAtyzPOOzgTQAlITlACKoQCEAAa8AF_-Q0Dxhjn_8fW7QAKEAEAqQP2ABoE_wDpCwIAlAnR_voAHQD0GvYAH_8OAMQP8f_WDAH_Avo0ABT-BQArCwj_BioXADQpFADzBAQAI_oQ_-gg_P8a7SYCAOMHACgM7_5AEiIC6NoAAfUhDQH88CUA8P8IBAwK_QD5JfL_7Q_0BAQW9PkMGO0BHu7w__Y36wEaBf0GBQroAAAY9QD_5RMDAAAA_BYJ8_sUIe7_9v0EAREiDfcU9_4EHAXxAfsO8gPVAvz5CAXu9_z76vwF-BoFCw0OB_EUDvwJ8An7KPz8De8rCf0GCAEF9hv4EQnw-PggAC1mszg7OBNACUhhUAIqzwcQABrAB6w4Cb-6Fd08v0UGvOQVGD78MZI8xMJavbZcRz2n8Fo7datnvbFu_D23T7093ATpvKCoTL7sq2a9qVGjO51Ggj5_Fku8vhLIvHE8H773GmW7022kPEQYX77UZGc7pZ0_PNuwfD2QIVE9hZwQPFRTAj7cSzq9dswQvNXtLD56RaK7g_MOvdnZtj3cRsO9C3G2vAoC2rwiBcU8R1J3PIU4gD1v3rS6rtcUva31ar07URI9JcmYvNlgvDx3iYU8dxeDPGn-KD6LXdM7RwsrPAp_qz2572K88K1-PHhki7rjv2W9pdhyuxUWwTz2_Bu7GEq7O8wBTLvCz4k877MEvGy61DtdlZo9A-g9O0YK5T2jliA8U83uO9lCkL02vbo8SOxqO3xlqb2mmlm8w5fuvFkktzuRY-u89h5TPN5atj2PJg09tt9zO6GRWT3-O6y8ydcUvAFvnrsmrI09Trj5Oaq_-TzyKVs8pF27PAu45712UIk7W4SYvFvlTj3jKk25D7guPB9U2Dzbs4i9Bm8hPMb8nD1jSTQ9pbMbO_m6MbyJbQE9LYFvu3MPKT1sMMO8ts6Ju1bmd731d4C8gYG7vLa_Lj1L8Ly8N-wtuyuuYLwmYya9W7SdusECKD6Li5M9XX5GupPxObzV7747GCc-PJSal73z2OQ7au7wO04CZbzwrIi9-PXHOpVrpTx5i5w9Zf5yO9Nrg72lsL07tM6VOndeFD19ofY8WBHBuj1KArx8LH28KtQHPGt7nrt0m8A9OP0wuSPO9Ts2rv-8ydbIOgG7j72Hkr-89kB9OCZeVDz2YT283vELOinMe7who6w7p4JTOWjENj2tVkG9kcKFOdhvnDxVJ4G99-7HuMp_Uj3DvIe9tt4DucC4r7zl_rg7y8ECOOucFb1AbOk7Pg_ttxbSKz28MGM9S-LANiJfOD3zZdg8IYIiuapEmTxqOJA9EFcdOIYzZL01zR48D21ZuF9UHD3MZV490xa0OJJa6DyL8as9uhvWNxNjWb3Ouxs9P388OGAhM72-xX49N8PnuLBCkL1MAJm9IWVjuPTovDxDoyU9jBfbtzrYcb2xaL67BkAgOE3aVL2G95a9N4MBtxxe8D19BP489OeQuI-BZj07RT29LqMjuN_sJDvwFki8PhwcuIrmAb0j13I8yr6StwP13DyHz2w9GoS-tuSvr72rvMO9G9-Ct7LpUj1Hlbw8LPHMtylvDbxAxQw9tduLN60yI76RkBI9taJruBiomLvT1i09o0xOuBgMST2FZQe9R9K1NyAAOBNACUhtUAEqcxAAGmAh_QAV-BDg9e462gvp3_ALDwkQC9cjAN29_w4M4ukP5tewAAP_K9Es6a8AAAAmJuVXCQD6auvn7BT7BwHRmNo-_H88GRrY5A3h4skOIQTm8PTwIS8ADO2tCFDjzxobJhcgAC273Cw7OBNACUhvUAIqrwYQDBqgBgAAIEEAAFDBAADIQQAAuEEAAJjBAADgQQAAcEIAAKDBAACwwQAAgMAAAODAAACgQQAAVMIAAABAAABkQgAAbMIAAMDBAAAQQgAAKMIAAAjCAADgwQAAZMIAAAjCAAAIQgAAOEIAAJDBAAAowgAA-MEAAIZCAAB4QgAAMMEAAKjBAAA4wgAAmEEAADzCAAD4QQAAiMIAAIBCAADYwQAAoEEAACRCAAAAQAAAmMEAAKjBAAC6QgAACEIAALDBAABUwgAAIEEAAEDCAAAgwQAAUMEAAODAAACIQQAAKMIAAJDBAABAwAAA4EEAABTCAABwQQAAmEEAAEDBAABcwgAAkMIAAKDAAACgQQAAoEEAAIC_AAAAQAAAsMEAAABAAAC4QQAASMIAAKJCAAA4wgAAusIAACTCAAAAAAAA2EEAALDCAADQwgAA2MEAAMDAAAAwQQAAqEEAAHBBAAAUwgAA6EEAAAhCAACAwAAAAEEAADRCAACYQQAAQMIAAEBAAAC4wgAAsEEAANhBAADgQAAAFMIAAADAAABoQgAAKEIAAJbCAAAowgAAsEEAACTCAAC4wQAAcMEAAEhCAAAEwgAA6EEAAABBAABgwgAAPEIAAIZCAAAwwgAAaMIAAFDBAABwQQAAiMIAAAzCAADwwQAANMIAAERCAABkQgAAKEIAAPjBAABAwAAAjsIAAIpCAABgwQAAoEEAAHhCAAAAwQAAGMIAAADAAAAwwQAAfMIAAKTCAABAwAAA0EEAAIpCAACAPwAAREIAAJBBAADgwAAAAEEAAKhBAACgwAAAGEIAAMBAAADIQQAAEMIAACRCAADAwQAAYMIAAIjCAAAAAAAAHEIAALDCAAAUQgAAsMEAADzCAABUQgAAdMIAAABCAABQQQAA0EEAAKDBAACSwgAAmMEAAFzCAAAwwQAA6EEAAMBBAAAMQgAAWMIAAFRCAABUQgAAAEEAAHzCAAAAQgAAIMIAACBCAABAwAAAhsIAAGxCAADIwQAACMIAACzCAABgQQAAuMEAAKhBAAAAwAAABMIAADTCAACQwgAAFMIAAMDAIAA4E0AJSHVQASqPAhAAGoACAACmvgAAXL4AANg9AADoPQAAmr4AAKo-AAAQPQAAHb8AANa-AAAcvgAARD4AALg9AADIvQAAbD4AAGS-AAC6vgAAQDwAAEC8AAADPwAAAz8AAH8_AACovQAApj4AAEQ-AACCvgAA6D0AADS-AAB0PgAAmL0AALi9AABsPgAAJL4AAGy-AACgvAAAPD4AAOi9AACCPgAAsr4AAB-_AACIPQAAUD0AABw-AAAcPgAANL4AAIA7AAAsPgAALD4AAHS-AACePgAARL4AAGS-AACAuwAAgLsAALo-AADIvQAAcD0AACs_AADgvAAAEL0AACU_AADgPAAADD4AAIg9AAAUviAAOBNACUh8UAEqjwIQARqAAgAAqL0AAHA9AADIPQAA2r4AAIi9AAAQPQAATD4AAAw-AABAvAAAij4AAOg9AABQvQAAXD4AAI6-AAAQvQAAqD0AAPg9AABFPwAAVD4AAKY-AAA0PgAAMD0AABQ-AAAsvgAAmL0AAFw-AABwvQAARD4AAHC9AABQvQAA4DwAANg9AADgvAAA6L0AACw-AADgvAAA7j4AABw-AABsvgAAmD0AALI-AAAsvgAAEL0AAHC9AAA8PgAAND4AAH-_AABcvgAAhr4AAOg9AABEPgAAmD0AAOA8AADgPAAAjj4AAIg9AADovQAAir4AAKC8AAAEPgAAmD0AAMi9AABMvgAAyD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=rYxdZccrEHY","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1451401569420097311"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9075878586696813494":{"videoId":"9075878586696813494","docid":"34-0-14-Z3041758B99E9FDA3","description":"In this video we are coving a starting guide to volume price analysis (VPA). We cover what you need, what to look for and then how you can apply it to your own charts and trading. Free Stuff...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/997020/8ad2816fcb90b47516743deaf8781767/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0G0tRQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DjyspZ_5Ly-4","linkTemplate":"/video/preview/9075878586696813494?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"A Guide To Volume Price Analysis (VPA) | Beginner Friendly","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jyspZ_5Ly-4\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFQoTOTA3NTg3ODU4NjY5NjgxMzQ5NFoTOTA3NTg3ODU4NjY5NjgxMzQ5NGqIFxIBMBgAIkUaMQAKKmhoenZwb2p4eHdya3Fqc2RoaFVDbXNFM0N6QU9aSG1MNHo4eXVwQ3dGdxICABIqEMIPDxoPPxOmCIIEJAGABCsqiwEQARp4gfL6-wf_AgDrBQf9AwAAAAkJ__j3AAAA7gT8-AUAAAD9Dwb7CgEAAPUOAQoCAAAA_v7-__j-AAAdAPcLAgAAAAb6_f_6AAAABAT-9P8BAAD58wrxAgAAABf7_P4AAAAA9P4EAQEAAAD2Bv4KAAAAAAL_8fsAAAAAIAAtI3_YOzgTQAlITlACKoQCEAAa8AF_6e4C3NrrAOfJ4wAIDvQBqe_z_zUa5gDSAQwAxPjQAPvvCwDxGRL_GAcdAeL7CwC0BAP_5uQvAATyC_8X_RIA7RvlADAZBQERExoB9QEZAeIKCf4Q4hgABgb__iIKEf80ACH93ejVAe8e3QPo-B8CGfoR_ecn-QH5MeX-2_rx_fom6__pB_IBH-Pg_esaBwARHgT-Th7u_QAZ9QDz3x8F9AsL_gcm3P7GOAYB2eHtAwsw9wAb7QcI_eH0Av7_Avvk-fz7FQr2_A0R9ff--_oABSIDA_79BwAM_v79BAnt9On5AQf9DQQI8icACQz37AEgAC3WqjE7OBNACUhhUAIqzwcQABrAB7Ea-75sMIM9bRjHu1XZ9zwSVdM8-DAgve1-1b076oO855RbvHnl-j0lsLk9qCLwPL2OkL5851y92KYpOwovYT4XcbC8QdPGOZf04jtvKAE9wW_DvLeyJL4pFcM8RNBivH0D0z1XAow7q3ZNPRsQUT4j7nu9VbSDvM76FD2plRO9lDlRvSgTMj2wXyu9sac9vbA3MT2pClc9SW4IPUfBvb0aWlM8ldhbuuS66b3rkHu9ac3qvH3PqL322gc89EAYvNvvij1jwym97BjTO-7QML1Yeoi8iyrPu-VeAL1NmLq82P9vvPe3uryFppk7y2e5vLsqwD2mbCc98mV9PGXaI7w405k9jm6pvCeSfj18-Yg94HyPPMKymL2V6fw8aDC8PFrXCTwxYIm87prKO8vHZD1Dl4u83rKeOymY8T2N-wU9ciJRu3Zh9Txl2468WT-qu4xyH72RLGA81ELuu54RX7sRHzO8KSbKPBB9Mj3jaxM8f_fOvNPn2Tyi85y4fiq4vJ0cxD0EuI-7pcMgvCGfxj1izCe9Cs4HPNXkjrwuUm09VvaXu4nT6T1on609XwyAOEYtSD2XuII7ZhRLPCaJijwB1Hm91o_JuzxPfD26mgE9eZjRu9yCRjtHnJQ92wAFPPDVlju3HzU9Yp3Pu3FzjbsuYDg9Qa8HPDq9Ib29sdY8B7tjOPsC2j3medA9-DL2utvbsj2SJaO94DoZumnk0z3J0r28UrAGuAChjz2z8LW8SeI8O4480L3VZWc8_wJFOaHa_btEbxE9E2WVOcxB8L162oY9xs1VOL8hB7rkPsU7TtYMOv_FebtvkJq86AQ2uUx4WL2tUW67bVlSumzzlb0mX_-8scBEuCbZjzyytg49lxSUOdNS1Lx6Qbq8J34UuhwV7rzQFZs8UYsEucup0zxQaB88bomiuCYYDj2TBYe9tXIFuSY3zDqR_qi8iQjeOf4bxbwTKpe7SsyGuGwic70uTqY9XlF2uQqAsbwnF-M9YmCSuZjyRr0DGlY95OmFOPJmuL03upQ8FaQOuamD4TzPKwO9-y3jNQwpdTwe5gY9gy1YN2h1Mr5kpCg9F8pMt2kVAr2QvCO-zYOEuCRuBL2KWoo9h3-buK7H8zzNNKu8C16PNQTp_TxZlCi9v7xjuELHMzyPUxS9PUQkuLYk0bzc7xU9zG-TOFY3TTwogIO7rrUcuIetND0TXBE9iH8zuDgIBDzUzc26Xh2vOCk_Sb5fYcG83YEfOWogDLxTzxI-X88FN77tMz0AxP29qM7_tyAAOBNACUhtUAEqcxAAGmAz_AAUGjPC6v4c9Aju5_ARJu8H9eQuAPfjAOzl3QQSDOvYANL_IeUm7bUAAAAc-Qwo5wAHXfwF4AEEIwyzpgQW2n9G-Q3i4B_X_MsTN_7UBtz9PkMA8OrEFRjh_xwfKBcgAC0IRjw7OBNACUhvUAIqrwYQDBqgBgAAQMEAACDCAACgwQAAoEEAACDBAAAgQQAAUEIAAMBAAABswgAAsMEAAFBCAACOwgAAUMIAABDCAABAQAAAZMIAALjBAADYQQAALMIAAJjBAAAIQgAABMIAANjBAACgwgAAUMIAAJhBAACEwgAAwMAAABhCAAAAwQAAQEEAAAAAAADKwgAA-EEAAJjBAAAQwQAAAMAAAIhCAABYQgAAwEEAAMhBAABAQQAAsEEAAPjBAADAwAAAEMIAACzCAAAgQQAAAAAAADjCAAAAwAAA0MEAAI7CAABcwgAAGEIAAFRCAACSwgAAQEAAABTCAAD4QQAACEIAAKBAAAAAwgAAjMIAAJbCAAAkwgAAYMEAAKDAAABwwQAAQEAAAIDAAADoQQAApMIAAEBBAACIQQAAAMIAADDCAABEQgAAcEEAACDCAACOwgAAQEIAALDBAABcQgAAyEEAAABCAADIQQAAiEIAABBCAABAQQAAKEIAAIJCAAAAQAAAYMIAAJJCAADWwgAAcMEAAHDBAABEQgAAAMIAAPDBAABIQgAAuMEAACBCAACiwgAAREIAAKDAAAAgQgAAEEEAAIBBAABIQgAAYMEAAODBAAAEwgAAqEIAAABAAACYwQAA0MEAABRCAACowQAAmEEAABDBAACAQAAAbMIAAIDAAACgQQAABEIAAFDBAABowgAAXEIAAKBBAABkQgAAkMEAAGRCAAC8QgAAAMAAACBBAACgwAAAqsIAAKbCAABAwQAA0EEAAKBAAACwQQAABEIAAJBBAADgQAAANMIAAMBBAACgQQAAAEAAAABCAAAQQQAAVMIAAKBAAABAQAAAUMEAAJjBAAAwwQAAHEIAAJTCAADwQQAAkMEAAOjBAAAwwQAAyMEAAKZCAACoQQAAQEIAAKDAAACEwgAACEIAABBBAADYQQAAisIAAExCAADAQAAAmEEAAHDCAAC2QgAACMIAAADCAAD4wQAAwMAAAABCAAAAQgAAWMIAAIxCAAC4wQAAMEEAAIC_AAAgwgAAJMIAAKhBAAAAQgAA2EEAAMBBAAA8wgAAGMIAAOBBIAA4E0AJSHVQASqPAhAAGoACAAAMvgAAuL0AAAQ-AAAMPgAAUL0AAFw-AAD4PQAAvr4AACy-AABAvAAARD4AABw-AACgPAAAUD0AAMi9AABUvgAAuj4AAHC9AABMPgAA_j4AAH8_AABEPgAA2D0AAFw-AAA8vgAAiD0AADC9AAAEPgAARL4AABy-AAAMPgAAiD0AALi9AAA8vgAAZD4AAKK-AAAEPgAA2D0AAL6-AAA0PgAAiL0AAJg9AABwPQAAoDwAAHC9AADGPgAA2D0AABy-AACWPgAAiD0AAMi9AABcPgAAgDsAAFw-AACIvQAAgDsAAAk_AABwPQAAuD0AAMI-AAAcvgAAgDsAAEC8AAAcPiAAOBNACUh8UAEqjwIQARqAAgAAfL4AAIi9AADovQAAHb8AAIi9AAAwPQAAJD4AANg9AACYvQAAED0AADC9AAAsvgAAuL0AAAS-AAAUPgAAcD0AAKi9AABBPwAAgDsAAHQ-AADiPgAAMD0AALg9AABwvQAAQDwAAMg9AACKvgAAPD4AAOC8AAAwvQAAMD0AALg9AABQPQAATL4AALI-AABMvgAACz8AAJi9AADOvgAADL4AAJY-AACoPQAAED0AAJi9AABsPgAAuD0AAH-_AACAOwAADD4AAIa-AACAOwAA4LwAAHy-AABMPgAAwj4AAFQ-AACAuwAA2L0AAIY-AABEPgAAJD4AAFC9AAAwvQAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=jyspZ_5Ly-4","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["9075878586696813494"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7088306704201488711":{"videoId":"7088306704201488711","docid":"34-10-3-Z47F2DA62A0C0C917","description":"After we've sampled our parameter sets and produced results for each, what do we do with them? Learn how to analyse and graphically present the results of probabilistic sensitivity analysis with...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/222490/0a9ae60dc9cdac77237374b8473cea42/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/q1cIrgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcTEceyHOqQQ","linkTemplate":"/video/preview/7088306704201488711?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Probabilistic sensitivity analysis (PSA) - Part II (Analysing and presenting results)","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cTEceyHOqQQ\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFQoTNzA4ODMwNjcwNDIwMTQ4ODcxMVoTNzA4ODMwNjcwNDIwMTQ4ODcxMWqTFxIBMBgAIkUaMQAKKmhod2FucGlld3dkcGtyZmRoaFVDdk9DbngyUXQ4OFh5TTJoZ0hoaGRqdxICABIqEMIPDxoPPxO3AoIEJAGABCsqiwEQARp4gf77AvT9AwDz9AP4CAEAAQsQ_QT2AQEA9An0CvsB_wD_Agb5_wEAAAUE_gr-AAAA9_P9Cfj_AQAJBvv5BAAAABD69QH1AAAABgv6_f4BAAD8-_33AgAAABX-BgMAAAAA_v_9-wIAAAD1_f33AAAAAArz8PwBAAAAIAAtHHLbOzgTQAlITlACKoQCEAAa8AFbBgYB1Av8__Hz2QDxEu8AgfD7_xUc6QDA7_8AwQ7Z_wL-BADb4wAACQUQ_-b8CQAD-uf_DucS_yTaGP8p9g8BARMOASLiHQI__f0B3gDq__YYBwAMBQz_AOYGAAMZ5f8W9Q793ATQ_wsA4QIH4S0CDRUSAB7rCwH4EgL97yQZA-r29P4q7foD7_v8_OMTFwEKCgv-8RUBAvfs8QQBCQMIDf30Bvj58v0oGP0B7AgI--oL9vkRAvcBEPsECfoWAP8C-O0ABP8O-RoBAgER6hX8EPgLA-3oDf8NDvQNCfUA8_v_A_bU8vv68gD6DuXVBwogAC2Q-k47OBNACUhhUAIqzwcQABrAB4z2-L5eAiY88Q3qvPUKDzwaNuc7VT1PvZepCzyPJQK9YG8nPf8j0z3BUl08mgucPPyMu75aUw-8xurFuwovYT4XcbC8QdPGOYbjCb7fIPU8rAEqvU94kb5nFUw9qeaLuiAwyj3Ay1G9F7eTu6nB1D3qqDQ87UqmvMP4RLxMiUQ9LVlavYlH_byTnai9a3ARveaU4D3m3Le8ttCfPNNO7T11QA29nWkdva31ar07URI9JcmYvBCUmbvIK4s97ubOvOqv9z0xslE6yE0DPb4KujzlFHi8uLh8vB-hpLtWJiE9ZoaqO1jzLbx1ETU9euFOvPBuYD1bVTu9VthnvL-eLzzC1SY9yOr7PN1gOD4pplw94xs-OttMCj38Ivw8jNO1PMM5eb0ck2q9a38pO0sPmT0hGKy8P4gmu2_KprxZYq88YqylPAUqLTxGQRA93fNXPFVkiT32l909mPJGvGuDrrzJSCw83saLvCcHrb0XVmC89Pt-vA-22D1co2-9sO2IPL_Dgz00KpU8Cw-puaA9Uj3MHxi9SNoyPL4wmTzHF8Q6lNaEvG2MQrwhKBK9wVu5u6ANCDzwOha9JQQrPMd5Sbx1Z5o6zRsruwO9Jj00v_W8lFC4O-l8PT1vOx49gOqjO3DBiDwHlZ288HAavL-vNrzcJ-w8QGnJO-cH5Lxol4-9mbUYu3lioT1Vta49t0gYO745Er32spK8DuvcufNZ3j1u9uw8-oGcuIR1Db2L2Ay9vyNwu4cWjbnpYhM-jiFauY1i9zt-k4G8-Mf3Oj_ekjsQCM8888TWuH0JkD0BrCk9fcLbt2RssjxcA9u94KQUuak_kLsfXye9k46dOLhD4DuKjDO8TSQ8ucYC1ztiBYm97XAAOYmAXr24U588tpZMud7db7zq1pY9KN0uOFYGP71XjoW9opX6uOzbC7y27Ji7H0Uvur0YirzZ1FS8kHtDOOMWmLzXrn8911M4OEysJ71uZjq7XbvduAqAsbwnF-M9YmCSuahPlzwjQi09z9p-OOjYAT0SE1Q9qpyCtrAPsb23DLi9_lg4uMSr0TwYXcE7Q7ZVuFRT0r3odM-8L_jFN2fZDj3Ncl69wIanN3L_nD13O7E8qBfANW8zUD00zoC9xrVot3F8ozzF8t08i3_jt76D37x4CQ69eXt4uDjnlrxGwDe9auIDuCO1mjwsM4u9LqMzOEn3jjytUMS9c5zyuGGsyjx40509kwuFOAP8lL1_qI89heReuVXXxr27mVG8-Zpbt-XBLD0UpY68bBkKtyAAOBNACUhtUAEqcxAAGmAp_wD1CB7r6zBN5t4c5wDu3fzqLNIp__7Q_-r65KjUF8eyLtH_WP4kBKIAAAAf5t3r9wDzf7765PrX6_aazgYW5HgP9TKpyRrf29rcFP0ALfLvSWAA7_-WLDHUkhkRA_8gAC0hZBQ7OBNACUhvUAIqrwYQDBqgBgAAcEEAAKDBAADAQAAAQMEAADRCAADAQQAAtkIAAAzCAABAwQAAiEEAAABCAACkwgAAJMIAAGBBAAA4QgAAGMIAAEBAAACowQAAcMEAAPjBAAD4QQAAUEEAAOhBAADoQQAA4EAAAKDBAABIwgAAvsIAANBBAAB4QgAAYMEAAOhBAADowQAAQEEAALDCAABMwgAAmMEAAIxCAAAUwgAAiEEAALBBAACAQQAANEIAAEDAAAAIQgAArMIAAITCAAAwQgAAYEEAAIA_AACYwQAAAEAAAKDAAAAQQQAAMEEAAIBBAAD6wgAAuEEAAEzCAADgQQAAhEIAAEDCAACAvwAAdMIAALBCAACYwQAAcMEAAJDCAAAAwQAAUMIAAEhCAABMQgAAyMEAALhBAACAvwAAvMIAANjBAACAwQAAWEIAADhCAABgwgAAOEIAAIjBAAA0QgAA8EEAAJBBAACwQQAASEIAAGhCAAAMwgAAAAAAAOBCAADoQQAAGMIAAEDAAADCwgAAYEEAAOBAAABQQgAA4MAAAGDBAACwQQAA6EEAAFjCAABAwgAAQMEAAOBAAACQQQAAmMEAAKhBAAAAQgAAiEEAAAzCAAAQQgAAwMAAAFDBAACAPwAAEMIAABTCAAAYwgAACEIAAIDBAAAkwgAA4MAAAADBAAAgwQAAAEAAAJBBAAAgwQAAqEEAABjCAADAwQAAsMIAANjBAADwwQAA8EEAAIJCAACAQAAAGMIAAEjCAAAgwQAAYEEAACRCAABAQAAAmEEAAHDBAABgwgAAcMEAAIBCAADYQQAAdMIAAPhBAAAQQgAAQEAAAJjBAAAAQQAA0MEAADDCAABEwgAAkEEAALjBAACwQQAAqMEAAOjBAAAQwgAAQMAAABxCAACyQgAA6EEAACDBAAAMwgAANEIAABDCAAAwwgAAoEEAACDCAAC4QQAAmMEAAI5CAACgQQAAkEEAAJDBAABIwgAAbEIAADxCAAAEQgAAwMEAANhBAADgwAAAMEEAAOTCAAAkwgAAuEEAAJrCAACAvwAAGEIAAAAAAACwwQAAcMIAAAAAIAA4E0AJSHVQASqPAhAAGoACAAAcvgAAgDsAAHC9AABQPQAAqr4AADC9AAAcPgAAJb8AAMi9AABwPQAAmD0AADw-AACgPAAAbD4AAPi9AABUvgAAZD4AABA9AAD-PgAAMz8AAH8_AAAwPQAAND4AADQ-AAAUvgAAgj4AACS-AABQvQAAMD0AAIg9AAC4PQAANL4AAEC8AAA8vgAAHD4AAPg9AABAPAAAMD0AAHy-AADovQAA6L0AAGw-AAAEPgAAgLsAABy-AAAsPgAAjj4AAO6-AACAOwAAcL0AAMg9AAAsPgAAqj4AANg9AAAUvgAAQLwAADc_AACgvAAA4DwAAKg9AADYPQAAmL0AABA9AAC4vSAAOBNACUh8UAEqjwIQARqAAgAAgr4AAOi9AAC4vQAAPb8AAEC8AAAMPgAAQLwAAHA9AABEvgAA1j4AAEC8AABAvAAAHL4AAOi9AAD4vQAAQDwAABA9AABFPwAAMD0AALY-AABQPQAAcD0AAOg9AAAUvgAA4LwAAJo-AAAcvgAAHD4AAIC7AADYPQAA4DwAALg9AADgPAAAhr4AAAw-AABQvQAAuj4AAAw-AAAcvgAAqL0AAKY-AAAcvgAAXL4AABC9AACAOwAAmD0AAH-_AAAkvgAAFL4AADw-AAAcPgAABL4AALg9AAA0PgAADD4AABA9AABAvAAAqL0AAKg9AACIvQAAPD4AAHA9AABQvQAAMD0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=cTEceyHOqQQ","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7088306704201488711"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"835652694470268945":{"videoId":"835652694470268945","docid":"34-3-3-Z141CE8CD382F5A33","description":"Learn how to perform a competitive analysis. A competitor analysis is a strategic tool to use as part of strategic planning, which will allow you to compare yourself against both your direct and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3674424/4ed38ad5431bf3ac9e58f5d2e650ed40/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/rDFrbAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DC91utiNU0cI","linkTemplate":"/video/preview/835652694470268945?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Conduct a Competitive Analysis","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=C91utiNU0cI\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFAoSODM1NjUyNjk0NDcwMjY4OTQ1WhI4MzU2NTI2OTQ0NzAyNjg5NDVqkxcSATAYACJFGjEACipoaGRtbnRtenVjcndrdHpjaGhVQzJ0U3FIdmFIdG1ZbDZYWUJEOWZKaGcSAgASKhDCDw8aDz8TpASCBCQBgAQrKosBEAEaeIEBA_0C-wUA-gcM_fwE_wETCfz99gICAAgOAQH2AQAA9AAI_PwAAAAHCAX9AgAAAPwCAwT2_gEACwz7AQUAAAAG-_cFAQAAAA0L_AP-AQAA9v8A_fkBAAAP-_gFAAAAAPwMB_8CAAAA_Q70AgAAAAAQ9v79AAEAACAALXdb4zs4E0AJSE5QAiqEAhAAGvABR_kN_-0N_gH7B_QA4AvSAIHw-_8NB_4A2wwC_8EO2f_5HfUB7-kBAPoIHADWFeMAGvHj_y7_Av8LCgj_FxQP_yMEFgAoAA0ALgrzAPX28f8UEQb_IhQFABn_HP_zEvz-IO4C_vb4-ADq9Pn__-YUAgIt_gEr6QYD6g0FAe4PCwLZDST9DQ4P_-AX9f34FQcFFxHrAvQh_wPe-PgB8xr-AAMC-wcQ-_P9K-wQAfb5CfntIQMD9zMG_w0c7QQa_P0BBfP79Abs_wD2-P__GhETBPAKEALZ7gAB-APy_xH48QIHAwfz0CD7AwEC_gAM8gj3IAAtkPpOOzgTQAlIYVACKs8HEAAawAe5HAO_ob-ru5pz-LvQEMk9UL2_PAsw4rtV_rA9NpZ8utUYPjwWof28pl1xParCuDuyL-G-johzPILA0rqdRoI-fxZLvL4SyLznp9i9nFPJPADiLjtPeJG-ZxVMPanmi7qkCSo9fzQXvSZYNz2BanI95tFoPRp1o7whlaK8hkSQvE7etrxWP8C8F_hFvTt5ibtTlww-Doa6vE97pTxEac895MQyPHGqNbyY7ZK72Ig7vPB2c7y_tYO9eYqBPFppDLsFNPE9FSQNvDZDXzrRpxo9qAdbvSanFzuyfU09xGdBPRxTgzsfZ9q9DJKOPXUGoTyIh027fkwQvf-mQTw-GW29bzNQPbBjkjwbKps9WJ1GPd9ML7t0S0Y9MnKWPEZeFj0rZb68SVjlvBZFlztcHQA-kGaRPDNXgjs8PSU8Iz17vOqjvroFKi08RkEQPd3zVzzdazc9jJyqPQR-g7zuemm95Nc0PShRBLyNm5q9c5U4Pez7i7wPttg9XKNvvbDtiDzkGpe6PHLaO3qJljyfuw690c80PVp_C7wl4nI9FiDAPBqTjDjvopo7PTDbO3t6lTtqEMk7TJOtPHPIvDlICMW82hcWPGkYhLs9kXE9-GEuvfnmirtv5bY83PlZPC1BhjxwwYg8B5WdvPBwGryWpSe9tJHrvI-yNLw7iQy8BGkQvUEWnjsLqLE98cP3vJiM-7lrFVi8ckolvX4gM7vOuxY9xkpxPPNhTbub3NS8800kvf5cFzuGZ5M8BsawPMvXhjtClC-8fNQfvYzL-Lm0WCu7WWAZPc15UDmm5JY9qVYavYyPjrmbcPE7gEQ4vbbDaTjDbLy7bGvVvJZH2bhIfaO9Im3jPETh3jakDdU7W90BPFw1tjmANgg9QW61vB0DYrmdUjS9N59_PZiEkrgQyZC8jUFMvBJzprj-sEo8xCAVvemxBzdkkSY8SQ1xO9tUqDjYWYC792zjut2AwTd46GC8-y8mvUMWKTVGLtO89gESPWgL8Tjj3Iu8xg3JPJPDj7aob5m8FjvQPMPeZDi4Pqy8bAb4vXn_ILiw4lQ9sldMu-XRhThzo-O8gnYCvXWxPjdu1FQ8tESdvDPnADi3xDs9P96QvFHfhThvM1A9NM6Avca1aLdfwx08f_J8PbDtHriXrIo8zQx2PZ_I1TdzCCE9HO3ZO80BqDfD06s8-5zBvUM6sTiGECE9XHfTvd7zm7dVGKY9bQvFPYPH5zjrXOy8qqSkPQGLxLh8ToW9Y4RLvMLI6LbPa-y7aFJxu3ZZ0TcgADgTQAlIbVABKnMQABpgNw0AFvMixxQHXevrDdUOHRHC-wyRWP_aBP8L5-Ll2BWewwkX_zbyHNOcAAAA_uziKL0A_X_h2fXq7voMwYz7TRldPwIkva4LCfLGSxj41grR8hQxAA_gqgc4HdE9EfkfIAAtQgUTOzgTQAlIb1ACKq8GEAwaoAYAAEBAAAAAQQAAyEEAAAhCAACYQQAAiMEAAJRCAACgwAAAlMIAABDBAACAwAAAoMIAABTCAAAAQAAAaEIAAABAAACAPwAAgMAAAEzCAABwwQAAMEEAANDBAAAAQAAAcEEAAIC_AAAQQgAAmMEAAATCAAA0QgAAAEEAAFDBAABkQgAAxsIAAKBAAABEwgAAcMEAAKjBAAAMQgAAgMEAAJBBAAAAwQAAgD8AAEBBAABwQQAAAEIAAADBAACowgAAkEEAAOBBAADgQAAAVMIAAOBBAACowQAAUEEAAEhCAAAsQgAA9MIAAOjBAAAAwAAAmEEAAABCAACswgAAAMIAAMDCAACGQgAAFMIAAAzCAAAwwgAAIEEAAKjBAACAQQAAkEIAAIhBAADIQQAAGMIAAETCAAAAQQAAwEAAABBBAABQQQAAcMIAAKpCAAD4wQAABEIAAFBBAADAQAAANEIAAIBCAADAQAAAMMEAAMDAAAAAQgAA6EEAAAjCAACYQQAAtsIAAFhCAABAQAAAOEIAAADAAADIQQAAEEIAAHRCAADgwAAAwEEAAFTCAACgwAAAMEEAAJjBAACYQQAAiEEAAEDAAAAMwgAAQEEAAAAAAAAEQgAAcMEAADjCAACgwQAA4MAAADRCAABkwgAAiMIAALDBAADgQAAAEEIAABRCAAAgwgAAUMEAAGDCAACgwQAAGMIAAGDBAACgQQAACMIAAPhBAACCQgAAAAAAADTCAACkwgAAAEEAALhBAABEQgAA4MAAAMBBAABAQAAAoMIAALhBAACUQgAAMEIAANjBAABwwQAA8EEAAODAAABUwgAANMIAAHjCAAAQwgAAAEAAALxCAAAQQgAAEEEAAGDCAACwwQAA8MEAAJDBAACAQQAApEIAADBBAAAIwgAAiMIAAGRCAAA8wgAAqMEAAODBAAAgwQAAwMAAACjCAACiQgAAOEIAAMjBAAD4QQAAAMAAAFDBAADgQQAAAEEAAGTCAACAwQAACEIAAKBAAAAAwgAAuMEAAKhBAAAQwQAAJEIAACBBAABUwgAAHMIAAKzCAAC4QSAAOBNACUh1UAEqjwIQABqAAgAA2L0AAFS-AABMPgAAQLwAAHS-AADYvQAAiD0AAOa-AABcvgAAMD0AAHA9AAAEPgAAgDsAAAw-AABMvgAAiL0AADQ-AACAOwAALD4AANI-AAB_PwAAqL0AAIg9AADoPQAAmL0AAFQ-AACYvQAAMD0AAJi9AAD4PQAADD4AAEy-AAAwvQAATL4AAOg9AADoPQAA6D0AAES-AACSvgAAQLwAAOA8AACAOwAAlj4AAFC9AACYvQAAPD4AAJY-AAAEvgAA-D0AAKA8AACovQAAoDwAAJY-AAD4PQAADL4AAHA9AAABPwAAcL0AAFA9AABEPgAAoLwAABQ-AAD4PQAAUL0gADgTQAlIfFABKo8CEAEagAIAAK6-AACgvAAAir4AAPa-AABQvQAAmD0AABA9AACYPQAAED0AAJI-AAAEvgAABL4AAIA7AADYvQAAED0AAEC8AABkPgAAET8AAEC8AADKPgAAmD0AAI4-AAAwPQAAUD0AAHA9AACOPgAAHD4AABQ-AADgvAAAcL0AAOA8AAAUPgAAoDwAABA9AABAPAAA2L0AAN4-AAAMPgAATL4AABC9AAB0PgAAgLsAABC9AADgvAAAcD0AAIA7AAB_vwAAqD0AAIa-AAAcPgAA4LwAADS-AAAkvgAAdD4AAHw-AADoPQAAUD0AAKg9AACAOwAABD4AABC9AAA0vgAAqL0AABQ-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=C91utiNU0cI","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":2880,"cheight":1800,"cratio":1.6,"dups":["835652694470268945"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6604110938573684277":{"videoId":"6604110938573684277","docid":"34-7-15-Z8BDCF6432B3B143B","description":"This six-part video series goes through an end-to-end Natural Language Processing (NLP) project in Python to compare stand up comedy routines. Text Generation with Markov Chains in Python All of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3037462/2f703e0cf41289ddfdd322032385b40f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jqu2cAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DN9CT6Ggh0oE","linkTemplate":"/video/preview/6604110938573684277?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Natural Language Processing (Part 4): Sentiment Analysis with TextBlob in Python","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=N9CT6Ggh0oE\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFQoTNjYwNDExMDkzODU3MzY4NDI3N1oTNjYwNDExMDkzODU3MzY4NDI3N2qTFxIBMBgAIkUaMQAKKmhobHR4YXZ2bnhjY2hvaWRoaFVDeXYtUEwtUWdrQVhFZkRSY0tyWU1lQRICABIqEMIPDxoPPxO-BYIEJAGABCsqiwEQARp4gf8E-wH-AgD9AgUC-gX-AgQAAAL4__4A9A739QMBAAAB8QT_-gAAAAkHBhABAAAA9fwJC_T_AQARBgQEBAAAABX5AAz5AAAACgb3CP4BAAD2_wD9-QEAABj8AvX_AAAA_AEDBv7_AAD5Cfr_AAAAAAn1CAMAAAAAIAAtE_PZOzgTQAlITlACKoQCEAAa8AF_7P8D1PcO_xXv8QDvFe0AghXw_zoI5gC9_wAAuRDU_9oM6QDt5gEAAwAf_-cOLP_v6vAAOw0OAPr1LwIyARMAEvYAAUDnCwEv_OMCKwDp__oQBf8lDSr_IOgFABMd-wIaCxL_2ATJ_wv9_wDp-R4C_xYSBBkVFQETCQj-2SEJ_wH98f7u7_sE5PX1AO4IAQMW-_kACRvtABMGAgMQ8PgICOz_BRsB__oZDu0E9PgL-PIfC_j_-vsAEQ35_AMQ_PzcEQb2HPLsA-MzBvco-PcFGgoN9uUK_wIkNvoI1gIHAPPyB_PfGgz87fME_vH4-f8gAC3Ybjc7OBNACUhhUAIqzwcQABrAB6w4Cb-6Fd08v0UGvBipoDt3_LI8w4keO6G30bjwp0Y8SygzvLw_jj3dkyg7ieApvZfHqr4Tx-w7vhGdvHFytz7Lq6k86BEoPShh5r2-Tkk7V093PBQHUL6Tdn48ipoevTkqJz5gsHo7OeoPPPrV3D03fnI8q6AWPAGcxbt9_sG7oJJuvRgcKr2-Toq9Bg4LvEKguT3bfRi9uAT9O2oEgT2TkJO9D1gkOzkevbzmLni8UqhdvHq2qL2u4sO7KYvrO4JCyD3aE-48ItjdPEELjj0nUEQ9hLCkPAwjHT04Pbm8bzmNvH8Xdr1y-c88ZJXSvJP-3j2U9UA8n2d9PDlCtr2kZpQ9T7C_PB4ZOz5BpLo7qxBFvPzrrrvuHmU9iAOyPGz7aLy8C688p6xCOSxFEj6g3Du9z4mYPAi6TL3hz3A99ry0u6BUVjyrmhs9cNY7vPQaW728WL08ii0OPOFioDtslb87GCS_OyW5EbuShuS8GmRcvI9tKT4CWmS9c6SOO61furyvmqU7bSUqvPoBGT2zVjm95fljuzEFgD1BeP66Q-IivK80mj2q9HO9tyQsPHWoSzwMf8w9LwFPu5OuFL0oni69EGLfu_HYzz3Io0i7ci54upm0zjwmHQU9A09Ou2QntDsnUyI7voFuvHTVV71_E-k6XUUxuzNonb3p6548aHbAu4lmWT0B8ZQ90X68uMuAA7628re8AyzguZrkDL10yQA8XQJ_OqUhWT3eIFo8cpt8O9ablz3bzDc9Tbg6OSQDp7sXJ6O8W9fkOiFnsL3IwiY9IzDbuFxsfzxT40o843O_OSixPzqCCfU7wwcGt6jFvzubG7g8suI7OMfmlTuRL7w8RXyKOg_sfT2s6yu8UsIQuef-qrwfyoa89HSAOU_nijwu5bw9zQsHOcPdk7vaBLO932EMuYBHFL25YDq8r3PguPmrtrywLGe9J_IjOe8n2bx0OW-9mdRCt6w5kD2EZay82KwQOXMYBjxOlj891tyTN-Pci7zGDck8k8OPtsagGL3ogIe7b9UYtvX_QzvHeWS9r2O1t6gXnTsiFes8B6t-tlRT0r3odM-8L_jFN0DVzTwK4lE7Ag7KNzrjYrvFmI89VVXNNo9bgj3M8q-6QHIBuOuEYT0rGNW8PJPxuPGzNj1r2fW8EiqVuLWSgT0kSMA8UYRLuOfCyLwL2j88uLPDN0n3jjytUMS9c5zyuKAXDj0XJb09KH8AOfCyNb1czM89DEYKubKrj718uvo8c5Q0N3UIObsUnYC9N5eitiAAOBNACUhtUAEqcxAAGmBN-wAZHyjZyBQt7tP8Bvy9CgHu8LX-_wr4__zrAe8GSt2bHRz_Ne8Z_6cAAAAT2ef6_wASeQLK7BL6_tnZhtk5838B7Cjky_oXm876MubyCN7pRTQADPe1MVbf1E0PISYgAC2UNhk7OBNACUhvUAIqrwYQDBqgBgAA-EEAAIhBAAAQQQAAwEAAALhBAADYQQAAhkIAAMjBAAAAwQAAIMEAAARCAABcwgAAHMIAAFDBAAAsQgAAUEEAALhBAAAUwgAAAEEAAEjCAAAMwgAAkEEAADhCAACAwQAAUMEAAJjBAACgwQAAGMIAAIhCAACYwQAApkIAAIRCAACswgAANMIAAEjCAAAMQgAAwMEAAExCAADgQAAAhkIAAIjCAACYQQAAwEEAALjBAAAsQgAA4MAAABDCAAAsQgAADEIAAHBBAACwwgAAZEIAAGDCAAAAQQAA8EEAALBBAADKwgAAmsIAAKDBAABAQgAAgMAAAODAAAAAQgAAHMIAAODAAAAEwgAAIEEAAHzCAACYwQAAAMEAAMJCAACcQgAALMIAADhCAACgQAAAyMEAACBBAAAYQgAAHEIAAKBAAADAwgAAkkIAAOjBAADwQQAAgMEAAMBAAADYQQAAGEIAAAxCAAAQQQAAgD8AADxCAAAAwQAAGMIAAIBAAAAkwgAAEMIAAMDAAAC8QgAAXMIAAPBBAABwQQAASEIAALDBAAAAwgAAOEIAAPhBAACgQQAAEEEAAMBBAADgQAAAkMIAAKjBAACoQQAA4EEAAHBBAACwwQAAqMEAAABAAADoQQAAoMAAAEDCAAAIwgAAsMEAAEBBAADAwQAAqEEAACDCAAAAwgAAhMIAAGDBAAAswgAAAAAAADBCAAAQwQAAkEIAAHBCAACwQQAAjsIAAIDCAADwQQAA-EEAALDBAAAgQQAAgMEAAOBAAACawgAANEIAADhCAAAQQgAAkMEAAIDBAACwwQAAgEAAAABCAADQwQAAmEEAAAjCAACeQgAAEEIAADxCAAA0QgAAQEEAAJjBAACqwgAAgEEAAIpCAABwQgAADEIAABDBAABIwgAAQEEAAIDBAAAAwAAA-MEAAEDAAAAsQgAAwMEAAPhBAABAwAAACMIAAGBBAAAQQQAAUMIAAHBBAACUwgAAEMIAAMDAAAAUQgAAYMEAAADBAABQwQAAAEAAAIDAAACAQQAAYEEAAJDCAACwQQAAtMIAAADAIAA4E0AJSHVQASqPAhAAGoACAACAuwAA4DwAAIY-AACIvQAArr4AAGw-AADoPQAAK78AAGy-AACIvQAAPD4AABQ-AAB0PgAAUD0AAJK-AAAcvgAAjj4AAHC9AACWPgAAAT8AAH8_AAAQvQAAND4AAJo-AADovQAATD4AAIC7AACqvgAA4DwAAPg9AAD4PQAAED0AAIg9AAAEvgAAHD4AAEA8AACAuwAAXL4AABS-AAAQPQAA0r4AAOC8AABQPQAABL4AAJi9AACqPgAApj4AAK6-AAAUvgAAZL4AABQ-AAAQPQAA-D0AABA9AACYvQAAmL0AAEM_AACovQAAyD0AAHQ-AADYPQAAiL0AAKA8AABwPSAAOBNACUh8UAEqjwIQARqAAgAAir4AABS-AAAkvgAADb8AAKi9AAAQvQAAQLwAAPg9AAAsvgAAgLsAAHC9AACIvQAAjr4AADC9AAAQvQAAgDsAAKg9AAAZPwAAiD0AAKY-AABEPgAA2D0AAAS-AAC4vQAAiL0AAMi9AACIvQAAoDwAAFQ-AABEPgAAHD4AAAw-AAAcvgAAoDwAAKo-AACIvQAA7j4AACw-AACuvgAA4DwAALY-AABAvAAAyL0AAMg9AADgPAAA6D0AAH-_AAAQPQAAuD0AAIC7AAAcPgAA2L0AADC9AADYPQAAyj4AAPg9AACgPAAAgDsAADA9AAD4PQAAoDwAAHA9AADYvQAAEL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=N9CT6Ggh0oE","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6604110938573684277"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4196127599224235917":{"videoId":"4196127599224235917","docid":"34-3-7-Z7A79B620D0037A8B","description":"Dimensional analysis in Physics is a very essential tool. This Physics Lesson introduces with types of physical quantities, meaning of dimension, what is the importance of dimension, why do we...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/220786/d058487565737faf8c5dbda3fd0c1bdd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/InzS3gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D40Q0XR0vcVc","linkTemplate":"/video/preview/4196127599224235917?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Concept of Dimensional Analysis Physics","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=40Q0XR0vcVc\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFQoTNDE5NjEyNzU5OTIyNDIzNTkxN1oTNDE5NjEyNzU5OTIyNDIzNTkxN2qTFxIBMBgAIkUaMQAKKmhocGNjZWlkYXlodG5vemJoaFVDQmFIVXlyXzF5WHBQYWZSSTgyRjFrZxICABIqEMIPDxoPPxP9A4IEJAGABCsqiwEQARp4gfMN-v38BQD4_Qj--wP_AQIMAP_4__8A7gnxAAQAAADz-gcBBAAAAAUD_AkJAAAA_QYB-_r-AAAGA_0BBAAAABL5Av_3AAAABA78BAoAAQH9-_33AgAAAA0IAQUAAAAAAAQD9_z_AADr_wcBAAAAABH-7wMAAAAAIAAtU2bdOzgTQAlITlACKoQCEAAa8AF_3CYAlSvL-wvoAAEPBeIAlSTo_yEq3QDZAwkAsiLsAEj6_AHJ2MX_Kv4UAKYFKgENJdn_9OcqASXiKgBZ9SX_7A4qABwEEwArHB7_GQ-4AdkZ0v4MC_4C3tvJ_r4d4_4f2wT9Efjy_AYz0wMo-zMBHwAG_zECDv7tDB790xk2Afb3wP4pA_0E5vn6-eI2JwIJKBEB1PIHANAC_QYSLQkBD-kL_AwA-vf18d4EHgQP9AzfDvol3OICGAgVB-oB-v8E2w7_99_0A9cTDvQa3yH5Av0C_8TkAQElBOMG8avv_vwf9PL4_wAE4x4F9g4TEP8gAC18swY7OBNACUhhUAIqzwcQABrAB7qj974xg6c8InxePG9FMj7NxBk99zHwPNxJJD7VadM8RHzxvJu3YD3A-rk9t-C7vNBHGb5vi-i8l6NPuy0LVj6wily9QS0mvVkMaL0KYoU9UJqXvMly8r3BahG9AhWruytLdLyzvve8xyRIO0HrJr0mxZe9c8V7vCS6Ir0JDIO9S-okvRhDGrwvoLw8LEvPPH8MwrwMyP69wNuyvFPQrTwW7BC9Em_4vHlli7oPyaq9UQtKvNLOj73nKaG8EN_wu5caxj1eBBc9WajQvOzeSj17xY69iHrmPG5Tl7xYU3k9t3njuxEWW7tXXHw94yQjvXkqhj1FBym9CpAXvWH-Kj3td808d8cYPXCXnT0fExk-eq05Odzvhb3dCfY9yJ3rute2kj1sVHE9soGVOwGZtz3Woiq8VyGKPN91ETt4DC891Q8APZ27-rvaBBM9MbH9uyxh7T0thMs9Z6Ysu5c9JD1BK_I7T8KWu_ifJr1H0fY5A2RDPO23Bj5Sh8-7vChVvHjg0rwmxz29CNiYvMU1Qz34UQ2-CW8su8olBD3Dv4Q7BCYJOSmMkjyAY5E79Ve8u1ZJBTwjQ5O9PPA1O7y7Jbv9EIu904Ojt54lmL3Rk1I98MX2up6RLTzkh-o936P0OTqQqr0LUCm9D3EevCXaH71hBc87cM2-O9PMaT0O3ey9j4o4ulSFiz0Pm-g9XqRROuoypbuFZq46nzjGOwJmPrxsTQm9m6hnOyUX7bw_0yE9JTczO3--Lb0hV6o8cI4Eu_eeoTs_EKq9OOztt_2VH70uk1w9vlinuCk8jbxJTYu95ZwbOaxSCj5J23g8o4p0uWr2I7vvnae9YkjcuBdl9j2TkwS9jt_iN6-ftD2ml9g8Q8qbOatgL70Wjqs9bynYOMmUajwp-Dc8XLwAuDK_pLw7tQm9UYkSuVvaX7zSJh09SN7RuA0zuLu6-Ju8sL4Jusn3Vr2_FSS9ENvRuHsS2LzPBmq98aehOAqAsbwnF-M9YmCSufaQer3_6rG888tVuFWZlDuTTIM9lA-ZuBrn5TxdD2u9uLCNN_3oar3o6RI9IjD0Nu6Jj71rn6m9cmQvNxQPXrwznhK9HJY3t_MCrD2DF129EirAOEpzUDxZ6g89UpiGOA2eoz1OyNi8dh-_uKqex716nY69kk3VN85yNLxdD8u9qHCbt6EbUL2nHHi9LCICtlNlTjx7XJW9XnW8t6BKUj0HOI49FZKMOChl0r02HYE99R_UuHDKwb0zF_g9utymOBEJlTz9M-O9pRKBtiAAOBNACUhtUAEqcxAAGmAIBQD65iLIzkI47Abt5fsQ_A30Fu_aANTRAOj1_Nf2IdnL-uoAL_D-8bsAAAAI7uQT9AD9X94I2xv77BXVuuAe7n8i8wDkzwTzvhThHRHjASL7KEsA5fGoGRzOwREEKDMgAC3PSTo7OBNACUhvUAIqrwYQDBqgBgAA2EEAALhBAADAwAAAmMEAACBBAADgQAAAcEEAACjCAACYwQAA4EAAAJDBAADwwQAA8MEAAGDCAABwQgAACMIAAGBBAAAowgAAsEEAAFjCAABwwQAAqMEAANBBAAAMQgAAWEIAAODBAAAswgAAKMIAAFxCAACgQAAAKMIAAIC_AAB8wgAAQEAAAPDBAAAwQQAAYMEAAORCAACwwQAAMEIAAOhBAAAEQgAAQEIAAKhBAABAQAAASMIAAFTCAABQwQAAikIAAIC_AAAUwgAA8EEAACDBAADgwAAAgD8AAARCAAAAwwAAmEEAAAjCAACMQgAAoEAAAEDCAAAAwgAAqMIAAOBAAAAEwgAAAAAAAABBAAA4wgAADMIAAGxCAAB8QgAA2MEAAGBCAABAQAAA6MEAAABBAABQwQAANEIAAADBAAAEwgAAQEAAAJjBAABYQgAAcEEAANDBAAAwQgAAHEIAAGBCAABowgAAoMAAAIA_AADQwQAAxsIAAMDAAABUwgAAsEEAAIBAAACAQQAAMEEAAETCAAAAQQAAmEIAAKDCAAAowgAAyEEAADDCAACGQgAA2MEAAKjBAACgQQAAoMAAAADAAABQwgAAEEEAAABAAAAQwQAAjMIAAHBBAAD4QQAALMIAADDCAADowQAANMIAAPhBAACoQQAAqMEAAKDBAAAMwgAAmMIAAKBBAACQQQAAgMAAAIZCAAAAwQAACEIAAHBBAABAQQAAAMIAAM7CAACIwQAAAEEAABhCAABwQQAAgD8AAIjBAACWwgAAcEEAADBCAACwwQAAkMEAAJhBAADoQQAAgD8AAFDBAAAwwQAAAAAAAIbCAABEwgAAEMEAAODAAACAvwAAdMIAABjCAACgwQAAHEIAANBBAABAQQAAwEAAAKBBAADQwQAAIEIAACDCAABAQQAA0MEAAABAAAAUwgAA-MEAAJpCAAA4QgAAQEAAAPDBAACgQQAAkMEAAPhCAAAAwQAAisIAAJhBAABgQQAAQEEAAODBAACUwgAAGEIAAAzCAADAQQAAlkIAAKjCAACAwAAALMIAAETCIAA4E0AJSHVQASqPAhAAGoACAACivgAAqr4AADC9AACgPAAAmL0AAHQ-AAAMvgAAI78AALi9AABAPAAALD4AACQ-AADoPQAAFD4AAJq-AADYvQAA5j4AADC9AACWPgAAET8AAH8_AACWvgAAvj4AAEC8AAA8vgAAUD0AAEA8AACIPQAAuD0AAEC8AACePgAApr4AACS-AAAUvgAApj4AACw-AACoPQAA-L0AAJq-AABMvgAAJL4AANi9AADyPgAAmL0AANg9AACYPQAAuD0AAL6-AAAQvQAABL4AANa-AAAEvgAAoDwAAMg9AACovQAAgDsAAEU_AAAwvQAA4DwAAHA9AADovQAABL4AADC9AABQvSAAOBNACUh8UAEqjwIQARqAAgAAHL4AAAS-AAAMvgAAIb8AAEC8AADYvQAArj4AAAS-AACovQAAgj4AAHw-AADgvAAA2D0AAHy-AADgPAAAoDwAADQ-AAANPwAAuD0AAJ4-AAAcPgAAgj4AAKi9AADgPAAAoDwAADA9AAAwPQAAyD0AAPi9AABwPQAAmD0AAAw-AADIvQAAqL0AAIA7AACovQAAdD4AAEw-AACevgAAQDwAAII-AAD4vQAAML0AAKg9AACGPgAAuD0AAH-_AACovQAAHL4AAPi9AABcPgAAcD0AADw-AABMvgAAiL0AANg9AAAwvQAAgDsAADw-AADIvQAAMD0AAKA8AACavgAAiD0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=40Q0XR0vcVc","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4196127599224235917"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16156935647519029100":{"videoId":"16156935647519029100","docid":"34-10-8-Z367EEC3C847CF4CA","description":"🟢 Finish YOUR Analysis 2X Faster: https://gradcoach.me/UnPEIz 🟢 Learn about qualitative data analysis (QDA) and the 6 most popular qualitative data analysis methods in this simple tutorial.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3578229/574802b15ba88a0032a3e566bb3d7ae9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lZlHPgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dj9A3ceOBihM","linkTemplate":"/video/preview/16156935647519029100?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Qualitative Data Analysis 101 Tutorial: 6 Analysis Methods + Examples","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=j9A3ceOBihM\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFgoUMTYxNTY5MzU2NDc1MTkwMjkxMDBaFDE2MTU2OTM1NjQ3NTE5MDI5MTAwaocXEgEwGAAiRBowAAopaGhleGltbGtweXhraXFxaGhVQ0hhYzQtejEzRkJTRC11ZThKdDQwRWcSAgARKhDCDw8aDz8T9QuCBCQBgAQrKosBEAEaeIH_-fz7_AUA9QcA_QwC_gAMBf8C9wAAAO0O_f37_wAA-gUHBPkBAAD9AvwFAQAAAAT7_Ar__QEADAb1AwMAAAAYAv0A-AAAAAcNDAb-AQAA7vME9QIAAAAW_Pz-AAAAAP__CPkCAAAA9QX2BAAAAAAM-vn7AAAAACAALVsG4Ts4E0AJSE5QAiqEAhAAGvABfwoNA9cCMgET8PIA6_gKAKr8C_8wFhUAt_f1ALj37QDxFPkA-gkUACX0HgDRFjH_5eD5AB4CEAD9_QIANQvtAPMjCAA25_MBJPf7APjv-ADxBAcAEvjzAAnsCgEUCuz-HCQJ_-sK-gM64w4BKg36AgD27gIODAv_Fd4N_tER7AAH7O__FQfp_9oS5v3tFwcA9vckA-0KA_3l2AQC_Pjr_QgK9QME7_L3CwYPBPX2-vn0-v4E-A72BeTmFAHQEQH63_ME_fMP9wPlD_0AJfn4BAkD_vz4I_YCDwr5APrpDP35BwAG_fUN8e0MBRDz-Pr_IAAtaepGOzgTQAlIYVACKs8HEAAawAdm2gq_j4CbPG3xnzwDFUS9AIlLPVSnKLuZt-o9O4XBPNS96Ty6LOa9Gn6BvA_lVbybHaG-RqGbvMhnqDymQjw-ZWE5vTx8Qz3np9i9nFPJPADiLjsUB1C-k3Z-PIqaHr3BOj4-ia4QPeUrQb0IIQC9mWm2PR2Hybv-bnA9qug5vXjZDDwLzbo9BKC8OxH20rzrixQ-04DFu7dyAD3lmfc9N-VlPE4d9TzfktI8xI0APXRIRbspUxE9CNNmPc1UjLvnq1Q-8F2UPGzJDTx3N6o8lhaPvcdBrjxVil29HOOUvI0FCr0NFzm9RJEkvCqQWTxhlmw9Cl-kPSDZtzyHPaO9mlshPQCQ07z9z7s9eLmIPasmiLxkMDA90Sz_vOMQ1jwFmS68L8ttPUOIEL384Se9v-_juyT5AL3EEDQ9BF7eO2f_TTzt7gM8Fy8UPHijhTyPtRU99D1-PMnBtjyoYrm9pnR_Oqq8ZbqQwA--0nSRvLU_BLwPttg9XKNvvbDtiDz9xac9cy2avBRefrv6ARk9s1Y5veX5Y7se05Q9FEmKvQeBcLxF5fQ7qGagPFnDhTx0Iww-XFNFOzz8c7qH5hW85ZqCPKpAUrykfb09c8mHvS_ILztwpEK9qrgSPMgtQTxwwYg8B5WdvPBwGrxFgJM8TzAtPW3tszvOqs-9B2cmvFzm07u19Zg9OYKvvHkYA7utzvs8D5fcvBw8lzqrWWw9RZWbPcxxuLg8fKO8guepvdZ_X7iCr7M93xUmPXBY4Lo7WlC94d2APIp8tbnVk3k8axaePEknWDnr1Iu8kwo5PeU8ljmF-SE9ydAMvWo2_LVW9wO9y9k7PAQRJ7nis8C9TO0bPejFnjh5tyi9sPSrPKF7tThkBqq9nZu2PPLHGzvXO5I8hfpnPWhdaLg3_w89GNs6vWxgxLVb2l-80iYdPUje0bhT7Mg931N0vZqz0bh4fUY9ueanOwY1ADeeSXY9m-M7O_3Mjji3z0-8yQiDvO-3pDjL4Q08mROPvHs1Z7hLRZm8kylVPP7VJzeC4cG8YWvbvBqlZDedp3W95-H_ubdZajiPrFe8tbBdPQaxyTiDZhw9-cOqPJKg8Did-CW9tKNiPdkGtjZxT-E8uYDAuqTMrbeaqgA9yd1MPTCORrjApEI83wNPvG50Jbg455a8RsA3vWriA7gIvMA7_itrvZErmLezMQa7CK-9vRx9prffjHq9gPFMPaOdsbhGqz-93xasPGaz_LYBLUK9JDo1PSjZHbc6Cgy78N7RPEjXhDggADgTQAlIbVABKnMQABpgRP0AJw0mzcYoQdwvBxzY_w3yAB3YJADdEf__9OXJECPLvO0V_0rfFuyqAAAA_O_4HP0AI3L5B9wJAO4W5YjuHvt_CxER08YX7KDu0zz55ykV3jk6AMkNpiYq47A1FhgHIAAt3DoeOzgTQAlIb1ACKq8GEAwaoAYAAKBBAADgQQAAmEEAAABAAADgwQAAmMEAAMBBAAA4wgAAAEAAAAjCAADYQQAAFMIAAKDCAAAgwgAA4kIAALjBAAAAQAAAQEEAALBBAAAAwgAAmEEAAHDBAACgQAAALEIAABxCAADwQQAAdMIAAL7CAACwQgAAikIAAGDBAADoQQAA0MEAALBBAABcwgAAEMEAABjCAACaQgAASMIAAMBBAACQQQAAqEEAAIBCAABYQgAAgkIAALDBAACEwgAAyMEAAPhCAABgwQAAyMEAAKBBAACAwQAAiEEAACRCAAAAwQAAnsIAAEBBAACMwgAAdEIAAARCAABAwgAAoMEAAGDCAADAQQAAHMIAAFxCAAB0wgAAGMIAABDCAAAoQgAAVEIAABjCAAC2QgAAFEIAAKbCAADgwAAAAMIAABBCAACAwQAAqMEAACzCAAAAwAAAREIAABTCAADAwQAAPMIAANBBAADwQgAAoMIAABDBAACYQQAAIEEAAATCAACIwQAAbMIAAEBBAACIQQAAoMAAAMjBAADYwQAAskIAAFBBAACmwgAA-MEAALBBAAAAAAAAEMEAAIA_AABgQgAA4EAAAFBCAACAQQAAAMIAAExCAABAQQAAwEAAAABAAAA4wgAA4MAAACTCAABQQQAAIMIAAIA_AACOQgAAGEIAAOBAAACIwQAAoMAAAIjCAAAwQQAA4MAAALDBAACoQQAAAAAAADDCAACgQAAAIMEAADzCAABYwgAACEIAAMBAAAAwQgAAQEAAAMDBAADgwAAA0MEAAODBAACgQQAAUMEAAHBBAAAQQQAAgL8AAKDAAACgQAAAisIAAIC_AACkwgAAcEEAAKBCAAAkwgAAMEEAAKDBAABgwgAAGMIAAJhBAADYQQAACEIAAEhCAADAwAAA4MAAAOBBAADIwQAAwEEAAOBAAAAQQgAAgD8AACBBAABMQgAAiEEAACBBAAAgQQAAAEIAAOjBAACMQgAAoMAAAAzCAABgQQAAcEEAANBBAAAQwgAALMIAACBCAAAQwQAAoMEAAEDCAABswgAAAAAAAFjCAABEwiAAOBNACUh1UAEqjwIQABqAAgAABL4AABy-AAAEPgAAyD0AACS-AAB8vgAAFD4AABG_AACovQAAcL0AAKC8AAAwPQAABL4AAMg9AACovQAARL4AAJg9AADgvAAAhj4AANY-AAB_PwAA2L0AAEw-AAAQvQAANL4AAIA7AABAPAAADD4AAMg9AACgPAAAdD4AAES-AAD4vQAAiL0AANi9AAAMPgAADD4AAFC9AACSvgAAcD0AAJi9AACAOwAAMD0AACy-AADoPQAAPD4AAOo-AAC2vgAAyD0AAFS-AABMvgAABD4AABw-AABMvgAAqL0AAKA8AAAlPwAABL4AABC9AABsPgAA4LwAAOA8AAAwPQAAQDwgADgTQAlIfFABKo8CEAEagAIAAGy-AACIvQAAQLwAABW_AABQPQAAgj4AAAQ-AADoPQAAoLwAAFQ-AACYvQAAEL0AAPi9AAAEvgAAcD0AAJg9AAAEPgAAQT8AAOC8AADCPgAABD4AANg9AABAvAAA4LwAAIA7AACKPgAAEL0AADQ-AAA0vgAAUD0AAOA8AAAUPgAAcL0AAJi9AABsPgAA-L0AALo-AACAuwAA3r4AAEy-AAC4PQAAiD0AADA9AABwvQAAqD0AAIi9AAB_vwAAiD0AAIC7AACovQAAML0AABA9AABsvgAAZD4AALI-AADYPQAAqD0AAIi9AAAkPgAATD4AAAw-AAAUvgAAuD0AAPg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=j9A3ceOBihM","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16156935647519029100"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2088230761435717584":{"videoId":"2088230761435717584","docid":"34-8-0-Z99A5CF3EEE6A7E9D","description":"in this lecture, we will perform linear static analysis of a frame truss member. file link https://drive.google.com/drive/folder... For complete courses, follow links below LS Dyna...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3916309/a518c949c5ff07b49721994a0b411463/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QR_crwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2nKZ8troTjc","linkTemplate":"/video/preview/2088230761435717584?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Ansys Workbench | Steel Frame Analysis","related_orig_text":"Optimall Analysis","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Optimall Analysis\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2nKZ8troTjc\",\"src\":\"serp\",\"rvb\":\"EqYDChM0NzA0MzYxMTg1NDg4OTA4ODI4ChM5NDg4ODQxOTI1MDIyMDM5NTAxChMyMzM1OTcwMjI4NjE2ODYyMDg0ChQxMTg0MDAyODQ5ODY2NzI5Njc0OQoUMTc0MTM0NTA0MzM3NjcxMjg3MTAKEzI0NTgxMjIzMzA0MjA0ODY2ODQKEjUwNjY1MTM5NzEyNzM0NjIyNgoTNTY2MDY3OTc1NDQ4ODQxNTE0MQoUMTUzMzcwMDQ2NjA5MDk1ODU1NTQKEzkwMDM3ODY0NDM4NDMyMDU4ODQKEzE0NTE0MDE1Njk0MjAwOTczMTEKEzkwNzU4Nzg1ODY2OTY4MTM0OTQKEzcwODgzMDY3MDQyMDE0ODg3MTEKEjgzNTY1MjY5NDQ3MDI2ODk0NQoTNjYwNDExMDkzODU3MzY4NDI3NwoTNDE5NjEyNzU5OTIyNDIzNTkxNwoUMTYxNTY5MzU2NDc1MTkwMjkxMDAKEzIwODgyMzA3NjE0MzU3MTc1ODQKEzcwMjc1NzY5NjgwMzM3MTk4MDIKEzgxNDg0Mjk2MDMyMDI3ODk4MzUaFQoTMjA4ODIzMDc2MTQzNTcxNzU4NFoTMjA4ODIzMDc2MTQzNTcxNzU4NGqIFxIBMBgAIkUaMQAKKmhoaGtqdXdyeGlkZGRocWJoaFVDVTRxQVNFd0l6Vm16VkhWSTgxd3JiZxICABIqEMIPDxoPPxPPB4IEJAGABCsqiwEQARp4gf8JAvX-AwDy_fP9-wIBAQ4DEgD3AQAA_Qn4CAMF_gD9-A3_-AAAAAL9-AIJAAAADP_8Af7_AQARBgQEBAAAAAkC-AD9AAAADQf_-v4BAAD58gD4AgAAAAD2Dgb_AAAA-g78-_8AAAAFCu8JAAAAABMB-QAAAAAAIAAt6L3ZOzgTQAlITlACKoQCEAAa8AFuGAj_9_3RA6MY_ADS7NwAgfLo__gSEADQxRIA2BsMAQc6IgENFR8ABvAdAKz-5gFA6Tb_Ewfy_9fjLP8FGOUB_QofAfbpDABWFfIAHdX6_vZoG_4BDA3-7vz3_wQKC_8N8_D9-Rj3A7ML5f8tERUF8_YUAiz89v_e-PD_BdEuA-L11_0lL_oA69HrAAIEE_8k1tEGUATzAL4A9P_GEwr_LdX5AyzcAwAN5Aj3680IBP7xCggHyQf1BTXw-wje7AnK5BUEBsz_9z3q9g3qGgj-EAMQEh818P_iAfT-IfkKFPNXCgIG--3zAxPsBCTSE_UgAC3kRxA7OBNACUhhUAIqzwcQABrAB379sL6m1vu8P5-SvfcL0bx62UA8eGz6vPvnOb5iwkM8-63dvAzlVD7xAWs9X9U0vaH1IL5hS_S8WyLXPMFCrD0cwy07s5SRvN-HM75BgkI9ttwUPedWeL4CWsS8eFIRul1AXDvruCu8jb_jPFRTAj7cSzq9dswQvLpLgj38E8G88joHvS-bSj23Siu91mgivAXD-T0xi1q9C4gfPSDrCT7Fbdm8qpk1vG9nurx4wiE9Yiz0O1v8hz3YH1K9uU7lO3pOvDvwbA-9RtPVu3bjGzy1ena6VuiNPJ5tjz0zAsM7uuoJvHw9qT2T1Fi9mrNyOmRSCL2GYEu9sNycvIATZb3IjFY6f_2rPPW8Kz7NLHg8-nq-PAiOy71CTSG8Zn4avChNrr2m8Ss9jlAdPU2HDj6EhS69eqx0vKIIOT4GTCC96bSTPCtt8btSAYM75IPcO2eHTj29gOg8CULkOkM5cb0g1OA80c3AO6wUJ73yqx492O8uvB1aZLx5hwU9wuyOuqn7sL0-INA8PSdiPBtNqT2ZtA69cPppvDEFgD1BeP66Q-IivCgsDL1dkp68EX8BPNcVA74fTRW9mAAXPKUHj7xgAAa7QVlCPH6fmz3vlj-8_AgVPGP-ejueEqs8ESRKPPxlgb2OoVI83-tavBLbvb0SyKs9rg6juPvzI7ycGX0876vVu1ddBz1cZ429rlVtuYBjsruUYPs8oMekOzDfFT1gPOM958zyOV54j72712Q9OJpuOmPELz2WNxE9642cuwbwOz0AywY8YU3kudNXJj2gJ--8L0kZuP6BAj6E68Y9cYpAuHq5Ob0kC5i8eZuXOZoCvr2ZBWQ9-t--ubGuo7tN7Za8bfRHuhkiAr1aYY-9xFP_uX4zNr2kUJa9LoOjtyf3i73meQs9nwu4trdulDzz9YY8OEFgOD3vxr1lnDA9-tEJOGJQwT12CBK99oFzuXEHXTovla09L_rit5hRh7zyOcE8AntUuM6vwTxJk8w930SHuOl_-7r2etc9K3SvtpEqijzMB8S8L6D-OJoHED3eOMm9CDT7NnBwEz0RXEA86t2AOUvmWL1_OZ694zIyOEmMVLzvSoy9eSvXNiIXDD5ZovM9PmJCuKgvVT1ECtA61pMONoJVRT50yDc9ydyEuVcEL7677Ie9vGGjOBsJGT2VqpM9vBLKN86O1D1Gvww9OiwSuG1yGD5hpBe-p_jeuNJ-NTx8Sqk87e-3OABIN7t3VTY9PpXduEuRDL6X4po9rk2fON2TTD0n1Py6_HnXtyAAOBNACUhtUAEqcxAAGmAz7wDznxfg8FAq7u3B0Qj-9LHIAbr5_-r1_xkK5-YYEv_kHiAASugy65sAAAAH8PlHEAAMfzG4SAzp-zm1zPoQA30L7PicPEAwIgJXAi4IBRj6XkwA9_e0CVvF1jPHCx0gAC03FQ87OBNACUhvUAIqrwYQDBqgBgAAHMIAANhBAAAYwgAAcMEAAODAAABQQQAAskIAAKBBAABowgAAwMEAAHDCAAAUQgAAqsIAAEDBAAAQQgAACEIAAIjBAABYwgAAUEEAANjBAABUQgAAoMEAAEBCAABgQQAA-EEAAMBBAACMwgAAIEIAAMDAAAAAQAAAgL8AAKBBAAB0wgAAYMIAAMDCAADIwQAAgD8AAEBCAAA8wgAAQMEAAIBAAAAYQgAAwEAAAIBCAABAQgAAgMAAAIBAAACAQQAAqkIAAKhBAADAQQAAgMAAAHTCAACAvwAAAMIAAJBBAACQwgAABEIAACRCAADYwQAAPEIAAKrCAACAQQAAcEEAAPBBAAAwQgAAUMEAANDBAABwQgAAIMEAAKJCAACMQgAAMMEAAIRCAACgwQAA6sIAAHzCAACAwQAAVEIAAMDAAABgwgAAfEIAAHzCAAAgQQAAwEEAAMBAAAAEwgAAjEIAALJCAAAgwQAAyEEAAKhBAABAQAAAhsIAAHTCAAAkwgAAZMIAAOBAAACgQQAAcEEAACzCAAAQQgAABEIAADBCAACkwgAAYEEAAJhBAAAAAAAAQEEAAKRCAABcQgAAQMEAAFTCAACoQQAAgMEAAPjBAADgwQAAgL8AAKjBAADAwAAAkMEAAADBAAAowgAAAMEAAAAAAAAwQQAAmMEAAKDAAADowQAAEMEAABDBAAAcQgAABMIAAAhCAADgQAAAqEEAAGBBAAAIQgAA8MEAAJrCAAAAwgAAAMEAABBBAADQwQAA0EEAAKLCAABAwgAAAEEAAIDAAACKQgAAQEAAAGDBAABAQgAAYMEAAGxCAADgwQAAsMEAAPDBAACAPwAAlkIAAAzCAACoQQAAyMEAAIC_AAD4QQAAoMEAAChCAADgwAAA-EEAAJjBAAAQQgAAWEIAAODAAAAIwgAAAMEAAOjBAACAPwAAVMIAAKjBAACuQgAAJMIAACzCAACewgAAyEEAAFxCAACIQQAA4MAAAPBBAABwQgAAoMEAAJLCAACgwAAAJEIAAIjBAAAwQQAAYEEAAAAAAAC4wQAAZMIAAAhCIAA4E0AJSHVQASqPAhAAGoACAACOvgAAcL0AAKA8AACGPgAAcL0AADA9AABMvgAA2r4AAAy-AACIPQAAoLwAAAQ-AAAMPgAAED0AAFy-AACKvgAAbD4AANg9AAAQPQAAoj4AAH8_AABAPAAA6D0AAOi9AADIPQAA4DwAADA9AADoPQAAVL4AAMg9AABUPgAA-D0AAKA8AADoPQAAZD4AAEw-AABcPgAAPL4AAGy-AAAMvgAAoLwAADC9AACAuwAA4LwAAIg9AADYPQAA4LwAAAw-AAB8vgAAyD0AAFA9AAC4vQAAoDwAAAQ-AABwPQAAoDwAAPY-AAAEPgAA4LwAABw-AACYvQAAuL0AAIg9AABwvSAAOBNACUh8UAEqjwIQARqAAgAAZL4AAOg9AAC2vgAAM78AAKA8AAAcPgAAQLwAAKg9AABUvgAAZD4AAFC9AABwvQAAC78AAFS-AACIvQAAgDsAADy-AAAzPwAAhr4AAII-AACGPgAAED0AAHC9AAAUPgAAlr4AAEC8AAAUvgAAuD0AANg9AABQPQAALD4AAIC7AAA0vgAA2L0AAIi9AADgPAAALD4AAJa-AAC6vgAAmL0AAOi9AABwPQAAoLwAABA9AACoPQAA0j4AAH-_AADIvQAARD4AABy-AACCvgAAoDwAANg9AAAMPgAAgj4AAJg9AABwPQAAZD4AAIo-AAAEPgAAyL0AADw-AAAsPgAAUL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=2nKZ8troTjc","parent-reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2088230761435717584"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"4704361185488908828":{"videoId":"4704361185488908828","title":"Post Optimality \u0007[Analysis\u0007] (Part-6)-Addition of a constraint","cleanTitle":"Post Optimality Analysis (Part-6)-Addition of a constraint","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7XWU13Yog4I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7XWU13Yog4I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/channel/UCS2s5iJxWrUy5xErJhi7aJw","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1223,"text":"20:23","a11yText":"Süre 20 dakika 23 saniye","shortText":"20 dk."},"views":{"text":"14,2bin","a11yText":"14,2 bin izleme"},"date":"24 mar 2020","modifyTime":1585008000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7XWU13Yog4I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7XWU13Yog4I","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":1223},"parentClipId":"4704361185488908828","href":"/preview/4704361185488908828?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/4704361185488908828?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9488841925022039501":{"videoId":"9488841925022039501","title":"What is Post Optimality (Part-1)/Sensitivity \u0007[Analysis\u0007]","cleanTitle":"What is Post Optimality (Part-1)/Sensitivity Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/live/Av6qTFJqurA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Av6qTFJqurA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":900,"text":"15:00","a11yText":"Süre 15 dakika","shortText":"15 dk."},"views":{"text":"65,1bin","a11yText":"65,1 bin izleme"},"date":"19 mar 2020","modifyTime":1584576000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Av6qTFJqurA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Av6qTFJqurA","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":900},"parentClipId":"9488841925022039501","href":"/preview/9488841925022039501?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/9488841925022039501?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2335970228616862084":{"videoId":"2335970228616862084","title":"Post Optimality \u0007[Analysis\u0007] (Part-2)-Change in Cost Coefficient","cleanTitle":"Post Optimality Analysis (Part-2)-Change in Cost Coefficient","host":{"title":"YouTube","href":"http://www.youtube.com/live/_7pV-V0X4oI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_7pV-V0X4oI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUzJzNWlKeFdyVXk1eEVySmhpN2FKdw==","name":"MathPod","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathPod","origUrl":"http://www.youtube.com/@MathPod","a11yText":"MathPod. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":875,"text":"14:35","a11yText":"Süre 14 dakika 35 saniye","shortText":"14 dk."},"views":{"text":"33,9bin","a11yText":"33,9 bin izleme"},"date":"24 mar 2020","modifyTime":1585008000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_7pV-V0X4oI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_7pV-V0X4oI","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":875},"parentClipId":"2335970228616862084","href":"/preview/2335970228616862084?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/2335970228616862084?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11840028498667296749":{"videoId":"11840028498667296749","title":"Schedulability \u0007[Analysis\u0007] and Optimality of RM by Dr. Saroj Hiranwal","cleanTitle":"Schedulability Analysis and Optimality of RM by Dr. Saroj Hiranwal","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7MCDJ2S8a3E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7MCDJ2S8a3E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNzh1MjZEQ3ZjblRDUGRGR2Rac3Mxdw==","name":"Saroj Hiranwal","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Saroj+Hiranwal","origUrl":"http://www.youtube.com/@dr.sarojhiranwal8871","a11yText":"Saroj Hiranwal. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":781,"text":"13:01","a11yText":"Süre 13 dakika 1 saniye","shortText":"13 dk."},"views":{"text":"2bin","a11yText":"2 bin izleme"},"date":"7 nis 2020","modifyTime":1586217600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7MCDJ2S8a3E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7MCDJ2S8a3E","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":781},"parentClipId":"11840028498667296749","href":"/preview/11840028498667296749?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/11840028498667296749?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17413450433767128710":{"videoId":"17413450433767128710","title":"Fundamental \u0007[Analysis\u0007] vs Technical \u0007[Analysis\u0007] | Parimal Ade (with ENG subtitles)","cleanTitle":"Fundamental Analysis vs Technical Analysis | Parimal Ade (with ENG subtitles)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=N5wCtvRNSZ0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/N5wCtvRNSZ0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUG9oYlNZcTRJWGh2MHl4aXktc1Q0Zw==","name":"Yadnya Investment Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Yadnya+Investment+Academy","origUrl":"http://www.youtube.com/@InvestYadnya","a11yText":"Yadnya Investment Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":563,"text":"9:23","a11yText":"Süre 9 dakika 23 saniye","shortText":"9 dk."},"views":{"text":"72,3bin","a11yText":"72,3 bin izleme"},"date":"4 ara 2019","modifyTime":1575417600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/N5wCtvRNSZ0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=N5wCtvRNSZ0","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":563},"parentClipId":"17413450433767128710","href":"/preview/17413450433767128710?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/17413450433767128710?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2458122330420486684":{"videoId":"2458122330420486684","title":"How to Optimize Your EBSD Results Using OIM \u0007[Analysis\u0007]™ v8","cleanTitle":"How to Optimize Your EBSD Results Using OIM Analysis™ v8","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yMULpLThiAo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yMULpLThiAo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1pheHZZQ1ZMYmZTcWl3QU1JVkc0QQ==","name":"EDAX","isVerified":false,"subscribersCount":0,"url":"/video/search?text=EDAX","origUrl":"http://www.youtube.com/@EDAX","a11yText":"EDAX. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3678,"text":"1:01:18","a11yText":"Süre 1 saat 1 dakika 18 saniye","shortText":"1 sa. 1 dk."},"views":{"text":"4,1bin","a11yText":"4,1 bin izleme"},"date":"22 şub 2022","modifyTime":1645488000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yMULpLThiAo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yMULpLThiAo","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":3678},"parentClipId":"2458122330420486684","href":"/preview/2458122330420486684?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/2458122330420486684?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"506651397127346226":{"videoId":"506651397127346226","title":"Multivariate \u0007[Analysis\u0007] | Data \u0007[Analysis\u0007] Tutorial | Statistical \u0007[Analysis\u0007] | Great Learning","cleanTitle":"Multivariate Analysis | Data Analysis Tutorial | Statistical Analysis | Great Learning","host":{"title":"YouTube","href":"http://www.youtube.com/live/Vs2bzT07GlM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Vs2bzT07GlM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDT2JzMGtMSXJEalgyTExTeWJxTmFFQQ==","name":"Great Learning","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Great+Learning","origUrl":"http://www.youtube.com/@greatlearning","a11yText":"Great Learning. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3158,"text":"52:38","a11yText":"Süre 52 dakika 38 saniye","shortText":"52 dk."},"views":{"text":"47,3bin","a11yText":"47,3 bin izleme"},"date":"6 kas 2021","modifyTime":1636205411000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Vs2bzT07GlM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Vs2bzT07GlM","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":3158},"parentClipId":"506651397127346226","href":"/preview/506651397127346226?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/506651397127346226?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5660679754488415141":{"videoId":"5660679754488415141","title":"Fundamental \u0007[Analysis\u0007] vs. Technical \u0007[Analysis\u0007]","cleanTitle":"Fundamental Analysis vs. Technical Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tWvnAfT4yAk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tWvnAfT4yAk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTEM0UHVGbHlLd0swM1NjMjlZTEVHUQ==","name":"CME Group","isVerified":false,"subscribersCount":0,"url":"/video/search?text=CME+Group","origUrl":"http://www.youtube.com/@cmegroup","a11yText":"CME Group. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":183,"text":"3:03","a11yText":"Süre 3 dakika 3 saniye","shortText":"3 dk."},"views":{"text":"13,1bin","a11yText":"13,1 bin izleme"},"date":"6 nis 2018","modifyTime":1522972800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tWvnAfT4yAk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tWvnAfT4yAk","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":183},"parentClipId":"5660679754488415141","href":"/preview/5660679754488415141?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/5660679754488415141?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15337004660909585554":{"videoId":"15337004660909585554","title":"Investing Basics: Fundamental \u0007[Analysis\u0007]","cleanTitle":"Investing Basics: Fundamental Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/live/3BOE1A8HXeE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3BOE1A8HXeE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVG9lM2RzcFp5dzJMX0pZLUptUDNNdw==","name":"Charles Schwab","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Charles+Schwab","origUrl":"http://www.youtube.com/@CharlesSchwab","a11yText":"Charles Schwab. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":330,"text":"5:30","a11yText":"Süre 5 dakika 30 saniye","shortText":"5 dk."},"views":{"text":"124,1bin","a11yText":"124,1 bin izleme"},"date":"3 kas 2023","modifyTime":1698969600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3BOE1A8HXeE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3BOE1A8HXeE","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":330},"parentClipId":"15337004660909585554","href":"/preview/15337004660909585554?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/15337004660909585554?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9003786443843205884":{"videoId":"9003786443843205884","title":"Correlation \u0007[analysis\u0007]","cleanTitle":"Correlation analysis","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qo1FVrlvW1Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qo1FVrlvW1Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM1V3cld0QUZsQWtGbF8zTmlhNzU2Zw==","name":"numiqo","isVerified":false,"subscribersCount":0,"url":"/video/search?text=numiqo","origUrl":"http://www.youtube.com/@numiqo","a11yText":"numiqo. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":339,"text":"5:39","a11yText":"Süre 5 dakika 39 saniye","shortText":"5 dk."},"views":{"text":"195,5bin","a11yText":"195,5 bin izleme"},"date":"11 oca 2021","modifyTime":1610323200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qo1FVrlvW1Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qo1FVrlvW1Y","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":339},"parentClipId":"9003786443843205884","href":"/preview/9003786443843205884?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/9003786443843205884?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1451401569420097311":{"videoId":"1451401569420097311","title":"THE Truth: How Institutional Traders Really use Fundamental \u0007[Analysis\u0007]...","cleanTitle":"THE Truth: How Institutional Traders Really use Fundamental Analysis...","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rYxdZccrEHY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rYxdZccrEHY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUENQRTVNb0k3RFMxV2lWQl8tbXpOdw==","name":"TraderNick","isVerified":true,"subscribersCount":0,"url":"/video/search?text=TraderNick","origUrl":"http://www.youtube.com/@TraderNick","a11yText":"TraderNick. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1195,"text":"19:55","a11yText":"Süre 19 dakika 55 saniye","shortText":"19 dk."},"views":{"text":"30,4bin","a11yText":"30,4 bin izleme"},"date":"6 mayıs 2023","modifyTime":1683373406000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rYxdZccrEHY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rYxdZccrEHY","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":1195},"parentClipId":"1451401569420097311","href":"/preview/1451401569420097311?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/1451401569420097311?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9075878586696813494":{"videoId":"9075878586696813494","title":"A Guide To Volume Price \u0007[Analysis\u0007] (VPA) | Beginner Friendly","cleanTitle":"A Guide To Volume Price Analysis (VPA) | Beginner Friendly","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jyspZ_5Ly-4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jyspZ_5Ly-4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbXNFM0N6QU9aSG1MNHo4eXVwQ3dGdw==","name":"TC Trading","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TC+Trading","origUrl":"http://www.youtube.com/@TCTrading","a11yText":"TC Trading. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1062,"text":"17:42","a11yText":"Süre 17 dakika 42 saniye","shortText":"17 dk."},"views":{"text":"8bin","a11yText":"8 bin izleme"},"date":"5 şub 2024","modifyTime":1707160724000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jyspZ_5Ly-4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jyspZ_5Ly-4","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":1062},"parentClipId":"9075878586696813494","href":"/preview/9075878586696813494?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/9075878586696813494?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7088306704201488711":{"videoId":"7088306704201488711","title":"Probabilistic sensitivity \u0007[analysis\u0007] (PSA) - Part II (\u0007[Analysing\u0007] and presenting results)","cleanTitle":"Probabilistic sensitivity analysis (PSA) - Part II (Analysing and presenting results)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cTEceyHOqQQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cTEceyHOqQQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdk9DbngyUXQ4OFh5TTJoZ0hoaGRqdw==","name":"Decision analytic modelling in health economics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Decision+analytic+modelling+in+health+economics","origUrl":"http://www.youtube.com/@TMSnowsill","a11yText":"Decision analytic modelling in health economics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":311,"text":"5:11","a11yText":"Süre 5 dakika 11 saniye","shortText":"5 dk."},"views":{"text":"6,1bin","a11yText":"6,1 bin izleme"},"date":"26 şub 2021","modifyTime":1614297600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cTEceyHOqQQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cTEceyHOqQQ","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":311},"parentClipId":"7088306704201488711","href":"/preview/7088306704201488711?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/7088306704201488711?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"835652694470268945":{"videoId":"835652694470268945","title":"How to Conduct a Competitive \u0007[Analysis\u0007]","cleanTitle":"How to Conduct a Competitive Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=C91utiNU0cI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/C91utiNU0cI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMnRTcUh2YUh0bVlsNlhZQkQ5ZkpoZw==","name":"EPM","isVerified":false,"subscribersCount":0,"url":"/video/search?text=EPM","origUrl":"http://www.youtube.com/@epm8805","a11yText":"EPM. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":548,"text":"9:08","a11yText":"Süre 9 dakika 8 saniye","shortText":"9 dk."},"views":{"text":"195,3bin","a11yText":"195,3 bin izleme"},"date":"17 oca 2017","modifyTime":1484611200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/C91utiNU0cI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=C91utiNU0cI","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":548},"parentClipId":"835652694470268945","href":"/preview/835652694470268945?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/835652694470268945?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6604110938573684277":{"videoId":"6604110938573684277","title":"Natural Language Processing (Part 4): Sentiment \u0007[Analysis\u0007] with TextBlob in Python","cleanTitle":"Natural Language Processing (Part 4): Sentiment Analysis with TextBlob in Python","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=N9CT6Ggh0oE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/N9CT6Ggh0oE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeXYtUEwtUWdrQVhFZkRSY0tyWU1lQQ==","name":"Alice Zhao","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Alice+Zhao","origUrl":"http://www.youtube.com/@ADashofData","a11yText":"Alice Zhao. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":702,"text":"11:42","a11yText":"Süre 11 dakika 42 saniye","shortText":"11 dk."},"views":{"text":"36,2bin","a11yText":"36,2 bin izleme"},"date":"5 oca 2019","modifyTime":1546646400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/N9CT6Ggh0oE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=N9CT6Ggh0oE","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":702},"parentClipId":"6604110938573684277","href":"/preview/6604110938573684277?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/6604110938573684277?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4196127599224235917":{"videoId":"4196127599224235917","title":"Concept of Dimensional \u0007[Analysis\u0007] Physics","cleanTitle":"Concept of Dimensional Analysis Physics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=40Q0XR0vcVc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/40Q0XR0vcVc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQmFIVXlyXzF5WHBQYWZSSTgyRjFrZw==","name":"IMA Videos","isVerified":false,"subscribersCount":0,"url":"/video/search?text=IMA+Videos","origUrl":"http://gdata.youtube.com/feeds/api/users/SkyingBlogger","a11yText":"IMA Videos. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":509,"text":"8:29","a11yText":"Süre 8 dakika 29 saniye","shortText":"8 dk."},"views":{"text":"242,3bin","a11yText":"242,3 bin izleme"},"date":"17 ara 2012","modifyTime":1355702400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/40Q0XR0vcVc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=40Q0XR0vcVc","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":509},"parentClipId":"4196127599224235917","href":"/preview/4196127599224235917?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/4196127599224235917?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16156935647519029100":{"videoId":"16156935647519029100","title":"Qualitative Data \u0007[Analysis\u0007] 101 Tutorial: 6 \u0007[Analysis\u0007] Methods + Examples","cleanTitle":"Qualitative Data Analysis 101 Tutorial: 6 Analysis Methods + Examples","host":{"title":"YouTube","href":"http://www.youtube.com/live/j9A3ceOBihM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/j9A3ceOBihM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSGFjNC16MTNGQlNELXVlOEp0NDBFZw==","name":"Grad Coach","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Grad+Coach","origUrl":"http://www.youtube.com/@GradCoach","a11yText":"Grad Coach. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1525,"text":"25:25","a11yText":"Süre 25 dakika 25 saniye","shortText":"25 dk."},"views":{"text":"878,6bin","a11yText":"878,6 bin izleme"},"date":"12 mayıs 2021","modifyTime":1620777600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/j9A3ceOBihM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=j9A3ceOBihM","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":1525},"parentClipId":"16156935647519029100","href":"/preview/16156935647519029100?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/16156935647519029100?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2088230761435717584":{"videoId":"2088230761435717584","title":"Ansys Workbench | Steel Frame \u0007[Analysis\u0007]","cleanTitle":"Ansys Workbench | Steel Frame Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2nKZ8troTjc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2nKZ8troTjc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVTRxQVNFd0l6Vm16VkhWSTgxd3JiZw==","name":"Practical FEA","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Practical+FEA","origUrl":"http://www.youtube.com/@practicalfea5590","a11yText":"Practical FEA. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":975,"text":"16:15","a11yText":"Süre 16 dakika 15 saniye","shortText":"16 dk."},"views":{"text":"21,2bin","a11yText":"21,2 bin izleme"},"date":"19 mayıs 2021","modifyTime":1621382400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2nKZ8troTjc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2nKZ8troTjc","reqid":"1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL","duration":975},"parentClipId":"2088230761435717584","href":"/preview/2088230761435717584?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","rawHref":"/video/preview/2088230761435717584?parent-reqid=1765327077372289-12264695239965617493-balancer-l7leveler-kubr-yp-vla-216-BAL&text=Optimall+Analysis","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"2646952399656174937216","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Optimall Analysis","queryUriEscaped":"Optimall%20Analysis","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}