{"pages":{"search":{"query":"Robb Syverson","originalQuery":"Robb Syverson","serpid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","parentReqid":"","serpItems":[{"id":"9302687441070517126-0-0","type":"videoSnippet","props":{"videoId":"9302687441070517126"},"curPage":0},{"id":"1198549290523831329-0-1","type":"videoSnippet","props":{"videoId":"1198549290523831329"},"curPage":0},{"id":"7460512322183318584-0-2","type":"videoSnippet","props":{"videoId":"7460512322183318584"},"curPage":0},{"id":"12804339202650973841-0-3","type":"videoSnippet","props":{"videoId":"12804339202650973841"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFJvYmIgU3l2ZXJzb24K","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","ui":"desktop","yuid":"1099589221769523457"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"15022861274883503718-0-5","type":"videoSnippet","props":{"videoId":"15022861274883503718"},"curPage":0},{"id":"2883881151076793631-0-6","type":"videoSnippet","props":{"videoId":"2883881151076793631"},"curPage":0},{"id":"17546691289987412793-0-7","type":"videoSnippet","props":{"videoId":"17546691289987412793"},"curPage":0},{"id":"16488447049032286700-0-8","type":"videoSnippet","props":{"videoId":"16488447049032286700"},"curPage":0},{"id":"591989821681430768-0-9","type":"videoSnippet","props":{"videoId":"591989821681430768"},"curPage":0},{"id":"2109483975644526702-0-10","type":"videoSnippet","props":{"videoId":"2109483975644526702"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFJvYmIgU3l2ZXJzb24K","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","ui":"desktop","yuid":"1099589221769523457"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"766262078129610664-0-12","type":"videoSnippet","props":{"videoId":"766262078129610664"},"curPage":0},{"id":"14371676280160045103-0-13","type":"videoSnippet","props":{"videoId":"14371676280160045103"},"curPage":0},{"id":"7250994805335161841-0-14","type":"videoSnippet","props":{"videoId":"7250994805335161841"},"curPage":0},{"id":"811366880848389672-0-15","type":"videoSnippet","props":{"videoId":"811366880848389672"},"curPage":0},{"id":"7923218050146615006-0-16","type":"videoSnippet","props":{"videoId":"7923218050146615006"},"curPage":0},{"id":"3281205880059569728-0-17","type":"videoSnippet","props":{"videoId":"3281205880059569728"},"curPage":0},{"id":"4930481830583941055-0-18","type":"videoSnippet","props":{"videoId":"4930481830583941055"},"curPage":0},{"id":"2300525925972317986-0-19","type":"videoSnippet","props":{"videoId":"2300525925972317986"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFJvYmIgU3l2ZXJzb24K","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","ui":"desktop","yuid":"1099589221769523457"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DRobb%2BSyverson"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"0645935443940557040783","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1457142,0,17;1472323,0,68;1472346,0,79;1466867,0,72;1457616,0,69;1473738,0,81;1472056,0,2;1470057,0,62;1460717,0,20;1459297,0,20;1456929,0,83;1459323,0,86;123843,0,80;1464523,0,8;1470249,0,89;1463532,0,14;1470857,0,33;1467161,0,80;1452016,0,47;1349038,0,86;1215676,0,17;1188717,0,68;260562,0,22;1465697,0,89;120693,0,39;1471678,0,16;124066,0,48;1404017,0,22;263460,0,17;255407,0,17;1471179,0,55;1470317,0,69;1357005,0,18;1002327,0,65;1470414,0,25;151171,0,29;1281084,0,51;287509,0,23;1447467,0,52;1006026,0,21;1466396,0,37"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DRobb%2BSyverson","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=Robb+Syverson","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=Robb+Syverson","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Robb Syverson: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Robb Syverson\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Robb Syverson — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"ydcba754968670c32a6bb9827a2eb6693","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457142,1472323,1472346,1466867,1457616,1473738,1472056,1470057,1460717,1459297,1456929,1459323,123843,1464523,1470249,1463532,1470857,1467161,1452016,1349038,1215676,1188717,260562,1465697,120693,1471678,124066,1404017,263460,255407,1471179,1470317,1357005,1002327,1470414,151171,1281084,287509,1447467,1006026,1466396","queryText":"Robb Syverson","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1099589221769523457","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769523543","tz":"America/Louisville","to_iso":"2026-01-27T09:19:03-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457142,1472323,1472346,1466867,1457616,1473738,1472056,1470057,1460717,1459297,1456929,1459323,123843,1464523,1470249,1463532,1470857,1467161,1452016,1349038,1215676,1188717,260562,1465697,120693,1471678,124066,1404017,263460,255407,1471179,1470317,1357005,1002327,1470414,151171,1281084,287509,1447467,1006026,1466396","queryText":"Robb Syverson","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1099589221769523457","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"0645935443940557040783","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":149,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"1099589221769523457","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"9302687441070517126":{"videoId":"9302687441070517126","docid":"34-2-10-Z76FCDA18E8D3C7E7","description":"A brief introduction to the topic of verifying trigonometric identities. Basic strategies are covered along with the common strategy of multiplying by the conjugate to obtain a pythagorean identity.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4569018/57dd08e002b86c086b50952c691965ad/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/soLcVQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Darba2_zZ0s0","linkTemplate":"/video/preview/9302687441070517126?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Verifying Trigonometric Identities","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=arba2_zZ0s0\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhUKEzkzMDI2ODc0NDEwNzA1MTcxMjZaEzkzMDI2ODc0NDEwNzA1MTcxMjZqiBcSATAYACJFGjEACipoaHFzZG92dmllc3lzeG1kaGhVQ2xoMHZzd0pmR1FtNW1MZWhDQUdDLVESAgASKhDCDw8aDz8ToAWCBCQBgAQrKosBEAEaeIHz_wML_QMA9v4DBf4F_gETCfz89QICAPwF-v0GBP4A7fkQ_P3_AAD-BgQKBAAAAP0GAfv6_gAADQb1AwQAAAAJAvgA_QAAABYG9vn-AQAA8vMBAfYCAAEI7gT__wAAAAAN-fIAAAAACfrv9gEAAAD28wP9AAAAACAALUKx2zs4E0AJSE5QAiqEAhAAGvABfwwA_NgECAG9A-IBuiz1AIRDBP8mMtcApe0OAcLS5QDG9eAAren_AIwtJQOlOCQBFdTAAC7cFv9P9Rn_DvbhAQ0U9AFMzfwBVwMd_92nzQACLDj-4v0m_jDg8ADpIPn8_eAc_xXj-ALFy7YIOegQ_Ez5FANQCx4B7bUK__Ue6gYN3uP_0AL2Ben05f4BxhoG-9vfARlbBf3dBe0BI-_x-dbs6vMRGMMAWEYNBuXaCPsB2uEI-hD8_PsvIw3_NgwJ3gQcANPOAAAfGv4D4tDoCQL8Av8L0-MB-u_09QX3Hff-8gECyzP8BejhDxbp8_X-IAAtcN7mOjgTQAlIYVACKs8HEAAawAcgKsW-LJaHvKW2-bxT5FW9Ud6HPIviMLwN_v69Ug6mPIhdgDwzqUE-2cQwOlizqTwceHW-anwQPXw40jzLgDM-5tGIvZhiMzx6Fy--CDwwPSmf1Lz1oWu-hNMHPXQ1w7s7noA9KMAGvZGM5jr-fhE-6Sq9vTiUa7xviwi9Q0cHuiPYGL2YrWu9F-VDvbxJAr0Vb4W7R8vBPKlE_jwg6wk-xW3ZvKqZNbzO9g09c4vUvN_Rsbu_tYO9eYqBPFppDLsP_I49_IwrPd8g9TzcVX68_dc-vcogsbr5FIC8NnSzvD0KV7w9Cjc9pkZovJPGqLzwbmA9W1U7vVbYZ7w-GW29bzNQPbBjkjxGCuU9o5YgPFPN7juu1wS-DZ8-PexFmbx8e5e87moovXsuU7w9Jlc9dxGmPCO2AD1WWpA8VXH-PCqTFrx2rpM9HVXNPTjTyjsHKdg9_1nzvKCJsLycBKU8XQB1PKMngLyqPny97xCgPUuPJjxQCBM9VWMuPMYWgjsIG5M90JKuOyHPyTzFNUM9-FENvglvLLttqaO92cU-vceLv7t-OOg9QkCAO3x9ELyvQzU9aL7JvWc7kbsrtD08XwEWvKPElTptpJE8Xsh5vR-sNTvPGay8W6mhPSxVdbsaVQG9i4EfPXUsJbzEknY732-kPVxAwzqF6FU9NXCxvSLHGTo6nJ892jq4PFx8QDuHy4A9aY4sPAHXYLoH7uA9etweu_alDrqb3NS8800kvf5cFzun2XK8sMMaPCVMA7s8vfI9SshRvVfBjjmBCkI9D9UQPGHNM7gJcSC9X1cYPQfsNjkFC6-7KW37vBsV3zitL7c6_RLxvbwjiTm4Q-A7iowzvE0kPLnxRmY9aH4QPEVlnrjMIMO91A0EvghThTnGJf2893yovG-nnbi3JKw8H7kVvdMaDTm-4iQ9H_v0vOi0_je0sOW723sivYAc8Dgl1wO9BLS4Paonqrhar4M9AY_DvabRWjl5JTe4VGQePZ6okjjoUYy8WkByPQnlvDfclBw9TqKUPbrAhzfqNo08DBEGvZl-cjeg3Hs9AZm3PVgANrgi-wC-xl8kPReYZTjQYT68PlZVvS14Rrgc2bA9QBeNvNQr4TeNwgS9zFW9O0Y_Zrel078976x9vaAsDrkgcmS9ntkpvQQrf7gC_t88n5SkvG49TDgF-uS97QZ2PSp7zzheqki9OukdvrRj-rjK9HA9IuErPvHLijg8Kfq7VSptPeAyjbha7ca9DxQzPWjb-zcl0qG9GMNmPKuXajggADgTQAlIbVABKnMQABpgEvYAFPUBvwocK_cVuQUf89wCzS2y7v_kxf8gIdI2Gv7OvBMk_0LZ_eumAAAAJR3wHfgABXb7yRgA-kAZm7TVFjp__PwV6tYaFbKfExYQ6-gN800yADfPrRI-QuINNQsTIAAtTbYYOzgTQAlIb1ACKq8GEAwaoAYAAGBCAAAAQQAAhkIAAFzCAACgwAAAFEIAADBCAAAAQgAAhsIAALjBAACgQAAAqMEAAFzCAADYwQAAYEEAAAAAAADwQQAApMIAAAAAAAAQQQAAJEIAALjBAAAAwgAAYEIAAHTCAAAowgAAbMIAAMDBAABcQgAA6EEAAIrCAAAAwQAAOMIAAEBCAACQwgAA2EEAAERCAACSQgAAwEAAAAxCAABwQQAAgEAAAABBAAAAQQAAwMAAAEBAAAAAwQAAAAAAAKBAAABQQgAAxMIAAIjBAAA8wgAAAEIAAJBBAAAoQgAAusIAALDBAAAAQAAAgEEAAOhBAAC4wQAAAMIAAHjCAAAcQgAAaMIAAEDAAACAwAAAIMIAAEjCAACIQgAAAEIAAMDAAACuQgAAoMAAACBCAADIwgAAmMEAABRCAAAAQgAAAEEAACxCAAD4wQAAGEIAALDBAAAkQgAAQEEAAIDCAACowQAAuEEAAChCAACEQgAAMMIAAFDCAABwwQAAFMIAAPDBAABgwQAAUEEAACBBAACwwgAAfEIAALJCAADIwQAAdMIAAIhBAADgQAAAoEIAAMDBAAAoQgAAYEIAAGBBAACGwgAAZEIAABBBAADYQQAA2EEAAGDBAABAQQAAqMEAAGBBAACoQQAA8EEAACzCAAAQQQAAcMIAABDBAAAsQgAAqMEAAMDAAAAgwQAAVMIAAMBAAACAQAAAiEEAAJRCAACAQAAAcEEAAJDBAAA8wgAAAMAAAKBAAAAgwQAAXMIAACxCAAAQQgAAQEAAANDBAABEQgAAqEEAAIDAAAAgwQAAWEIAAODAAAAwQQAAoMAAAFDCAAAkwgAAIMIAAGDBAAAcwgAANEIAAKhBAACgQAAAgMAAAEDBAAAkwgAArEIAADBCAABgwQAA4MAAAChCAABAwQAAgMIAAODAAAAAQAAAQEAAACDCAACYQQAAXEIAALzCAACSwgAAAMIAAABBAAA4QgAAkMEAAIzCAADYwQAAwEAAAKhBAAAQQgAAyMEAAKBBAADAQAAAEMIAAMBBAAAUwgAAAEIAAJBBAACAQCAAOBNACUh1UAEqjwIQABqAAgAAcL0AAPi9AABcPgAAuL0AAFy-AADOPgAAuD0AAC-_AABEvgAAoDwAAHC9AAC4vQAAij4AACw-AAAEvgAAyL0AAFw-AACgPAAA6D0AAB8_AAB_PwAAFL4AAIg9AADoPQAAQDwAAOg9AABAvAAANL4AACQ-AAAMPgAABD4AAHS-AACYvQAAoDwAAMo-AAB0vgAATL4AAKi9AAAEvgAAuL0AANi9AABkvgAADD4AAIa-AAD4vQAAQLwAAMg9AABMvgAAmL0AAMi9AABAvAAA2L0AAGQ-AADYPQAAhr4AAFA9AABVPwAAiL0AAHA9AADYPQAAEL0AAJg9AADYPQAAVL4gADgTQAlIfFABKo8CEAEagAIAAIA7AABMPgAAcL0AADG_AACWvgAAEL0AAEw-AADgPAAA-L0AAGQ-AAC4PQAAor4AAIC7AAAUvgAAQDwAAIi9AACYPQAAGT8AAAQ-AACePgAAmL0AAOC8AACAuwAA6L0AACS-AAAcvgAAUL0AAOA8AABwPQAAgDsAANg9AABwPQAAuL0AADw-AACoPQAAPL4AAFw-AAC2PgAAfL4AAKi9AACCPgAAdD4AAAS-AABAvAAAPL4AAKo-AAB_vwAAqD0AAOg9AADgvAAAij4AAKC8AABsPgAAND4AAMg9AAC4PQAA4DwAAMg9AAAQvQAADL4AADA9AACIPQAAXL4AAJi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=arba2_zZ0s0","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["9302687441070517126"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1233181478"},"1198549290523831329":{"videoId":"1198549290523831329","docid":"34-7-3-ZB20D743A162FC71D","description":"Quadratic Function...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3324888/171980cd07e630aa142784958f1ec013/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jxtfTQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_f0UZCW-8pU","linkTemplate":"/video/preview/1198549290523831329?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"9-4 Transforming Quadratic Functions","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_f0UZCW-8pU\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhUKEzExOTg1NDkyOTA1MjM4MzEzMjlaEzExOTg1NDkyOTA1MjM4MzEzMjlqtg8SATAYACJFGjEACipoaHFzZG92dmllc3lzeG1kaGhVQ2xoMHZzd0pmR1FtNW1MZWhDQUdDLVESAgASKhDCDw8aDz8T6QGCBCQBgAQrKosBEAEaeIHq-Pz7Av4A5gcE-vv_AgANBv8C9gAAAOD5BPYH-wIAAg0PBgQBAAAA-wEOBgAAAPf5-hD__wAABfn7C_EA_wAE-AUA_gAAAAcKAgr-AQAA7gEG_wMAAAAABQj-_wAAAOwT_wj_AP8A_AgJBQAAAAAJ_gQHAAAAACAALY5Oyzs4E0AJSE5QAiqEAhAAGvABdhXxAM72EP_19OkArzP6_4EAAv8uNuP_wPIKANkG4wHvBuwA4uwZ_78QDAC8Jfn_Ftrk_xrl_QA26BcAEfASAA0HFQAyzw8BKvwWAfAC9P8BHyf__gAXARbb1wL9A-gADOQP_8gA3ADc9dgADv44AQ_3EAQo_CEA8NsAAd8cEwD96eH-_QYCBPvmCf4DCi3-CtX9_wsmBvrnBPMBB_L4_vTaIP8HKdn-Fg4gB_P-EgTYE-sE7wz0-RQeIP_jFyIB9PgiAunZ9vj7BQgANefw_vMP_PESy-gIAfHyC9rt_fXy8Afy9Sf8-NjkEwMGBAH7IAAtv08kOzgTQAlIYVACKnMQABpgLPUAOdQajiXx-PoX48086f0B90DZ8__a1f80FuMXGQ7vrOgGACvtDfKkAAAA8t_oE9oA_3_zrCYs_EANsdcK6RNsOSpKrbz4J8ncOCDdFA4iCPYKABDMnQMcDt47PEccIAAtObMXOzgTQAlIb1ACKq8GEAwaoAYAANBBAAB4QgAAOEIAAATCAAAwQQAADEIAAJ5CAADgQAAAIMIAAMDAAABAQAAAaMIAAIjCAADAQAAAgEEAAJDBAAA8QgAAmMIAABRCAACYwQAAGMIAAPjBAAAswgAANEIAACDCAACAwQAA8MEAAEzCAAAwQgAAAEAAAGTCAACoQQAAiMIAABxCAADEwgAAGMIAACRCAAB4QgAAYMEAAEBCAADwQQAAAAAAAMBAAADowQAAmMEAAJzCAACAwQAAAEIAALhBAABEQgAAosIAANjBAACwwQAA4EEAAGxCAADwQQAAxsIAAKBAAACAPwAAcEEAABhCAABEwgAAKMIAADzCAAAsQgAAMMIAAETCAABkwgAAyMEAAJjCAACkQgAAiEIAAMDBAADIQQAADMIAAEDBAABkwgAAgMEAAABBAACwQQAA0MEAAKRCAACAvwAAVEIAAKhBAABIQgAAMMEAAPDBAAA8QgAAyMEAABxCAADIQgAA2MEAAIDBAACQwQAAOMIAAIC_AABgwQAAWEIAAABBAACOwgAASEIAAIxCAAAwwgAAJMIAAIBBAABwwQAAsEEAAEjCAAB4QgAACEIAAKBBAACQwQAAUEEAAKDBAACMQgAAQMAAAIC_AADAwAAAAMAAANDBAAAgwgAAgMEAAEjCAABgwQAAcEEAALBBAACAQQAAiEEAAFBBAACwwQAAdMIAAADAAACwQQAA4MEAAIJCAACAQAAABEIAAOBBAABwwQAAMEEAAMDBAAAAQQAAiMIAAFBCAAAEQgAAAMEAAJhBAACAPwAAyMEAANDBAABYQgAATEIAAEBBAAAwwQAAGMIAAIjBAACAwQAAyMEAAOBAAAD4wQAAAEIAAABAAACgwAAAUEEAAEDBAADQwQAAtkIAAOBAAADYwQAAAEAAAGhCAAAAwQAAJMIAALjBAACAwAAA6EEAAFDBAACoQQAAfEIAAMzCAACywgAAXMIAAJhBAACMQgAAmEEAAIbCAACowQAAIEEAAADAAAC4QQAACMIAAJhBAAAAQAAAAMEAAHBCAAAwwQAAiEEAAOhBAAAQwSAAOBNACUh1UAEqjwIQABqAAgAAED0AAPg9AADgPAAAlj4AAJ4-AAB8PgAAiD0AAAu_AADGvgAAhj4AABw-AAAEvgAAQDwAAMg9AAAEvgAAoLwAAKg9AABAvAAABL4AAOY-AAB_PwAA4LwAAES-AABwPQAAyD0AAEC8AADgPAAAoLwAANg9AADYPQAABD4AAMg9AACuvgAAqD0AAKI-AADavgAA2D0AAJ6-AADivgAA6L0AAGy-AACovQAAMD0AAMi9AACovQAAyL0AADQ-AAAUvgAAqD0AAIK-AACoPQAAcL0AAKg9AACqPgAAcD0AAOC8AAAZPwAARL4AAJ4-AAAkPgAAED0AAOC8AAAwPQAA6L0gADgTQAlIfFABKo8CEAEagAIAAIA7AACYvQAABL4AACe_AABwvQAAyD0AAKC8AABUPgAAJL4AAJI-AADYPQAAiL0AADA9AADIvQAAmL0AAPi9AACIvQAAKz8AAKi9AACePgAAEL0AAIg9AAA0PgAATL4AAOC8AACYvQAAoDwAALg9AAB0PgAADD4AAMg9AACgPAAAhr4AAMi9AADoPQAAVL4AAFw-AAC2PgAAlr4AAHA9AACKPgAAqL0AANi9AACIPQAA2L0AAPg9AAB_vwAARD4AAKg9AABsPgAA4LwAAFC9AAAEPgAA-D0AAKo-AACAOwAAoDwAADC9AACYvQAAFL4AAHA9AABcPgAAJD4AAFy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=_f0UZCW-8pU","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["1198549290523831329"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1346211834"},"7460512322183318584":{"videoId":"7460512322183318584","docid":"34-3-10-ZF0E4281567A0C7DB","description":"This video covers an introduction to the Ambiguous Case when working with the Law of Sines. The 6 different scenarios are discussed. Video 2 • Law of Sines Ambiguous Case Video 2 (... Video 3...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3659937/25ace5ed3f05c4ef8790f7e24fa25feb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fcPGQwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2s5MLyg_esM","linkTemplate":"/video/preview/7460512322183318584?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Law of Sines Ambiguous Case Video 1 (of 3)","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2s5MLyg_esM\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhUKEzc0NjA1MTIzMjIxODMzMTg1ODRaEzc0NjA1MTIzMjIxODMzMTg1ODRqiBcSATAYACJFGjEACipoaHFzZG92dmllc3lzeG1kaGhVQ2xoMHZzd0pmR1FtNW1MZWhDQUdDLVESAgASKhDCDw8aDz8T6wWCBCQBgAQrKosBEAEaeIH7-gEE_gIAAPsFCfgI_QL1A_z4-f39APUA9fQDAv8A6wMGAAL_AAASAf37-wAAAPb4___z_wEADwH3_AQAAAD-BwMP_wAAAAcH_wL-AQAABAcEBwP_AAAAAPgL_wAAAOkD9AIAAAAA8voBAgAAAAAI8_kCAAAAACAALcKk2js4E0AJSE5QAiqEAhAAGvABXRZO_unY-AHGN-b_5x75AZo3BP8P_OYAtfAMAdf9BQHr7wMA5hYCAOsp9P-BBCoB6_b8AEUH0v8M5AL_4x3-AQ0ZBQBF8SYBMfsZAQTU1AEVLhL_7QjgA_bx9QEgGsIAafQS__0qLADMz-j_JvsxAcToDQU-DuMEDd74At4i_wPyFfj98RcRA_AV-gIB0RUF8wLv-yg58v7j4fYGBx76BSIC_fwi-_oKOvwCBLvS9_3E5f4G9QwI8vkM9AoDAA0S4gv-8_z3CPzYEw705u7uAxEOCP018gAN3BPs_RcwEfzjKRoCC_IA9fTQDPv50QHnIAAtlswMOzgTQAlIYVACKs8HEAAawAcjosC-bhZPPWJ0r7xTYBy9JELjvG-RBb1L07a9lssrPazuB71VGFs-Y4b8OwEJ1Lz4wYG-f-j4vERpTz0UlEI-RkUcvXPoALxi2Sy-cgKqO8NkCr3n_iq-Xcv_PEh0Kjw7noA9KMAGvZGM5jodAPE99dUVvfmeMb1g_WS9ebltunh8ubvwVQY9zYR1veY1wLyVrMQ9sUmjvKoD6rxg5yY-DdMNvfEe8bzmBK-73IcXPYyd1TzXfqe9C_1dvHdLcrxeHIs8LoitvIaH2TsZHbG7lcJyPKKeOjvo_kU8FDEWPRq9_buz_Co9GlE6vWdo1Tu3ix-9h4nGPP97S7x-xQq-TyAMvaJG3zv9z7s9eLmIPasmiLyetPC994rVO__Y2rw-m3I7sB43vfuRhbrLx2Q9Q5eLvN6ynjvUSOs9-hnNPGiRrTzAk_Y9_-qRPRib77spwSw8G0xDOc0ngju-aNG7kN5LPawjIryIw409muZCPFWfEL0jibm8kZ7gO08SPzu_w4M9NCqVPAsPqbmvpKY9K9Fjvafc8brnONe9SOwJvQdPV7zovsw9ADBjPa7mDDu6CUa7FVYKvUZHbjsx-0a9tfRtPUu2lTwOPgM95zrIvS8zbDzseII8nYu1PYtDbDvb4yC9WAebvP566LtLwk881K7TvD153Dv-Qck8WwyOvR3fZjuSs6C9xVaQPBlT9jtjMQA9V12HPHRiCzsJUCM-V9iCPUPM47kRAQe-w3pIvU-IdbnYQwA9hkDJPWUfNbmhndM9UYGYvZedUTlK8Uy8EXpsvBFjwThGUJs9CYbYPJ54QDhDCII7FPDGvJxEUjj_I0O-ZmfRvTzykDmxrqO7Te2WvG30R7ruega8fOlyvS6FnTnMIMO91A0EvghThTnMzZw9OVBWPTfsXbhA4908tZ6bvRavuLaARxS9uWA6vK9z4Lh1LlY9VDs-PS1k7bhF1e-9ouZQPVPRSzZZ08Y8UBxgvSDSFzhQiIU9RghvPR_WJjg-EVo9GG6KPG3wXDgvFYu97KH9Pe1DDjh2U2q9V8_JvVw6arhn-Kq8YcmwvOwnjTjH9po8XK8JPm8m-LcRzKw9-1oVvKyXzzj4pxQ-A_pOPR_07Ta7c6I9s5ftPZOoJzitTPg8PJo0PH7C67jpQDu9CScYvVhoKLhmqRA9uWvuPKrSpjaakAC5wMRpvKgBh7iCyAI-OaDAvTwBPzhVGKY9bQvFPYPH5zgYJzm9lEOlPWWUx7j1Yn067WGUvN2657YPXgC96fIGvdnFKTggADgTQAlIbVABKnMQABpgJPcANRcZBCErWwDq5_ra4jbT7w_DG_8B1f_qDvf_EOnrsDAJAA46Nd2hAAAAEui2HxUA_HAA0-1I1R4M2LjYGAp_-xwd7hESRujlQf8u_wYs5CQ-ABfywykS86VFMklDIAAt6isdOzgTQAlIb1ACKq8GEAwaoAYAAGzCAAAMQgAAZEIAAADBAAD4wQAASEIAAKBBAABgwQAAAAAAAKDBAAAwwQAAIMIAAKbCAAA8QgAAsEEAAFBBAACAPwAAUMEAADjCAAC4QQAAIEIAAKjBAADYQQAAmEIAAIA_AACgwAAAwMAAADxCAABsQgAAUMEAALDBAABEQgAA5sIAAGBBAADgwAAA-MEAALhBAAAgQQAAqEEAAIZCAADgwAAASEIAAKDBAAAkQgAAfMIAABjCAACwQQAAgMAAAPBBAACgQAAALMIAAADBAABIwgAAOEIAAOhBAAAEQgAAZMIAAKDAAACAvwAABEIAABjCAACKwgAACMIAACBBAADwQQAAKMIAAFBCAADoQQAAcMEAAJjBAACwQQAABMIAAMDAAAAUQgAAmEEAALjBAACIwgAAMEEAABRCAAC4wQAAuMEAALJCAABQQQAAuMEAAEhCAAAMQgAAjEIAAEDAAAAAQgAAoMAAAMhBAACYQQAAHMIAAJDBAAAcQgAA3sIAAIDBAADgwQAAoMAAAKxCAAAUwgAAEEIAAKxCAACoQQAA-MEAAIpCAABkwgAAgkIAAOBAAACGQgAAQMEAAAxCAABwQQAAukIAAEDAAACQQQAA2EEAAMDBAADAwAAAVMIAACxCAADgwAAAAEAAAAjCAABcwgAAVEIAAFDCAABYwgAAJMIAAKDBAACCwgAAYMEAADDBAAAUQgAA2EEAACBCAABQQgAAoEAAAMBAAACIwQAAiEEAABTCAACowQAA4MEAAEBCAADgQAAAisIAAJDBAADAQAAAMEIAACTCAAA0QgAAIEEAAKrCAABgQQAAqMIAACTCAABAwQAAjMIAAOBAAAAgwgAA2EEAAODAAADgwQAAwMEAAADBAADQwQAAEMEAAABAAABAwAAAqMEAACBCAADAwQAAOMIAAEzCAABgQQAA6MEAAIjBAAAAQgAAIEEAAIA_AACQwQAAosIAAIhBAACWQgAADEIAAK7CAACGwgAACEIAAKDAAAAgwQAATEIAAJDBAACYQQAAQEEAAJDBAADQQQAAVMIAAAzCAAAAwCAAOBNACUh1UAEqjwIQABqAAgAAgDsAANg9AADCPgAAFD4AAES-AACWPgAAgLsAAJq-AAAkvgAAcL0AAIq-AAAsvgAAXD4AAGQ-AAB0PgAAQDwAANg9AACAOwAAqD0AAII-AAB_PwAAHL4AAEC8AACAOwAAlr4AAFA9AAAQvQAADL4AALg9AAAkPgAA4LwAAIg9AAAwvQAAoDwAAJg9AAA8vgAA-L0AAOC8AABUvgAA2L0AALg9AABAvAAArj4AAAQ-AAAcvgAA4LwAAOA8AABAPAAAEL0AAEC8AACAuwAAND4AAKY-AAC4PQAAJL4AABw-AAAlPwAAqD0AACw-AACIvQAAmD0AAPi9AAD4PQAAmr4gADgTQAlIfFABKo8CEAEagAIAAHC9AAC4vQAAdD4AACe_AACYvQAAcL0AAPi9AADoPQAANL4AABw-AABUvgAAXL4AAFC9AABEvgAADL4AAHA9AACSPgAAFT8AAAw-AACaPgAAUD0AAJo-AAAcvgAAED0AANi9AAAQvQAAmL0AAKA8AADIPQAABD4AAEA8AAB8PgAAcD0AAEy-AAAkvgAA-D0AAK4-AADYPQAATL4AAFC9AACovQAAcD0AAJ6-AADIvQAAED0AANg9AAB_vwAAUD0AAFC9AACYPQAAJD4AAIi9AAAwPQAAdD4AAOi9AADoPQAAQDwAAKA8AABQvQAA6D0AAKA8AAB0vgAAEL0AAIg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2s5MLyg_esM","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["7460512322183318584"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3588641701"},"12804339202650973841":{"videoId":"12804339202650973841","docid":"34-2-5-ZF4EC247A2082ABDD","description":"11-6 Radical expressions with fractions...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4316460/cc8f53b4fd48ea1bd744718ea6b65274/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/joyFZAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0yzDJDv_E-E","linkTemplate":"/video/preview/12804339202650973841?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplifying Radical Expressions - Part 2","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0yzDJDv_E-E\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhYKFDEyODA0MzM5MjAyNjUwOTczODQxWhQxMjgwNDMzOTIwMjY1MDk3Mzg0MWq2DxIBMBgAIkUaMQAKKmhocXNkb3Z2aWVzeXN4bWRoaFVDbGgwdnN3SmZHUW01bUxlaENBR0MtURICABIqEMIPDxoPPxPCAYIEJAGABCsqiwEQARp4ge4F_AUB_wAA-wYJ9wn8AhQQDgb1AgIA9AYC_wgC_wDwCwL7-QAAAPoRBP4HAAAA9wD0Avr_AAAMCw0GBQAAABr29An9AAAA_gIEBgkBAAD99gH59gIAARj5_g0AAAAA_AL_7QAAAAAKGgEMAAAAAAT2CfsAAAAAIAAtaizPOzgTQAlITlACKoQCEAAa8AF_IwoD-ObDA-0G1ADRD-YBgQot_x8p3wC1LC0D1-_VAPYN-wDkL-YAAvQMANxFEP8R3MwAEdYFAEDn5_8m7wgA2AL8AR0DAgMm-ggB-tzp_t78FP8H7RwAAOXwADj34v34Bgr87Rjs_xfq3gAa5C8DEvEC_x3Z-AP2ufQD7AT6Avb73ACg3eoAOP8QAqb-HQgO7vr65kP8_-om_gVz7Q_63gcgA-sS8AMcJPUNIBL-Cg3n8QD84PYGCOYsCMoaGgIBDTL72xf2_zv_CAb_7e_7H-fqEOwJ2QAA_AAV1tr4CBMQ-AThFQrz2AMPCuPc-AUgAC1QIw07OBNACUhhUAIqcxAAGmAoAQAjAyoARjlTH_Xr6hXq1Q3uLswS_wvJ__ohCxoaCO7K3A4AAOjxy6IAAAA_GdQS5wD8fx0JCVL31xm8zM4nKmUUJFTA7zzloQgs_hfr5ib9L2MA8COiRiTVzEQf8A4gAC1NsRg7OBNACUhvUAIqrwYQDBqgBgAAFEIAAEDAAABwQgAA2MIAACjCAABcQgAAOEIAAIhBAAAEwgAA4MAAAKBBAAAgQQAAoEEAAARCAABQQQAAMEEAAMhBAAAcwgAA8EEAAMBBAACIQQAAIEEAAEjCAABwQgAAmMEAABhCAABQwQAA4EAAABTCAADQQQAAEMIAAKDBAABAwgAAAEAAADzCAAB0QgAASMIAALxCAADgQAAAVEIAAEBCAAC4wQAAgD8AAGBBAADoQQAADMIAAExCAAAoQgAA2EEAAJhBAACGwgAA4MEAALBBAADgQQAAVMIAAJDBAAAcwgAAAMAAABRCAAAsQgAAYEIAADzCAAAkwgAAjsIAAHDBAACYwgAAkMIAAKhBAAAcwgAAIMIAAIhBAAAgQgAADMIAAEhCAABEwgAA8MEAAK7CAAAIwgAAUEIAAPBBAABQQQAAjEIAAKjBAACAwQAA2MEAAPhBAAA8QgAAdMIAACBBAADAwAAAkMEAACBCAABQwQAAQMAAAIC_AAAwwgAABMIAAOBAAABIQgAApEIAADzCAADwQQAAyEEAAABBAACGwgAAoEAAAPBBAACUQgAAQEAAAAhCAAAAAAAAbEIAAJTCAACYQQAAREIAAKhBAADwwQAADMIAAGRCAABAwgAAQEAAABzCAADgQQAAwEEAACTCAABUwgAADMIAADzCAAAkwgAA2EEAACDBAADQwQAAJEIAAERCAAAkwgAABEIAADBBAABQQQAASMIAACDBAACwwQAAYMEAADBBAAA8wgAAUEIAAJhCAAAwQQAAEMEAACBCAACAwQAAOMIAADBBAABwQQAACEIAAChCAAAwwQAAtsIAAEDBAACAwgAAIEEAAMjBAAAAQQAAKEIAANDBAAAQQQAAmEEAAEDAAAAAQgAAPEIAAGDBAABAQQAATEIAAIDBAAB0wgAAsMEAAODAAABAQAAAZMIAAIA_AAA8QgAAAMMAACDBAAAAwQAAyEEAAKRCAAC-wgAAkMEAAFDBAABgQQAA6EEAANBBAABgQQAAAEEAAAzCAAAcwgAATEIAAABAAABAQQAAWEIAAEDBIAA4E0AJSHVQASqPAhAAGoACAACAOwAAMD0AAEC8AADYPQAAFL4AALg9AAAEPgAAE78AAOC8AAAwPQAAtj4AABC9AADgvAAAgj4AAIC7AAAQPQAALD4AAKA8AACCPgAACT8AAH8_AAAkvgAA6D0AALi9AADWvgAALD4AAKi9AAAEvgAAUD0AACw-AABMPgAAiD0AADC9AAA0PgAAmD0AACQ-AAB0vgAA2L0AALq-AAC4vQAAyr4AAOg9AAAcPgAAFL4AAIK-AAAwvQAAHD4AAIC7AAAkPgAAqL0AADC9AABEPgAAkj4AABw-AAD4vQAAgLsAAGM_AADovQAAtj4AANi9AABUvgAAXL4AALg9AAAcPiAAOBNACUh8UAEqjwIQARqAAgAAgDsAABA9AABQvQAAO78AAOC8AADYPQAAmD0AALg9AACgvAAAZD4AAPg9AADgvAAA-D0AADS-AABAPAAAcL0AACy-AAA3PwAA6L0AAJY-AACAOwAAyL0AAKY-AACmvgAAML0AADA9AAAEvgAABD4AAEA8AACAuwAAcD0AABA9AADIvQAAhr4AAPg9AAAkvgAAUD0AAFw-AAAUvgAAFD4AALI-AABUvgAAqL0AABA9AAAMvgAAoDwAAH-_AACovQAAoLwAAJY-AAAQPQAAoDwAAAQ-AADoPQAAmj4AAEC8AACIvQAA-L0AALi9AABUvgAAyD0AADw-AADIPQAA2L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=0yzDJDv_E-E","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["12804339202650973841"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2333229180"},"15022861274883503718":{"videoId":"15022861274883503718","docid":"34-11-0-Z1239EA473058D98D","description":"13-5...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1778564/c11fd94e800220219982e5647672cc86/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fHZNLgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2P7W3htUJ28","linkTemplate":"/video/preview/15022861274883503718?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Conditional Probability","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2P7W3htUJ28\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhYKFDE1MDIyODYxMjc0ODgzNTAzNzE4WhQxNTAyMjg2MTI3NDg4MzUwMzcxOGqECRIBMBgAIkUaMQAKKmhocXNkb3Z2aWVzeXN4bWRoaFVDbGgwdnN3SmZHUW01bUxlaENBR0MtURICABIqEMIPDxoPPxPGBYIEJAGABCsqiwEQARp4gfr3_Pn_AQD0-Qv2_gEAARQK_Pz1AgIA8wn0CvsB_wD5Cgv5_wEAAP8NAAn6AAAA8fj2_PoAAAD7FAf7BQAAAA717QH-AAAA-RMMBf4AAAD_9QQIBP8AABb-BgMAAAAA7_0C8gD_AAADAwv3AAAAABf09gIBAAAAIAAtKzLXOzgTQAlITlACKoQCEAAa8AF_9w__2QbzAcYGAADqG-cApw0d__w30AC18AwBmuAG_9MfBgDlFdH-9wwpAMow_v8n6tb_4_LcARrj6v_6DRcB_9feABXZGgFBAfwABNTUAcAQDAHyy-z_E9n3ACwNAPz-5Rf_FPi8AQvptAkQ_kIBPEEkAv_gJQMC-fj-wg4MAPbT7wIJ2wEBLOEO_qb-Hgj86ff_5Q4E_NQZAwUd8vT6_P4Q9-sS7wMoDQcP1xrvBO_3_QYJEeUDFwgUBtoo4_71BRfw-MAE_ywMEgo_2AD30wjhCvzf8god4QAC6uQA_OzbAPWxA_3t2g71_Qj9BOkgAC1O_As7OBNACUhhUAIqcxAAGmDWCAAs2BDkJQEqAwjKCxHvyQwNAM8X_znTADcm98AE-tDGBQ4AHdcP4aMAAABK18cT_AANfw_WEhQSyNGS1_AaB274N3Kf6D75ECLzHRi85AoqOXEAHh6xMDgHtvUi6wggAC11YBQ7OBNACUhvUAIqjwIQABqAAgAAQDwAAAS-AABUPgAADD4AABC9AABwvQAA4LwAAAW_AAAEvgAAfD4AAEw-AABAPAAAZD4AAKA8AADovQAAMD0AAKC8AAAQPQAAUD0AAKo-AAB_PwAAUD0AAHC9AADoPQAAoDwAAPg9AAAkvgAAJL4AADw-AADoPQAAED0AAPi9AABsvgAA4DwAAHA9AABQPQAAgLsAAJa-AACCvgAA2L0AAIa-AADYvQAAVD4AAIC7AADovQAA4LwAAPg9AACAOwAA4DwAAOi9AABQvQAAuL0AAHQ-AABsPgAAor4AABA9AAAZPwAARL4AALg9AABAPAAA4LwAAJi9AAD4PQAANL4gADgTQAlIfFABKo8CEAEagAIAAMi9AAAMvgAAuD0AACe_AABwPQAAiD0AAMg9AACgvAAAEL0AAKo-AACIvQAAyL0AAGQ-AAAEvgAAgDsAAIA7AAAMPgAAST8AABA9AABMPgAAuL0AAAw-AAA0PgAAoDwAAIi9AABkPgAAoLwAAHA9AAAUPgAAQDwAADC9AAAEPgAAoDwAAJa-AABAvAAAmD0AAKY-AAAMPgAABL4AACy-AABcPgAAFD4AALi9AACIvQAAoDwAABA9AAB_vwAAQLwAAOA8AAAcPgAAJD4AAAS-AABsPgAAHD4AANg9AAAQPQAAiD0AAES-AADovQAA2L0AAFQ-AAAwvQAA6L0AAIi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2P7W3htUJ28","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["15022861274883503718"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3551175892"},"2883881151076793631":{"videoId":"2883881151076793631","docid":"34-0-15-Z95C2CBCD3EA287E4","description":"This video covers a basic introduction to the Law of Sines.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4078696/981c20288a7cf554170459688849cf17/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AbJrjQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-nFzOkcYY_E","linkTemplate":"/video/preview/2883881151076793631?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Law of Sines Video 1","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-nFzOkcYY_E\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhUKEzI4ODM4ODExNTEwNzY3OTM2MzFaEzI4ODM4ODExNTEwNzY3OTM2MzFqtg8SATAYACJFGjEACipoaHFzZG92dmllc3lzeG1kaGhVQ2xoMHZzd0pmR1FtNW1MZWhDQUdDLVESAgASKhDCDw8aDz8TsAOCBCQBgAQrKosBEAEaeIH-_gEI-wUAC_0FA_oG_gHpBPH5-wAAAPf7-_3-Av8A6vkDBgj_AAAMBAQGAwAAAP_z__j4_gEADQMB_gQAAAAMBwYD_QAAABAFAAz-AQAAAwAA_AIAAAAECPsKAAAAAPUE8P0AAAAA9RD-_gAAAAD_8AYBAAAAACAALXmg4js4E0AJSE5QAiqEAhAAGvABbjRG_K317f7QFtUAAQyvAY07Lv8-COcApe0OAbodygDJ6QsAwfsAAdVI6v6BNyoB3-a2_xb13QAvyuz-DvbhAQv8AAFHuhUBMBIQACPiAP3qKCcA7fntAdnUwP4nILQAYN4z_wwoEQLFy7YI6RI-A_4jHQckG-0EAMcMB8I0Dv7d5AH4tzIYAvgyFP_N1BMAKR7bBBsYC_gMPN__B836DA3h_gcyJwEBIyzzD__F-gCM1Oj7Euz8-vr0EvsK-wsB2w398P_ZDwsBCwbw7Lfp_R3xFAUGAu4Qvwr-EQAQB_v5GCIC6AHt6gfXGgzyBPMAIAAtxInmOjgTQAlIYVACKnMQABpgFwMAFwoxDwAHOf_2DOz1zTn99Qy8_AAT0gDsDxrxGwfr0C7p__wZPeavAAAAFfWt1ywA2mn34PAd9RX18d7ZIxF_-SAR9g8WNbvKJAIW8ywU5EI5ABztyw8a7Z1DNxVGIAAtFk8tOzgTQAlIb1ACKq8GEAwaoAYAAMjBAACgQAAAsEIAAIDBAAAAwgAASEIAAEBCAAAAwAAAEMIAAIDCAACoQQAAsEEAAI7CAAAUQgAABEIAABDBAAAQQQAAMMEAADTCAABQwQAAHEIAAIDBAACIQQAAwkIAAIDAAACoQQAA2MEAALBBAAC0QgAA-EEAAPDBAABAQgAA8MIAACBCAACowQAA4MAAAGBBAABEQgAAIEEAAHRCAAAIQgAA0EEAACTCAACgQQAA2MEAAFTCAAAMQgAAqMEAAABCAACIwQAAuMIAABDBAAAUwgAAYEIAAIhBAAAwQQAAjsIAAODAAABAQgAA6EEAAKDAAAAEwgAAAMEAANBBAAAcQgAAIMIAADBCAACgwQAA0MEAANDBAABEQgAAMEEAAITCAAAwQgAAwEEAAODAAABwwgAAqEEAAFBBAAAgwQAADMIAACBCAAAAQQAAFMIAAOhBAACSQgAAqEEAABDBAAAEQgAAgEAAAIA_AACIQQAAYMEAAIDAAABAQgAAxMIAAPBBAACAwQAAAMAAAFBCAACSwgAAAEEAALZCAAAYQgAA4EAAAIpCAAAIwgAAhkIAAEDBAABYQgAAgL8AADBBAACgQQAAeEIAADDBAABMQgAAGEIAAFBBAADgwAAAysIAAPhBAACowQAAoEEAAGDCAAAMwgAA6EEAACDBAAA4wgAAZMIAAJBBAADgwQAAwMEAAKhBAAAgQQAALEIAADRCAABIQgAAgMAAAJjBAACAwQAAAEIAAMjBAAAcwgAAiMEAABBCAACAQAAAkMIAACTCAABAwQAAAMAAABTCAACIQgAAiEEAAKbCAADIQQAAnsIAAGTCAADgwQAApsIAABhCAACYwQAAikIAAIBBAACQwQAAwMEAAKjBAADwwQAA4EEAAIBBAAAQwgAA6MEAACBBAADgQQAAAMEAADTCAAC4QQAAoEAAANDBAACQQQAATEIAANDBAAAQwgAAQMIAACBBAABsQgAAQMAAAJDCAAA8wgAAAMAAAEDBAACAwAAAwEAAAGBBAACgQAAAoEEAAKDBAADAQQAANMIAANDBAAAAQCAAOBNACUh1UAEqjwIQABqAAgAAoDwAAKA8AABEPgAAED0AAFS-AABMPgAAuL0AAIq-AADIvQAAoDwAAFC9AABAvAAAuD0AAGQ-AADovQAAEL0AAKg9AABQPQAA6D0AAJ4-AAB_PwAA2L0AAHC9AAAMPgAAgr4AAKA8AACgvAAAmL0AAKg9AACSPgAA4LwAAKA8AABkvgAAML0AAEA8AAD4vQAAgDsAAES-AAB0vgAAHL4AAKi9AABkvgAAhj4AAOA8AAC4vQAA2L0AABC9AABwPQAAUL0AAKA8AACAOwAAJD4AAJI-AAAkPgAA2L0AAJg9AAArPwAA6D0AAEw-AADgPAAAgDsAAIA7AACYPQAAlr4gADgTQAlIfFABKo8CEAEagAIAAAy-AAAEvgAAmD0AAAm_AADoPQAAiL0AAIC7AABQvQAAiL0AAFQ-AAAUvgAAgLsAADQ-AAAwvQAAoLwAAIA7AAB0PgAAET8AAKA8AACuPgAA2L0AAHw-AAAQvQAAmD0AADC9AABQvQAAHD4AAKA8AAAkPgAA-D0AAOA8AAB0PgAAJL4AAOA8AAA8vgAAuD0AAMI-AACKPgAALL4AAGS-AABAPAAAUD0AAEy-AACgvAAA2D0AADA9AAB_vwAAMD0AAHC9AADoPQAADD4AAOC8AADoPQAAVD4AAHy-AAAMPgAAED0AALi9AABAPAAA6D0AADA9AABUvgAAHL4AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=-nFzOkcYY_E","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["2883881151076793631"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2609472338"},"17546691289987412793":{"videoId":"17546691289987412793","docid":"34-0-9-ZF7B8F2EE5E8EB507","description":"This is an introduction to trigonometric identities and some of the problem types we can apply them to.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4032631/1bf1db7ec7dc0da5ad516f36c5eea87a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/YAeedAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DctcEc1bfapI","linkTemplate":"/video/preview/17546691289987412793?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Trigonometric Identities","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ctcEc1bfapI\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhYKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzWhQxNzU0NjY5MTI4OTk4NzQxMjc5M2rWEBIBMBgAIkUaMQAKKmhocXNkb3Z2aWVzeXN4bWRoaFVDbGgwdnN3SmZHUW01bUxlaENBR0MtURICABIqEMIPDxoPPxODCoIEJAGABCsqiwEQARp4gff-_AD-AwD8-QYHAgf8AgwF_wL3AAAA_AX5_QYE_gDzAAj8-wAAAP4GBAoEAAAA9AwI-fQAAQAO_f4DBAAAABEI9_33AAAAFgb2-f4BAADs9wL_AwAAAA31Bvf_AAAA-Q4E8QAAAAALBPcEAAAAAPv4CQEAAAAAIAAtAFPbOzgTQAlITlACKoQCEAAa8AFrBB393-vFAaMj4ADLEOIBmSEMABUayQCwBvwAvxvOAPIjCgDrIxr_Cj_-_4Ez_wEYBOUAENvIAT3AKP8OFBsA_fAxACwS-gBJAfwA2eT5AAcpCP_d8-AA9NPJ_tAS2v_-3zD_-djuAcnPuwdFDzUA1wcLBiLT9wPi9wsEqiH9__EX9_wh-w4L-d0M_dAFKQIh6xv_OjAJ_A8M7AguGCUKId3__BAXxwBWCyYO7e8FBtLWBQEG8ggEDu71AB39_gnS2gz04esQ--T38vgsBPD34_IdBzoP8PwDBerq7Rj1CuUq_vwHF_LpDvPrEgOx6_YgAC1aePg6OBNACUhhUAIqzwcQABrAB4802L4_LZC8HiwIvb06BTvWBAy9lXDXvOOgub0cbYs8XgUjvJCiHj5KEt88t0MBPJZdUL6Q7Nu8iSimPMuAMz7m0Yi9mGIzPHoXL74IPDA9KZ_UvPxUJb4x2S68B3PmN-0o87z2XZG7DHnjux0A8T311RW9-Z4xvTM4pbyAJds7WwBkvFY_wLwX-EW9O3mJu-dazzzL9Au9kfUvPS9R_T2xBWC6n6utvMCuFj5vLCg8ScYBPF4uIr5Nj5w8WJ2mPB9nGj2GZug7szyTukjLFz3sB4Y8d_N5vOj-RTwUMRY9Gr39u3zxRT37BD05xYdhu3hnijvTiBm9BfnZvBIuhTuuD0s9NV3wO5XcXD0GQjc9cLbIOTqTNr4ElUw8X4iLvEN5ujy3Ujm9rKAzvB88ZD0-40c90AHRO2tzrbtc4zg9A50kvGNgPT0PLsg9ffnuPJ5XgT3AX6c8ioYWvJwlcj1UEYg9W-uLOixsPLy6oek9HDkYO3t90jxXLHk9XS4HO4hXKD2ljZk8fGfNugUjpT3WAju-SeWaOpXcPL088cG9Q-nmux1twT05aRA9LgV_vIIb6Tx6_9-9lDEfPEnjZr2KEv48ZrbxuqR9vT1zyYe9L8gvO5h8fb0exmQ93VACvChyUr10MDE9Pqn-u6H8GD3RfEk9dioqPBCyajuCxDu9lYWrOwwDFj19CCq8-tRSu4eAbT2RlJm8PNYZOhiyCj5lnsO7GNGCOAxBaTxTCwA6PenIusakP7zkBLe8PP75uHlYCD64IL67D7aROJm1OTyLfEm7POlVuq5u67ym8CA9C5aeubX0jTxwmOi8a6DiN_yzVb13PbK9hRswuMnQjDxZP-y88iqbORxF8TzyeYW8dh8_ucwgw73UDQS-CFOFOXDpXb0X5Hy7J0UOtkDj3Ty1npu9Fq-4th7M4LvW8U69P-YluXaZKzwtiFK9VulcuLwvnbyLgZ890q5sNyI8pT3lwoe9O4xSOd3zVz3HV1E9B3ofNxeFeD0nvOQ96I4yt1WZlDuTTIM9lA-ZuBbxJz0VPAU7ykXRtqDcez0Bmbc9WAA2uGVTzr3C6Kg8_jLoN2FM_rvUmLW9M7SCNhxe8D19BP489OeQuFfCA7wACI48jOKaOM6Cqj3ECte9LPYmubhdk73Pq5C92nVEuIT6L7sAIwG86qNfNyAN57wVKg49Hi6-NibckLwWMDG-QaBauYqWVz0QWPk9jRdAOIfVST1AL_w9t6oHuRfx3bxfpFs6GIbzt-2Ieb0Hva08ZMXANyAAOBNACUhtUAEqcxAAGmAH7wA0C9-pFD4w8ubT9hXcyBvkL6f1_9W-_0gkwiL_AdfU3QgASuge5Z4AAAAKGvMzHQAAf9O9LST2NDa2mtBCLXc1-gHt9wM5tNpBCSva_BDXORIALfOdHkUU1QNGKyMgAC3fmA47OBNACUhvUAIqjwIQABqAAgAABD4AAFC9AADGPgAAgLsAADy-AACWPgAAEL0AAPq-AABEvgAA4DwAAFC9AACovQAAJD4AAFQ-AADIvQAAUL0AABQ-AAAQPQAAqD0AABc_AAB_PwAADL4AAAS-AAAkPgAAFL4AAIA7AACAOwAADL4AADQ-AAB0PgAAgDsAABS-AADovQAAED0AAIo-AAAsvgAAyL0AAPi9AAD4vQAA6L0AAKC8AACWvgAAoLwAAAy-AACovQAAgDsAANg9AABMvgAAuL0AAPi9AAAwPQAAcD0AACw-AAAwPQAApr4AAIg9AAApPwAAUL0AAIg9AACKPgAAoLwAAJg9AADoPQAAuL0gADgTQAlIfFABKo8CEAEagAIAAJi9AAAwPQAAML0AACW_AACovQAA4DwAACw-AABwvQAAUL0AABQ-AABAPAAAPL4AAHA9AAAwvQAA2D0AAKi9AABAvAAALT8AAFA9AACiPgAAVL4AAJi9AABwPQAAmL0AAMi9AAA8vgAAuD0AAIA7AAA0PgAAgDsAAJg9AADoPQAARL4AADw-AAAMPgAAHL4AAFQ-AAC2PgAAXL4AAOi9AAB8PgAAVD4AAOi9AACgPAAARL4AAPg9AAB_vwAAcD0AAFQ-AAAQPQAAPD4AALi9AAAUPgAADD4AAEQ-AACoPQAAiD0AABA9AACYvQAAiL0AAPg9AAC4PQAALL4AADS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ctcEc1bfapI","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["17546691289987412793"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"112911343"},"16488447049032286700":{"videoId":"16488447049032286700","docid":"34-1-2-Z4CA8842FCC73D9EB","description":"This is \"Ryan Syverson testimonial\" by Rusty Osborne on Vimeo, the home for high quality videos and the people who love them.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4236601/55ca38045c87a14121bd94c0da8b2c24/564x318_1"},"target":"_self","position":"8","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","isAdultDoc":false,"relatedParams":{"text":"Ryan Syverson testimonial","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/vimeo.com\\/825824933\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhYKFDE2NDg4NDQ3MDQ5MDMyMjg2NzAwWhQxNjQ4ODQ0NzA0OTAzMjI4NjcwMGqXDRIBMBgAIi0aFgAKEGhocnl4dW5paGppcm1oaGgSAQAqE8IPDxoPPxNjggQkAZAEK--EszUqiwEQARp4gfwJ9QH7BQD9AgUC-gX-AfEJ-PL6_v0A7vwG-wYAAADoAf0A-_8AAPkEBPgHAAAA_v0K_vT-AQAS9gEAAwAAAAL7CAP4AAAA-gUE__8BAAAD9_n5Av8AAAz-_gEAAAAA-wQE_QAAAAD6AgMHAAAAAAf4AP4AAAAAIAAtYD3hOzgTQAlITlACKnMQABpg_xcAGPULBN0ZGPHQAN8CDRPuAAfp6gD19QAFBvLgE_jxxiUB_xEN6-TKAAAAEdYgFBMA2Ej83-QH9zsTEfgKDv1_8Q8UIwg05OoUJAvzIQnrGgMiAPwW6wcV3PVQ5QgrIAAtk9BpOzgTQAlIb1ACKq8GEAwaoAYAAADCAABQQQAAfEIAAPDBAACAwAAAcMEAABhCAAAgwQAAWMIAAMDAAAAQwQAAwEAAAMjBAADgQAAA4EAAACBBAAAwQQAAIMIAAPjBAABUwgAA-EEAABDCAADYwQAA-EEAAEBAAAB0QgAABMIAAJDBAACQQgAAFEIAADRCAAD4wQAABMIAAK5CAABEwgAAwkIAAEBAAAAYQgAAsMEAAMjBAABwQQAAPMIAANDBAADIQQAAUMEAAFxCAAAAQQAAaMIAAIhBAAAYwgAAwMIAAAhCAADwQQAAyMEAABzCAAAEwgAAUEEAAJhBAACEQgAA2EEAAFTCAAAAQQAA0MEAAJDCAABAwAAAHEIAAFhCAAAgwQAADMIAAMhBAACiQgAAyEEAAIjCAAB0QgAAIMEAACDBAACowQAAUEIAAAzCAABswgAAHMIAAGDBAADYQQAAoEEAAARCAADoQQAAoEEAAKBAAABoQgAAgMAAAMDBAABQQQAAuEEAABxCAAAkwgAAQEAAAHRCAACgQAAAyEEAAFRCAADgwAAAwMAAAIJCAADQwQAAgEAAAABCAABQQQAADEIAACjCAAAUQgAAuMEAACBCAACSwgAANMIAAJRCAABoQgAAaEIAABDCAABAwAAAFMIAAABCAABUwgAAKEIAANrCAAAAQAAA-EEAAPhBAAAUwgAAYMEAAHTCAACowQAAWMIAAHDBAAAgQgAAkkIAAAjCAAAIQgAA-MEAAAjCAABEwgAAKEIAAKRCAAA8QgAAPEIAAMBAAAAAQQAAWEIAAJBBAABwQQAAgEAAAADAAACYwQAAIEEAADDBAAAQQgAA4MAAACBBAABgwgAAQMEAAIjBAABAwQAAAEAAAODBAAAgwQAAUEIAAKDCAAAMQgAAiMEAAARCAADgwQAAUMIAAABBAADwwQAAgEEAAEDAAABMQgAAUEEAACDBAAA8wgAAokIAAMBAAAAEwgAAQMEAAAjCAACAQAAAuEEAAKjCAABUQgAAtEIAAEjCAABowgAAEEIAAADBAAAUQgAAgD8AAFBBAACqwgAAQEAAAIDCAAAEwiAAOBNACUh1UAEqjwIQABqAAgAADL4AAHy-AABcPgAAcD0AADC9AACIPQAAyL0AALa-AAAUvgAAUD0AAEw-AABMvgAADD4AACw-AAB0PgAAcL0AADw-AABQPQAARD4AAKY-AAB_PwAAfD4AACS-AAA0PgAAQDwAABC9AADgPAAAiL0AAKI-AACmPgAAgDsAAJi9AACSvgAA-D0AAPg9AAB0vgAA-L0AAIC7AAD4vQAAXL4AAEy-AAA0vgAAEL0AALi9AACKvgAAlr4AAFC9AAAwPQAAcD0AAKi9AACAuwAAij4AAOA8AAC4vQAAoLwAAHA9AABRPwAAcD0AAP4-AACOPgAAiL0AAHC9AACoPQAA6L0gADgTQAlIfFABKo8CEAEagAIAAIA7AAAQPQAAMD0AAC2_AACIvQAAmL0AAAS-AAAQPQAANL4AAI4-AABwPQAAFL4AAJ4-AACgPAAA6L0AAIi9AACgvAAAWz8AAEA8AAAcPgAAuL0AALi9AABUPgAAJL4AAIA7AACovQAAQDwAAKg9AAC6PgAAyD0AADA9AADgPAAA2L0AADC9AABQvQAAUL0AAIC7AAAEPgAAcD0AAAS-AACqPgAAyL0AAL6-AACovQAAXL4AAKA8AAB_vwAAyD0AAJg9AAAsPgAAVD4AALi9AABwvQAAgj4AAIi9AADIPQAAcL0AADw-AAAMvgAAFL4AAJg9AAA8vgAAcL0AAK6-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://vimeo.com/825824933","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16488447049032286700"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"vimeo.com","hasTranslation":true,"contentTypeId":null,"censored":false},"591989821681430768":{"videoId":"591989821681430768","docid":"34-9-14-Z7575321613E0C970","description":"This video reviews the ways in which we can graph and transform a function. The transformations covered are stretch/compress/flip(reflect) and shifts (translations).","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2833826/eacfd6fab19e2802e239ef647149daa7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TtY2lQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXaMtjr3dq3U","linkTemplate":"/video/preview/591989821681430768?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Reviewing Transformations on a Function","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XaMtjr3dq3U\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhQKEjU5MTk4OTgyMTY4MTQzMDc2OFoSNTkxOTg5ODIxNjgxNDMwNzY4arYPEgEwGAAiRRoxAAoqaGhxc2RvdnZpZXN5c3htZGhoVUNsaDB2c3dKZkdRbTVtTGVoQ0FHQy1REgIAEioQwg8PGg8_E7QEggQkAYAEKyqLARABGniB9PT5_v0DAPv1Df8HBf4BDv4GAvcAAADp-_z-BP4BAPYDAQIHAAAA8QEA-_8AAAD-BQYH_v4BAAAO9AkDAAAAEvkC__cAAAAOC_wD_gEAAO8BBv8DAAAADAEKBQAAAAD0Cfr_AgAAAAD_-wwAAAAADPn3BQAAAAAgAC3nmNw7OBNACUhOUAIqhAIQABrwAV4tPP3VD9kArQwAANkkDAK-OA4A_hDeAIHf8wPeAOkB5vEeAP81GgAEAusAkzAkARbhBwDPyuYADNk1__bYHAAa9DIAFtgFAlwW8QAUzAz_zE8m_xj8_wDpxvACwS7w_zsOGQDeGBgD_uLFAC8AFv3_3_gIP-rz_gDPCgYQE_cJx9jG-_n8CPjG3vUC7dkQBAbv6_8nUdkBAvT4-wnwMQPs7wv_MDvR_yf_Cf_oFP4DD7_6-vzd6vr5JAABDBHp_rTP_AXk0PT2FQIEAwIbBvyqxAYCURcLDw4i5v_n-Q0U-T4N8PwRBgv9AOYICP0E6CAALV5TBjs4E0AJSGFQAipzEAAaYAT6ACTe8eIgF_by7NDCGuP3Ccgu5wL_5cMAFznrAB0DAdnc-wA6zQrntgAAAO4OBxcAABBiFNEAJuIVJN3eFPQufyn2K8viBxvX2x84EQU0FBMvMAAF2Mn5HxHfOQNHSiAALeQMNjs4E0AJSG9QAiqvBhAMGqAGAAAUwgAAsEEAAHBCAAC4QQAAiMEAAGBCAACsQgAA4EAAAEjCAACAwgAA2MEAACDBAABUwgAA4EEAAAhCAAAAwgAAwMEAANLCAAAQQgAAgMAAAEBBAADowQAAUMEAAFBBAADAQAAAkMEAACDBAADQQQAAUEIAANhBAABkwgAAmEEAALbCAAD4QQAAeMIAACBBAAAEQgAAsEEAACDBAABAQQAAMMEAACBCAADAwAAAgL8AAKDCAACwwQAAEMEAAIDAAACgwAAADEIAABjCAABwwQAAgMEAAIC_AAAsQgAAAEIAAFTCAABIwgAAAMEAAIBBAADAQAAASMIAAFTCAACuwgAAyEEAAMTCAACYwQAA4MEAAMDCAADAwQAArkIAAFBBAABgQQAA6EEAAADCAADYQQAABMIAAADAAABsQgAATEIAAIjBAAA8QgAAkMEAAIDAAAD4QQAAZEIAAFRCAAD4wQAA2EEAAMBAAADgQAAAjkIAAIzCAAAcwgAAwEEAAKjCAACIQQAA6MEAABxCAADwQQAANMIAAKDAAAAYQgAAQEEAAEjCAACowQAAgD8AAAhCAAD4wQAAjEIAAIJCAAAsQgAAgD8AAKZCAADAQQAAgL8AAADBAADgwQAAmMEAANDBAAAQQQAAuEEAAI5CAABAwgAAeMIAAFDBAABoQgAAmMEAAEzCAABAwAAA-MEAAMjBAABwQQAAgEAAAJBBAAAkQgAALEIAADBBAAAwwQAAyMEAADBBAAAYwgAAoEAAAFDBAABEQgAALEIAANDBAACmQgAAqEEAAGBCAAD4wQAA4EEAADBCAACAwQAAEMEAALjBAABEwgAA6MEAAKDBAAAkQgAAYMEAAIhCAADwwQAAuMEAABDBAABQwQAAiEEAAMpCAACwQQAADMIAAADAAAB8QgAAkEEAAGzCAAAgwQAAPMIAAAzCAAAEwgAA0MEAADhCAACQwgAA8MEAAILCAAAAAAAAUEEAAGBBAACywgAAiMEAAOBBAAAEQgAAIEEAAABCAADQwQAA4MAAABjCAAAwQgAAPEIAAJBBAAAQQgAAYMEgADgTQAlIdVABKo8CEAAagAIAAIA7AADIvQAA-D0AAIC7AAAQPQAAyj4AAGw-AAAlvwAAXL4AACw-AAD4PQAAED0AAAQ-AABMPgAA4DwAAOg9AAAcPgAAEL0AAOi9AAALPwAAfz8AAJg9AACSPgAA-L0AADS-AADYPQAAuD0AAAS-AACKvgAAgLsAADQ-AABUPgAANL4AAIA7AACOPgAAVL4AAHQ-AABwvQAAwr4AAKC8AAC6vgAATL4AAEQ-AAC4PQAAoDwAAJi9AACAuwAA2L0AAJg9AACGvgAAcL0AAMi9AACYPQAA8j4AAEA8AAAQPQAARz8AAES-AABUPgAAqD0AAKC8AACAuwAA-D0AAKC8IAA4E0AJSHxQASqPAhABGoACAABQPQAAUD0AADy-AAAXvwAA-L0AAOC8AABsPgAAiD0AAIi9AACaPgAAPD4AAPi9AACgPAAAlr4AALi9AABQvQAAED0AAB8_AACIvQAAqj4AABC9AACoPQAAcD0AAPi9AABAvAAAoDwAACS-AACYPQAAoDwAAFA9AACYPQAAiD0AAHy-AADYvQAAmD0AAEy-AACaPgAAFD4AALq-AAC4PQAAZD4AAKi9AAA0vgAAuD0AAOA8AAA8PgAAf78AAIC7AADIvQAAoDwAANg9AABQPQAAmD0AAHC9AACKPgAAQDwAABC9AAC4vQAAgDsAABC9AABQPQAAHD4AAEA8AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=XaMtjr3dq3U","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":480,"cheight":360,"cratio":1.33333,"dups":["591989821681430768"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3936396980"},"2109483975644526702":{"videoId":"2109483975644526702","docid":"34-9-12-Z1110614DCF7E4DA1","description":"Quadratic, Formula, Proof, Derive, Derivation...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3936452/5f5ce0d636697ab91a45d54b32aa02cd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/rNDjHwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUxybDUggcYI","linkTemplate":"/video/preview/2109483975644526702?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof of the Quadratic Formula","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UxybDUggcYI\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhUKEzIxMDk0ODM5NzU2NDQ1MjY3MDJaEzIxMDk0ODM5NzU2NDQ1MjY3MDJq1hASATAYACJFGjEACipoaHFzZG92dmllc3lzeG1kaGhVQ2xoMHZzd0pmR1FtNW1MZWhDQUdDLVESAgASKhDCDw8aDz8T9gKCBCQBgAQrKosBEAEaeIH7BAEC_gMA5gABAvwAAQAGB_gA9___APEB9wIHAf8A8gIO-gcAAAAGDP8FAwAAAPcA9QL7_wAADAEJDgQAAAAGBgH__gAAAAoG9wj-AQAA9fL_AQP_AAABCwj5_wAAAOYDBvv_AP8A_f8MBQAAAAAC_AUAAAAAACAALZ112zs4E0AJSE5QAiqEAhAAGvABf_fx_s7WxgDz7AUB4AzzAb04DgA5Qt3_xQ3l_-zu6AESJO0B2h3zAMcI5P--S_MA_9vXAPSn9QBZuAr_D9DeAPcQ6QFC1P0BMQv2APTn9QDdJTL91wQC_xvSzQMPLhH98MwX_UkqAQLm1NIALwAX_Q8JGQUP8hEJ3KQpAPft5P3849r9ygcFB933C_7t2REEHub9ARA7EQPWMfMDLQEI-BPcKfz0LugDTD0LBfff_wQP_wAHDvrtC78oH_4MEej-4xwm_sXl7fv8BgMRCw31-Ar89g73yvIRAe3vDuMfFgX6_fYBFyoH9Nra9PbcCfPqIAAt9U8FOzgTQAlIYVACKs8HEAAawAeyDse-51kkPN8Kl7wcyD-9CeqMO5zMLr0q4B6-A-5ZPXNVj7wbEBE-0lRPvPSFFT0ceHW-anwQPXw40jymQjw-ZWE5vTx8Qz11dPy9LxOaPQsCEL1MxDu-gpxFu1Yy17p5Ey47YBrtu331J71UUwI-3Es6vXbMELwhlaK8hkSQvE7etrxD5_W9f7YfvVoiAb14wAo8BLcEvcZKsTzr4LA9f3iMvHwVT7yDoe49i1owvfwHx7vWMTO9jVL4PDQ_yLzqr_c9MbJROshNAz14ADW9V6fzOsWC77tLLI89W4p1vHMXm7to5q48v2Y0vQ4yBL2fEdc7-bV6vfZOnruzfei9Ukx8OjWK9rttqeM9BhGpvBSd2zxkO8S9FXWBPKQLe7wb3HE9wfpEvcxiYrzPfKM9uDJSPafQVDyr3DW9-N6-OlRtnzmQJBC8EN-jPaZiAz3Uyo48SdNlvfH4sLtGgZk9oaA0PVLfaLs2PB48y6UMPeE8Qbw2qKK9f6TIPA9hnTs_vPg8eUWLPA6zYTyblQi9CHYMvs2l4bvsQ7i9j1ADvn9AELsLEnY93aF2O1uJbbtO8M09ZjPnvf9XADzWyRk9dXtEvd7L3Lt-n5s975Y_vPwIFTxUJT068FXGPCkT6bpmHr-9hS1sPWoxW7ueOpC9kx2LPej2krvAh4w9_4SZvYQPY7sUeRI9K1ovPST7FLtMEZo9SH1jPTqFXrnMrC89xb2zvbqhxjpSi_e8EmP8u6LhXjvW2iA9yuYlvfllVbrePSA9AjpdveTmyDnyrIm8QrXcvJqpgbhNLZs8iXAdPTg23Ti19I08cJjovGug4jeLBl8807yjvT98QTgZTXS7VGuGPFDIvLnYMnS9CtkZPZKSLDhqc_c8Pq4tvrpurzlw6V29F-R8uydFDrY3_w89GNs6vWxgxLUtYQi9LZ2KveikMLnPRD29G0xevTJeOznquiY8jYsZPGPUDDhFDtE9KSPuveIsvzl-clS9k3EsPSaasbjiiSo9c1Z6PWTZqTeHU5E99F_GPaq5JDcn2eo9btNJPYwXjbgYyYM9a8sKPc6hMre0kBC-2IyiPZl7BLek6Jw8P8RGPei6kzheWRQ8HGQtPcJrkThBg0m7oQ4wPb3bhDj3ASg-cGHdvfFnv7kh_3G8jzaOvcoRrrghjU-97oJ8vUYVjrhNNyS9jbvMPazuDjfsA707fNQPvhf63LjK9HA9IuErPvHLiji8kpQ9RZtIPXdnRLcGoXy9YByBPGF8tTdJXqe9RqyqPVQyiDggADgTQAlIbVABKnMQABpgMwUAUBwFzkANCuUBzeMa3c3u57nM6f_18P8bJOsmHgjJ1Ov9ABnQC8amAAAAMrgB8_UAtH_mtg4YAi4KwNDaGD5YAfc3tdwrC7jH8OvwICEW3OQcAOzltlcVHwAxFzgdIAAt6yEeOzgTQAlIb1ACKo8CEAAagAIAAIg9AADgvAAAuD0AADw-AAAQPQAAUL0AAIi9AADavgAAFL4AALg9AADIPQAARL4AAIi9AAA8PgAALL4AAMi9AACoPQAAMD0AAAw-AAAwPQAAfz8AABA9AACYvQAA-D0AAEA8AACIvQAAQDwAAES-AACCPgAAED0AAKA8AADYvQAADL4AAIg9AACoPQAAUL0AALg9AACuvgAApr4AAIq-AADIvQAALL4AADA9AADgPAAA2L0AADy-AAD4PQAAuD0AABA9AACIvQAAiD0AAIg9AADoPQAAML0AACS-AABAvAAABz8AAMi9AABEPgAAcL0AAAS-AACAuwAAmD0AABS-IAA4E0AJSHxQASqPAhABGoACAABAvAAAUL0AAPi9AAA1vwAAUL0AADA9AABQvQAAuD0AAMi9AAAMPgAAuL0AAI6-AAAEPgAAML0AAHA9AADIvQAADD4AAB0_AADIvQAAdD4AAFC9AADoPQAARD4AAMi9AACgPAAADD4AAIg9AADgPAAAHD4AAAw-AABQPQAAqD0AADS-AACIvQAAVL4AANi9AACIPQAAXD4AABS-AAA8vgAA2D0AAAQ-AACAuwAAmD0AAAS-AAD4PQAAf78AABQ-AACAuwAATD4AABC9AAC4vQAAED0AAJY-AAAQPQAAUD0AAJg9AAD4PQAAcL0AAOi9AADIPQAAoLwAAJg9AAB0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=UxybDUggcYI","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["2109483975644526702"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3170216464"},"766262078129610664":{"videoId":"766262078129610664","docid":"34-8-16-Z962A0DCA2C4DB472","description":"This video will cover the basics of solving trigonometric equations and inequalities...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1220297/0fd9edb1e56c7da4155fac6df536c69a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/M1TOgwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYP2iu0ljznQ","linkTemplate":"/video/preview/766262078129610664?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Solving Trigonometric Equations","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YP2iu0ljznQ\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhQKEjc2NjI2MjA3ODEyOTYxMDY2NFoSNzY2MjYyMDc4MTI5NjEwNjY0aogXEgEwGAAiRRoxAAoqaGhxc2RvdnZpZXN5c3htZGhoVUNsaDB2c3dKZkdRbTVtTGVoQ0FHQy1REgIAEioQwg8PGg8_E8YJggQkAYAEKyqLARABGniB8vr7B_8CAPgHBQgABv0CFgYFAvUCAgD1APX0AwL_APcBEwEBAAAA_Qv8BQwAAAD8A_n7_f4AABkF8P4DAAAADwP-__wAAAAa8_z3_wEAAPH7_AMDAAAAA_QA__8AAAAADgH5_f8AAP0P9AIAAAAACP4EBgAAAAAgAC0jf9g7OBNACUhOUAIqhAIQABrwAX8HDQDC--H_3N7hAMzp2ACBGA__IizbAK7RAgHE_-kB0Dfc_8gODv_JDi__qi_3_xbTqQMm6eUAJ-AsAP0J5wAI_hIBF9YcAVPxBgDa5fkA-R1SAvfhFADz3eECCQ7r_tD0Jf0W97cBuPjFASr7NQEsJScGOPILA9TwBv_2CvH99vrYANv4Cgb-7BkAy-kiAvbt3vspIBT8zgL9Bh4I_fn73QT5Mj7P_0An_ALc6yQFzv3q_xzz_Qb7Kh8MECLy-L3yGPTVxAv2Ah_7-x2k-PoG-uz8H_PyDvvw9vbh8fr08fgM_tg85u_21vwTDen19CAALVzRADs4E0AJSGFQAirPBxAAGsAHICrFviyWh7yltvm8CgfMvVcPFLw0hQ69FNqYvSdPeT0LEYm7YvU3PoAwizzJkjk8OGmKvtEMPTztrn08Jv_zPfEFt72gZSc8ehcvvgg8MD0pn9S89aFrvoTTBz10NcO7E8GuPA1BBL2Cctu8_n4RPukqvb04lGu8yi59vUnnrjvglx-9Q-f1vX-2H71aIgG9TZ-hO8q4c70YjhE9YOcmPg3TDb3xHvG8XBBgPQCXVr2OUai8cv4BvfQSiDz2Ali8_m6QPcfscjuhcw09Sg8eu23FvrzCUY08pEScvLJDoTw7Do87Y15sPDsODT0tTuu8YvSMPZ5-0L2-dl27DMiDvf8Zrzxe8XU7RgrlPaOWIDxTze47fNyivb9g9zxMRC68PptyO7AeN737kYW6PSZXPXcRpjwjtgA9VlqQPFVx_jwqkxa8CWTAPM9ZdT2FY7E8BynYPf9Z87ygibC8_OAcPbnjSD1qu-y70m0OvUiSmz043Q-8K-oAvHNuSTyoUo05H1VjPSrJij0PNJU8xTVDPfhRDb4Jbyy7Yyp9vKNFzL2HKka8PRVGPeprpzx6BkO8r0M1PWi-yb1nO5G75xYfvY1Hqbz5A7O6Y3XAPX1RDL1aZyI6c9nIvWIzez0J7cm7VK7su-RZeD2WFRa86ezJPEwYzT1f6Jq5wIeMPf-Emb2ED2O7DAMWPX0IKrz61FK7up6dPdN70zt5NYo6GLIKPmWew7sY0YI4rzLkO0Zb1bxxwT66kuYPvWxGAT1PfG-6NJe1Pbqp3LzmWHi4n2ZUu2963buVQgO7FszOvNOhcz3rQ246PxmjvLL2V71D9Qu43SqjvFc9wL2RBh45sZZxvH5zWrz3_zM7x7wuPZJ0Er39D6o4zCDDvdQNBL4IU4U5VYQ7vVStBT1IFpy4T6IQuwl8z7xor8w4YFnpvEiZnrzTRSC52VcBvL3aVr18t5W4AjJPvSOC0T11t7w4jBgxPRcYiL0zlRw50PBmvXiLoT3znSS56X_7uvZ61z0rdK-2PLBtPSTtiz3CRq-47m5vPRRBHL0JFbG2D1Q3PfGC6D3pQYI3yuEDvhDXHjyX_U43I9GwvHJTw7zjEDu4hXq6PTompjzH6Gg4opQUvCnmwbs-SDg4kl0ZPtlPUL2swj-5GZtsvYmE5by0Ss43epcBvasDZb21Yua3QJCCvaa8cT2gfvW2XqpIvTrpHb60Y_q4yvRwPSLhKz7xy4o43OJQPQHlJT1-1fa3w_PSvY6KBL2Hssm2oZ1YvfTuWT1T31g4IAA4E0AJSG1QASpzEAAaYCz8AAoKAIEXJCHv78EaFtbl5d4dmf__6r__QS7lBy4c6dX-_ABF4fMHoQAAABjeAgEGABt55ttOUf4l4Zy27j8eVzQNKdnVJyG_5zw2KOQME8sTBQAO8JwJSxLbCAwkJCAALXuBFjs4E0AJSG9QAiqvBhAMGqAGAABcQgAA0EEAAIBCAACAwgAAAMEAAFRCAACAQgAAoEEAACzCAADgwQAAqEEAABzCAAA8wgAA6MEAAKBBAAAAQAAAhEIAAL7CAABIQgAA8MEAAAjCAABAwgAARMIAAIJCAADAwQAAiMEAAOBAAACgwAAA4EEAAGBBAACAwgAAREIAABzCAAAcQgAA0sIAALDBAAAUQgAAUEIAAEDBAAAIQgAA8EEAAMDBAACwQQAAgL8AADDCAABAwQAAAMAAAGBBAADAQQAAeEIAAGzCAABIwgAA2MEAAFRCAACEQgAAwEAAAHDCAABwQQAAUEEAALBBAAA0QgAAwMEAAOjBAABUwgAAgkIAAHDCAAAQwgAAfMIAAJjBAACMwgAAjkIAAIBCAAAwwQAAEEIAAFTCAAAAQQAAisIAAMDAAACYQQAAqEEAABDCAACIQgAAqMEAAGxCAAAQQQAAWEIAAHDBAADwwQAAgL8AABjCAADoQQAArkIAAIjCAACowQAAIMEAADzCAACowQAAMEEAAEBCAABAwAAAbMIAAMhBAACAQgAABMIAAIbCAABIQgAAiMEAAIhBAAAIwgAAkEIAAJZCAAAAAAAAVMIAABBBAADYwQAANEIAALDBAACgwAAAUMEAAODAAAAQwQAAgMEAAMhBAADowQAAMMEAAHDBAAAAQAAACEIAACDBAAC4QQAAwMEAAKrCAACIwQAAuEEAAIDAAACYQgAAmMEAADxCAABQQQAAFMIAAMhBAAAQwQAAAEAAAGDCAADYQQAAHEIAAATCAACAQQAAgMEAADBBAAAAwQAA8EEAADBCAACIQQAAAEEAAKDAAABQwgAALMIAABjCAACwQQAA8MEAADBBAACAvwAAgD8AAHDBAAAwwQAADMIAALBCAACQQQAAEEEAAADCAACgQQAAAEEAAMDBAAD4wQAAmMEAABhCAAD4wQAAmEEAAGBCAADAwgAAhMIAAFDBAACwQQAAqEEAAFDBAAC-wgAAqMEAAIjBAAC4wQAAeEIAAMjBAAAAQAAAUEEAALjBAAAIQgAAkMEAAIpCAAAcQgAAQMAgADgTQAlIdVABKo8CEAAagAIAAFw-AADgPAAAqj4AAMi9AAC4PQAAhj4AABy-AAAjvwAAmr4AAKg9AAAwvQAA6L0AAEA8AAA0PgAARL4AACS-AAAUPgAAgLsAAPg9AAArPwAAfz8AAHC9AACAOwAAyD0AADC9AABQvQAAcD0AAOC8AABMPgAAXD4AAMg9AACCvgAAML0AAFA9AACGPgAAgLsAAJi9AAAcvgAAgr4AAKK-AAAQvQAAHL4AAMg9AABMvgAABL4AAHC9AADoPQAABL4AAIC7AAD4vQAALL4AAMi9AAAMPgAAFD4AALq-AACAOwAAMz8AAAS-AADYvQAA2D0AABy-AAB8PgAAND4AAHA9IAA4E0AJSHxQASqPAhABGoACAADgPAAAUD0AAEC8AAA3vwAA-L0AAOC8AAB0PgAAuL0AAIC7AAAUPgAAyD0AAAy-AACAOwAAML0AAAw-AACYvQAA4LwAAA8_AACAOwAArj4AAES-AAAwvQAAUL0AADC9AACYvQAAgr4AAEA8AACgvAAABD4AAKA8AAAQPQAAJD4AAFS-AACIPQAAqD0AALi9AABEPgAAlj4AAHS-AACYvQAA2D0AAEQ-AABsvgAAqD0AAKi9AACYPQAAf78AADQ-AACuPgAAiL0AAAQ-AAC4vQAAgLsAAAQ-AADoPQAAHD4AAHA9AABwvQAAQLwAAKC8AADoPQAAgDsAAJi9AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=YP2iu0ljznQ","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["766262078129610664"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3574774203"},"14371676280160045103":{"videoId":"14371676280160045103","docid":"34-10-11-ZD073FCE2C89DBD18","description":"Quadratic Equation (Concepts/Theories), Factoring, Math...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1008107/cd9f938c4f9fb09b03c19997e1e7b65d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0BinSQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDyP6xpaPugA","linkTemplate":"/video/preview/14371676280160045103?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"9-6 Solving Quadratic Equations by Factoring","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DyP6xpaPugA\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhYKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzWhQxNDM3MTY3NjI4MDE2MDA0NTEwM2q2DxIBMBgAIkUaMQAKKmhocXNkb3Z2aWVzeXN4bWRoaFVDbGgwdnN3SmZHUW01bUxlaENBR0MtURICABIqEMIPDxoPPxP-AYIEJAGABCsqiwEQARp4gfL8__X-AgD8ABAFBwf8ARAIAwv2AQEA-PQB8gMD_wD9AgoACQEAAPoQ8P8DAAAA8fj2_PoAAAAK_AgI-AAAABT6Cv0BAAAADAELAAn_AQD2__QCA_8AAAP0AP__AAAA_AgBAfz_AAD3CRIEAAAAAAYDAQAAAAAAIAAtHT3WOzgTQAlITlACKoQCEAAa8AF_6PQBtx_g_-Di5ADSDucBwzQNAD4cA_-qFBUBnvTmACsv-QH6GyT_-roC_eAcHf8A4O3_7tvWAE7hCgAw-wYA0-ERADjnFAAFAgMBIbf__gM5GQH4-SkB-_PnASfoAgHw8wr9CBblAtzf7wUZ5S0DByMuCt4QDwXu1wABufsYAQ3P1v7Q_-P_Cxzz_-D1MQcT4Ar-KADlAvkVE_wBDQv79wfzAfj11gIEIBEK4O4gBPzp6fgjyOsDEib_Ce8pBwoHDxn55-f-Ahz66wYk9Ob7D-MB-i4d6wT2ARIOJCAEEusD8fLpKArv2tTxCO7cBQIgAC08OxE7OBNACUhhUAIqcxAAGmAx_AA3ChzPBfEf1OzhD0LYEt__4cjv__HO_zwX5bQjM6zF2AAAJL3-8qMAAAD5qQryzwD5f_bWNE0lMCLUDKQjFEHjFSG6tSolzRHj6_H_E0YLJSIAt_65FTD9AlH8FA8gAC2hdRo7OBNACUhvUAIqrwYQDBqgBgAAGEIAAABBAADIQQAALMIAAOjBAAAgQQAAnkIAACBCAACAwQAACMIAAEDBAACoQQAAqMEAAChCAADoQQAAkEEAACBBAAC8wgAATEIAAMDBAADgQAAAgMAAAKBBAAAoQgAA6EEAAMDAAAAAAAAAAMEAANBBAAAwQQAAAMIAANBBAACKwgAAgL8AAFTCAABgQQAADEIAAEhCAAAAwQAAAMEAAKDAAACgQgAA2EEAAABAAAA0wgAAKMIAAHRCAABAwAAASEIAAI5CAAAMwgAAAEEAAGDBAACgQAAA0EEAAJBBAACowQAA4MEAACDBAAAcQgAAoMAAAHjCAACwwQAAoMEAAKhBAADYwQAAlMIAAEBAAACYQQAAwMEAAIpCAACGQgAAuEEAAOhBAABwwgAAkMEAALLCAABwwQAATEIAAKBBAAAswgAAnEIAAAAAAABcQgAAgEIAAEBBAADIQQAAFMIAAKRCAAAAQAAAgL8AAJBCAABYwgAAXMIAAKjBAABgwgAAoEEAAFBBAABIQgAAhkIAAJjCAABIQgAAkEEAAMDAAABMwgAAwEAAAKDBAACgQQAAQMIAAHRCAAAwQgAAPEIAAJjBAACmQgAAgD8AADBBAADQQQAAQMEAAEBBAACQwQAAUMEAAIzCAABAQQAAQMAAAEDCAACIwgAAQEEAAJjBAAAIwgAACMIAAJDBAAAgwgAAQEAAAIDBAAAwwgAANEIAAIA_AABAQQAAAAAAAMDAAAAgwQAAMMIAAADAAAB0wgAAwEEAAFRCAACowQAAPEIAAODAAABAwAAAqMIAADBBAAAEQgAAIEEAAPhBAAAAAAAAbMIAAFDCAABQwQAAAMAAAGzCAAAMQgAAUEEAAKDBAAAMQgAA2EEAACjCAAAkQgAAoEAAAADBAADgQQAAIEIAABTCAACowgAAoMEAAJbCAAAMQgAAmMEAAMDAAACEQgAAwMIAAHzCAACWwgAAjkIAAJBCAABQQQAAkMIAAJ7CAACAQQAAFEIAAGDBAAAgQgAAMEIAABDBAAC4wQAAgL8AACRCAABAwAAAiEEAAIjBIAA4E0AJSHVQASqPAhAAGoACAAAQPQAAbD4AAJi9AAA8PgAArj4AAAQ-AAC4vQAAI78AAI6-AABsPgAA2D0AAES-AAC4vQAATD4AAAy-AACAuwAAFD4AAJg9AACAuwAA4j4AAH8_AAD4vQAAmL0AABC9AAAMvgAAHL4AAKA8AAAEvgAAMD0AAKg9AAAUPgAAQLwAAHS-AACIPQAAyD0AAPg9AACIPQAARL4AAOa-AADuvgAAdL4AAOC8AACgPAAAMD0AAES-AABcvgAAqD0AAIi9AABAPAAAmr4AAHC9AABEvgAAhj4AAKo-AACevgAAML0AABM_AADYvQAAgLsAAFA9AADYvQAAUD0AANg9AAC4PSAAOBNACUh8UAEqjwIQARqAAgAAcD0AAOg9AABQPQAAJb8AAAy-AABwvQAAmD0AAOg9AABAPAAAdD4AAHA9AAAcvgAA2L0AAAy-AAAQPQAAqL0AAEA8AAAZPwAAQLwAAMI-AAA8vgAA2L0AAIA7AABUvgAAiL0AAIA7AADgvAAAgDsAAFQ-AACoPQAAQLwAAAQ-AAAkvgAAQDwAALg9AACAuwAAPD4AAKY-AABEvgAAgLsAADQ-AADoPQAALL4AAEC8AACCvgAAPD4AAH-_AAD4PQAAiD0AAKg9AADIvQAAUL0AAPg9AAA8PgAALD4AAOA8AABwPQAAHL4AADS-AAAwvQAAoLwAAKi9AACIPQAAcD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=DyP6xpaPugA","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["14371676280160045103"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3215426430"},"7250994805335161841":{"videoId":"7250994805335161841","docid":"34-8-9-Z0E469AB9D872AF11","description":"11-6...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/860261/0f48cf637385b7faf138d263e009052a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/p69nHgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3De3QjRzQ_wPA","linkTemplate":"/video/preview/7250994805335161841?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplifying Radical Expressions Part 1","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=e3QjRzQ_wPA\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhUKEzcyNTA5OTQ4MDUzMzUxNjE4NDFaEzcyNTA5OTQ4MDUzMzUxNjE4NDFqtg8SATAYACJFGjEACipoaHFzZG92dmllc3lzeG1kaGhVQ2xoMHZzd0pmR1FtNW1MZWhDQUdDLVESAgASKhDCDw8aDz8TxAWCBCQBgAQrKosBEAEaeIHuBfwFAf8A-AEACvcH_QIUEA4G9QICAPQGAv8IAv8A8AsC-_kAAAD6EQT-BwAAAPcA9AL6_wAAAgoN_QQAAAAa9vQJ_QAAAPsJCwz-AQAA8fIBAfUCAAEY-f4NAAAAAPwC_-0AAAAABw4LCgAAAAAE9gn7AAAAACAALWoszzs4E0AJSE5QAiqEAhAAGvABfw0EAu4C5AHl-fAAwRQBAKcRCgAOEtsAqwAkArL26wD5IfMB2OPV__kZEwDJAxMAM_fU_wPTEf9I5u8AJu35AOAOEQEl6gIAMgD9APLn4f_vCB8AA-UKAA327wALFPX-ChUEAdwH3wAd99oCCN0zAv8WEgQY8Q8C8dYWAuYaAAII6-7_-gD1BPr1_PzS_xkB7QMB_Q4T_P7dAf4EFvX3_O_iDQADFOkEMAz_Ceb0Dfv28PUB7unz--0KHgPoJ_X--gUNAdH_AfcAGhABKtnyBdX--v8P_wYLAwv1AgnlCfzy9vv96BAI9vAA-Q_hBAwBIAAtdZM3OzgTQAlIYVACKnMQABpgJPUAHuot7DE0avv0-A0i3tsS1jnG_v8Oyf_vKf4OGx7euQYfAA7TC9ujAAAAIwLUHvcABH_4BwJK8OUavtnbBzdo4jNLqsAcIJQEIgjv7uosPytRAP3lmxoWxsgRJ_HzIAAtwZYYOzgTQAlIb1ACKq8GEAwaoAYAADBCAAAgwQAA4EIAAMrCAADAQAAAKEIAAIpCAAAAwQAAbMIAAEBBAABAwAAAFMIAADzCAABQwQAAgMAAALBBAACKQgAA4MEAAOBAAAAwwQAAQEEAAJhBAABowgAA-EEAAADCAAA8wgAAJMIAAIDAAAA4QgAA6MEAACzCAADAwQAAsMIAAIA_AADmwgAA2EEAAGDBAAB8QgAAwMEAAABAAABAQQAA0EEAAEDAAAAwQQAAkEIAAAzCAAD4QQAAZEIAAHhCAAAgQQAAIMIAAODAAADAwAAA4EEAALhBAAAEQgAAnMIAADhCAABMQgAABEIAAMBBAADmwgAAmMEAAIjCAABAQAAAlMIAAOjBAADAwAAASMIAABzCAADwQQAA4EEAAGzCAABYQgAAPMIAADDBAAAswgAAcMEAANBBAACAQQAAcEEAAHxCAABwwQAA4MAAAJDBAAAUQgAAwEEAAABBAAAUQgAAoMEAAMhBAAAgQgAA6MEAAADAAAAAwAAA8MEAAJBBAADowQAAiEEAADhCAACCwgAAAAAAABRCAAC4QQAAosIAAHDBAACQwQAAIEIAAIBAAAAcQgAA6EEAAOBBAAD4wQAAEEEAAJDBAABIQgAA2EEAADzCAADYwQAAyMEAAIDBAAAcwgAARMIAADBBAAAwwQAAIMEAAABBAABQwQAAQEAAAPBBAABAQAAAosIAAOhBAAA8QgAAAEAAAHBCAACAQQAAdEIAAOjBAABgwQAAmMEAAGhCAABsQgAAWMIAAMhBAABcQgAAAAAAACDBAAAAwQAAoEAAAGzCAADoQQAASEIAAKBBAAAIQgAAcMEAAJLCAACAwQAAHMIAACzCAABgwgAAMEEAAADAAADgwQAAoEAAAGBBAADwwQAAiEIAAMBBAAD4QQAAmMEAAHBBAACowQAANMIAAGDCAAAAQAAAgEEAACzCAADYQQAAuEEAALDCAABcwgAACMIAADTCAACSQgAAXMIAACjCAADIwQAAwMAAAKhBAACQQgAAwMEAAAxCAADgwAAAqEEAADhCAAAUwgAAuMEAALhBAADIwSAAOBNACUh1UAEqjwIQABqAAgAAuD0AADA9AACAOwAAgDsAADy-AABwPQAAqD0AABG_AADgPAAAUL0AAAw-AAAEvgAA2L0AADw-AADIvQAAVD4AAKg9AACAOwAAuD0AAOI-AAB7PwAAcL0AALg9AAAQvQAAzr4AAKA8AADgPAAAuL0AAOi9AAAwPQAAPD4AAIg9AABwvQAA6D0AAIC7AACYPQAABL4AAHS-AACmvgAAhr4AAPK-AADIvQAAbD4AADy-AACqvgAAVL4AAEA8AABAvAAAiD0AAFC9AACIPQAA4DwAABQ-AAC4PQAAdL4AAHC9AAB_PwAATL4AAJI-AADYvQAA2L0AAIC7AAAUPgAAmD0gADgTQAlIfFABKo8CEAEagAIAAIC7AACAOwAAQDwAAC-_AACIPQAAmD0AAKA8AAC4PQAAEL0AACw-AABwPQAA4LwAAAQ-AAB0vgAAcD0AAJi9AAAEvgAAOz8AAHC9AACSPgAAML0AAIi9AACSPgAAgr4AAEC8AABAPAAAML0AAKg9AAAwPQAAQDwAADA9AAAQPQAAUL0AADy-AADYPQAADL4AAKC8AABUPgAAJL4AAFQ-AACOPgAALL4AAOC8AAAQPQAALL4AAIi9AAB_vwAAUL0AAOC8AACWPgAAQLwAAOC8AAA0PgAAcD0AAJY-AAAwvQAAEL0AANi9AABEvgAARL4AADA9AABMPgAAyD0AANi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=e3QjRzQ_wPA","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["7250994805335161841"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3932193210"},"811366880848389672":{"videoId":"811366880848389672","docid":"34-1-6-ZE1F3908C690AD8B7","description":"This is an introduction to the Basic Counting Principle, Combinations, and Permutations.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4032815/0482fadf213bf5a22781c8da5151adab/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AuZPLwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dk2R9dTXaWjU","linkTemplate":"/video/preview/811366880848389672?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Permutations and Combinations","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=k2R9dTXaWjU\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhQKEjgxMTM2Njg4MDg0ODM4OTY3MloSODExMzY2ODgwODQ4Mzg5NjcyaogXEgEwGAAiRRoxAAoqaGhxc2RvdnZpZXN5c3htZGhoVUNsaDB2c3dKZkdRbTVtTGVoQ0FHQy1REgIAEioQwg8PGg8_E9oHggQkAYAEKyqLARABGniB8QUDAfsFAP0CBQL6Bf4BAAP_-Pn-_gAGAAkCBQP_AP0BCgAJAQAABgX9-wAAAAD2BPoCAv8AABD7_vkDAAAAEO8H9_sAAAAODf0DEf4BAfsGBwcD_wAAAf0ODwAAAAD6Dfz7_wAAAP0ICAUAAAAABgIBAAAAAAAgAC0SBuA7OBNACUhOUAIqhAIQABrwAX8N3gDHDvv_3RDhALcXAQCDIQr-MDfj_6IQ-QHD7OIB7hfgAOn-AADjADkAyD_1ACXD5_8p6wQAOfgS_xr8FAAJIRwAM80PAS4CBwD7-___ASAp_iADGAAT897_6_T__AUE_v_GANsA8vH2BRfnKQIQ9xEEKfwiAfHpDAH8CwAF9_nK_vjlDgL6BwED6xkYABEM7AE7FfT_5gTyAR3w2P_85AP7JQLnAkMIHgsB7RH65CPvAAcB_vsUHiD-EQoaAgr8CAjix_f7-gUIACTPAP0M7RL7I-n4BwQM8wPx8gvz-Qn6_uksCQHc5gMC6PYB8yAALeSKHzs4E0AJSGFQAirPBxAAGsAHeNDkvqk8kTsMDd-8qfcUvEQlw7t3Lsy8PIs5vXIbCD3HgR460v_SPWkqdT1UlAW8n-SWvhvYaj1KDU29xVWFPlQwb72bfyq8DjEOvk0GkTxH6EK8p1mAvuLS4jgHmi-9OC_OPM5twrwxb588ILQuPhMvKr29qF08taXOvTlCCjyhcAy9839dvYGGDb0dkYy65pTgPebct7y20J88YOcmPg3TDb3xHvG8CiEQPJsPOb11b6i6eraova7iw7spi-s7gkLIPdoT7jwi2N08R-KKPPgnp7wtQ9o7-jYTPV7aED3_xiK8WkAyvYuauT3McgK8vJsiPcADqL3DP7I7VHwyvdBD7TzCjIQ8Puq_Pei0-Dx2Co-3zCJau-wvAD2cFrw7Q3m6PLdSOb2soDO804bjPcx2aj3WdL08yG1qu8yRmTuuIoo7Y2A9PQ8uyD19-e48E__GPfRcVT1GvMw7KAWCvMXeoD2mP-C8rBQnvfKrHj3Y7y68ymygPSQJZ7xk5JG8gDOnPOhY1DySwTw71G2_vMQH9rzrfiG8JOMCPdgvM71JGx68RLFLPXldHLz_1gi7LapqPVIRIzxDfb-7SAjFvNoXFjxpGIS7kiAcPlM5sr2IOik6ziaWvfqerDy14TC7v2unuzrDuTzWNX-8Ryl3vZE-0jxFw5y73MlxOxtutrwnk6o7BVF3PLdAB730lZM6sM-5u_wqijywwPy69z-rPUMh3bsq-bu7DEFpPFMLADo96ci6IX3qO19Z7buAuwk7lEC0PeDNZL3ih2o5NmrPu3s-lDyiz3E5eRAvO9mtaj03cz857nPju9KhiL3DIzw5JTIdvZUQjL3SI6k42oa2vPAUsryil9W6FK0BPQTAnTwq8KO4BiRGvcNXtb0IyF038UKhO3VgdD2luGw5RldTOBYuULwWSNC4YFnpvEiZnrzTRSC50eIxve42ub2-oBw5GrdivYUDhj1hd7A4JEbPPG5chb1JXJ84vyEZvTWguTx5V0k3lnZqPE9HVj1NzD64h1ORPfRfxj2quSQ3r9gZPPPalr1JWh-34WpzPWc9QT1l9um432yjvfwtCbzNfaq2mlazu53DC73d6L43S4-7PUI-CL08Y3w4opQUvCnmwbs-SDg4weMrPtylaLwHiXS5DwQtPWSikjyGi4c4FIhovMCuSzxc_mg3uMPsu_MFLT13_v-0HZcMPUkPQ75UMU25yvRwPSLhKz7xy4o4ZlwCvXQWTD2AeJi4Q5W1vRcbub0TL7m2jZH0Oh7HCzxa8Jc4IAA4E0AJSG1QASpzEAAaYCf-ADjALcoN_zHv7tLU9PAT1sBEuQX_8cf_BTIU8xQ6vLvSLP9b2SQInAAAACHvBSfrANh_3vYPOgQLKaML0vQIfAMcQ5THEQnd3fw_CvVNKif_KAAnw6z3Ld2mNC3zIyAALSJeDzs4E0AJSG9QAiqvBhAMGqAGAACqQgAAGEIAACxCAABAQAAAsEEAABhCAACOQgAAQMEAAN7CAAAAwQAAOEIAAMjBAAAAwAAA6MEAAGRCAAAgQQAADEIAAJzCAAAAwAAAIEEAACRCAAAAwgAAMMEAACRCAABgwQAAgD8AAMDBAABQwQAA3kIAAIDAAAB8wgAAIEEAAILCAABcQgAA4MAAAIDAAAAkQgAAmkIAAIA_AAAAwAAAOEIAADBBAAAkQgAAFEIAAIbCAAAAAAAAoMEAAEDAAADgwAAANEIAANjCAABcwgAAXMIAACjCAACSQgAAREIAAKbCAACIQQAAsMEAAHRCAAAcQgAAAMEAAATCAAAMwgAAXEIAAIC_AACIwQAA-MEAAEDCAAD4wQAAIEIAAIhCAACAwAAAuMEAADTCAAAAQAAAqMEAAKBBAACgQQAAuMEAAFzCAADIQgAAiEEAAIJCAADQwQAAHMIAAIDCAADgQAAAPEIAAMBAAABAwQAAqEEAAODAAACUwgAAgMEAACzCAADYwQAAsMEAAFxCAAC-wgAA-MEAAChCAAAMQgAA4EAAANjBAAAAAAAAkEEAADhCAAAwQQAAVEIAAABAAAAMwgAAgMEAAEhCAADAQAAA-EEAAGTCAABcwgAAAEAAAIA_AABwQgAAusIAABDBAAAwwgAAKMIAAOBBAADIwQAAwMAAABBCAAAowgAAQMIAANjBAACAwAAAgD8AABzCAABUQgAAUEIAAADAAADIQQAAGMIAAMBBAACAwQAAkMEAAODAAADoQQAAMMEAAAzCAACgQAAA0EEAAJjBAABIwgAAAAAAAPhBAACIwQAAgD8AAIBAAAAYwgAAGMIAAMBAAABAwAAAXEIAAOhBAAAwwgAAoEAAABBBAAAAwQAAiEEAAKBBAABAQAAAkMEAALDBAAB8QgAAGMIAAADBAACQwQAAVEIAAFhCAACMwgAA4EEAABxCAAB0wgAADMIAAEBBAAAgQgAAmEEAAAxCAABYwgAAUEEAAFhCAADIQQAAAEIAAHTCAAAAAAAA0EEAAIDBAACgQAAAaMIAAEBAAAAUQgAAJEIgADgTQAlIdVABKo8CEAAagAIAAJi9AADIvQAAqD0AAEQ-AABwPQAAgLsAAMi9AADOvgAAJL4AAFQ-AACgPAAA4LwAAJi9AAAEPgAALL4AABA9AAAkPgAAUD0AAOA8AACWPgAAfz8AAFA9AACYvQAA6D0AAFy-AADovQAA2L0AAAS-AACCPgAATD4AABA9AABwPQAA-L0AAEA8AACAOwAA4DwAABA9AAAMvgAANL4AAGS-AACovQAALL4AAHA9AAAUvgAAPL4AAIA7AAAQPQAAiL0AAIi9AABsvgAAZD4AADC9AAC6PgAAMD0AAHy-AACYvQAAPT8AAKi9AABwPQAAiL0AAFy-AADgvAAAoDwAAOi9IAA4E0AJSHxQASqPAhABGoACAADYvQAAuL0AAIA7AAATvwAAgLsAAIg9AABsPgAAUL0AAKi9AABcPgAAyL0AAPi9AACoPQAAHL4AAIA7AACIvQAAgDsAAB0_AAAwvQAAmj4AAIA7AACYPQAAgLsAAHC9AACIPQAAqL0AAIC7AADgPAAAPD4AAKC8AAAwvQAAFD4AAKi9AACSvgAAgLsAAOC8AACqPgAAZD4AAES-AABAPAAAVD4AAKC8AADgPAAAEL0AALg9AACAOwAAf78AAJg9AAC4PQAAVD4AACQ-AAAMvgAA2D0AAIA7AAAEPgAAoDwAAOA8AADIvQAAFL4AAJg9AAAEPgAAgDsAAEA8AABAPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=k2R9dTXaWjU","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["811366880848389672"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"558622177"},"7923218050146615006":{"videoId":"7923218050146615006","docid":"34-5-12-Z126725382A0D0427","description":"Here is a short introduction to evaluating piecewise functions. These are some quick simple introduction examples.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/964243/7416409741ad51ef07b0a13c26491dec/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/sKIHpAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkFjEYgdTS3o","linkTemplate":"/video/preview/7923218050146615006?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Piecewise Functions 1.avi","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kFjEYgdTS3o\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhUKEzc5MjMyMTgwNTAxNDY2MTUwMDZaEzc5MjMyMTgwNTAxNDY2MTUwMDZqtg8SATAYACJFGjEACipoaHFzZG92dmllc3lzeG1kaGhVQ2xoMHZzd0pmR1FtNW1MZWhDQUdDLVESAgASKhDCDw8aDz8T8gKCBCQBgAQrKosBEAEaeIH3BPr--gYA8f8D__8CAAH9CPj9-P79APICB_MDAQAA7gQI8wAAAAD6CvsDAgAAAPP6AQX9AAAADAMB_gQAAAAAAf__-wAAAAUB_gb_AQAA9fv-_AMAAAAPBfkO_wAAAO4NCP3_AP8ACwj5_AEAAAAD-f4DAAAAACAALVpU5Ds4E0AJSE5QAiqEAhAAGvABaiQQAMj75P_GBgAAufu9AIEKLf8rFuIAtfAMAe0G8QHb_doAyg4pAPcgGACeEw0BIuX8_j_x9QAL2zL_JhTyAT8GBgEDxSH_Se8f_xPPDP8hLi_-5_4f_wv1-P_qFsf_FgAu_ejT4v7o19UA9O0iAgfiBgI86_T-8MMI_-8g9_vhEfMFEQzr_eH0Hvz84Rr9DhLY_xM07__xB_wERPLhAdDz_PwV9NsABxv3CN_tIQTPyQ7-BfQHA-UNAv8CLAvzw_MW9eLx-_MXJfz8CdPi-Pj0-f0n5vYI7fPx_w3c-gTvMA4Qui_5BdLfFwQe9QLzIAAtUCMNOzgTQAlIYVACKnMQABpgPQMARPRN4iIMIfAjzhkYw9oj2Ri-Bf8H6P_nANgV6Bjzo-UQADa_HxKfAAAABD3lCvMAB38O4_0N1kX4xLns-z9_Chwhu-cnIYjEIv0JDd8eDjz7ANvNjR0BF7xVMCQbIAAtoL4SOzgTQAlIb1ACKq8GEAwaoAYAABDCAAAwQgAAyEEAADDBAACcQgAABEIAAOBBAADYQQAApsIAACjCAAD4wQAA0MEAACTCAAAMwgAAIEIAANBBAACowQAAjMIAAETCAAAYQgAAoEEAAGDCAADwwQAAnEIAAABAAAC4wQAAjMIAAOBAAAAcQgAAhsIAAKBAAABAwAAAAMAAAKBBAABEwgAAyEEAAKBBAAAMQgAAAEIAAHDBAACAQAAAkEEAAJhBAACAwAAAkMEAAGDBAADYwQAAgEEAABxCAAAAQAAAwMIAAMBAAABkwgAAgL8AAFhCAABgQQAAwsIAABBBAABwQQAAUEEAAKxCAABkwgAAAMAAAGjCAACAQgAAcMEAAGDBAABQwQAAkMEAAPDBAACkQgAAokIAAMjBAACsQgAAQMEAAKDAAABQwQAA4EEAAEDAAADAwAAAJMIAAJpCAAAYwgAAKEIAAETCAAAUQgAAHEIAAChCAABMQgAAQMAAADDBAABoQgAAfMIAAKjCAAAAQAAANMIAABTCAADwQQAAOEIAAEBAAAAwwgAAfEIAAEBCAACAwAAAoEAAADDBAAAcwgAAuEEAAMjBAABwQgAAbEIAAKBAAAD4wQAACEIAACBBAAAAAAAA0EEAAODAAACAQAAANMIAAIBAAABwwQAAAMAAAMDAAAAUQgAAEEEAAARCAADgwQAAiMEAAEzCAABEwgAAUMEAAGzCAACgQAAAmMEAAFBBAACQQgAA2MEAAEBBAACAwAAASEIAAEDBAADYQQAA4MAAADBCAADwQQAAIMIAAKDBAACeQgAAYEEAAHzCAADgQQAAAAAAACDBAADgQAAASEIAACDBAADwwQAARMIAAPBBAAD4QQAAGEIAAIBBAADYwQAALMIAAIA_AAAQQgAAQEIAANDBAACYwQAAQEEAAMpCAACIwQAAoMAAABDBAAAgQgAAUEIAAETCAAAoQgAAIEIAAGjCAACWwgAAAMIAAGhCAACYQgAA6EEAAHTCAABAQQAAUEIAAGDBAACAwgAAeMIAAIDAAADYwQAA2MEAAChCAAAAAAAA2MEAAPhBAADYQSAAOBNACUh1UAEqjwIQABqAAgAAuD0AAOA8AACWPgAA2D0AALi9AACmPgAARL4AALK-AABEvgAAdD4AAAw-AABMvgAA6D0AAPg9AAAQPQAAcL0AAJg9AABwvQAADD4AAIo-AAB_PwAAiD0AAKi9AABwPQAANL4AAMi9AAC4PQAAcL0AAHA9AAAEPgAAoLwAABQ-AAAUvgAA-D0AAGQ-AACyvgAAyD0AALi9AABMvgAAiL0AACy-AABUvgAAVD4AAKC8AACAOwAAiD0AAFA9AACoPQAAgLsAABS-AADoPQAAUD0AACw-AAAEPgAAML0AAFA9AAAbPwAAXL4AAJo-AAAwPQAAmD0AAKC8AAC4PQAA2L0gADgTQAlIfFABKo8CEAEagAIAAIi9AACgPAAAZL4AACu_AABAPAAAND4AAGw-AACAuwAARL4AAJ4-AABAvAAA4LwAAOi9AADovQAA2L0AAKi9AAAMvgAARz8AAIa-AACSPgAALL4AAGS-AADoPQAA6L0AANi9AAD4vQAANL4AAIA7AADCPgAAEL0AAKA8AACAuwAAXL4AAGy-AACYPQAAgLsAAHw-AAAwPQAAmL0AADC9AACuPgAAFL4AAAy-AABAvAAANL4AAKo-AAB_vwAAHL4AABA9AABUPgAAPD4AAIi9AAB8PgAAgDsAAIg9AACgvAAAoLwAABC9AACAOwAAQLwAANg9AAAcPgAAcL0AAAy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=kFjEYgdTS3o","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["7923218050146615006"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3471850213"},"3281205880059569728":{"videoId":"3281205880059569728","docid":"34-8-16-ZDDC06BBFA143F910","description":"Yes, Robb Guinto is a Filipino social media personality, model, and influencer known for her striking beauty and online presence. She often shares fashion-forward content, lifestyle updates, and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1771709/fa39dcbd26938d57eab4340f8d760139/564x318_1"},"target":"_self","position":"17","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCROTSM43bcI","linkTemplate":"/video/preview/3281205880059569728?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Robb Guinto's Digital Influence #RobbGuinto #stunningbeauty #elegantbeauty #vivamax","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CROTSM43bcI\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhUKEzMyODEyMDU4ODAwNTk1Njk3MjhaEzMyODEyMDU4ODAwNTk1Njk3Mjhqrw0SATAYACJFGjEACipoaGlxbXB0cHF3ZXRwbmZkaGhVQ3hQaWlWRXRUVkU2VDA1WU52MHJvQ2cSAgASKhDCDw8aDz8TkQKCBCQBgAQrKosBEAEaeIEI_AQM_gIA-AcFCAAG_QL9CPf9-P79AOkB-Pv5_gEA8wAAB_4AAAD6_QgFAAAAAPwCBAT2_gEAHgoA_vMAAAABCgvz_QAAAPsJ__kNAAEB_PkBCPoBAAAF_gMEAAAAAPkF_vj-AAAA9____wAAAAAV_wP9AAEAACAALS1p2js4E0AJSE5QAipzEAAaYPYJABLz3NfmAifY2hDuIfII--QH9SsA_f4A7yMD4g2_3Lvu_f8a3-UKwAAAAA3z_xUAANFb6_j9BBL0BdHLJew8f_wY2SMUBhvNBQHHFRvpHgLcTgDfIgMORvQXKfvZJSAALRolSDs4E0AJSG9QAiqvBhAMGqAGAAA4QgAA2EEAAIBCAAAAQgAAgMEAADRCAADgwAAAgMEAADBBAAA0wgAAQMEAAPhBAAAAwwAAQMEAAJJCAABIwgAAwMEAAFBBAACQQgAA2EEAAEDBAADowQAA4MEAAAxCAACAQQAAGEIAAKDBAADgwAAAyEEAABDBAACowQAAJEIAAPBBAADYwQAAIMIAAOBBAAA4wgAAUEIAAODBAABgQgAAAEEAAKRCAACoQgAA4EAAAHBCAAA4QgAAIMEAABDCAAC-QgAAjMIAAKDBAADOwgAAYMIAAADCAAA8QgAA-EEAAKDAAAAwwQAANMIAAGhCAABkQgAAQEEAAExCAADgwAAAQMIAANDBAADQQQAAkMEAAMbCAAAEwgAA2EEAAOhBAADqwgAAwEIAAOjBAAAAwAAAIMIAAOBBAADwQQAAoEEAANjBAACgwQAApkIAABhCAAC4wQAAEEIAAATCAADgwAAAykIAAADBAACewgAAwEAAAAxCAABgwgAAwMAAAMjBAACgQAAAcEEAAAhCAADIQQAAIMEAAKJCAABAQAAAIMIAACDCAACwwQAALEIAAKhBAAA4QgAAgEAAAJjBAACwQQAASMIAAPhBAABAQQAAdEIAABhCAAAAwgAAsEEAAOhBAAAMQgAAkEEAAMDBAADQwQAAGEIAAIBBAACIwQAA0MEAALBBAABcwgAAgEEAABDBAAAwQQAAQEIAACDBAACwwQAAAAAAAHzCAAAAwAAAFMIAALhBAAAAQgAAgD8AANDBAACAQAAAuEEAABBBAAC4QQAAgMAAANhBAABEwgAAXMIAAFhCAADIQQAAEEEAAJjBAADIQQAAEMEAABzCAACKQgAAwMEAAGDBAAAQQQAAfMIAAADBAAAMwgAAoEIAAHDBAAAQQgAAmEEAAIBAAAAAQAAAYMEAAGjCAAAMQgAAAMEAAADBAAAswgAACMIAANBBAAAIwgAAJEIAADTCAAB4wgAA-EEAAFDCAAAgwgAAoEAAAARCAABAQAAA-EEAADTCAACEQgAAIMEAAKzCAACQwQAAsMEAAODAAACwQQAAkMEgADgTQAlIdVABKo8CEAAagAIAADS-AACYPQAABD4AAAy-AACYPQAAUD0AAIo-AAAFvwAAUL0AAIg9AABcPgAArj4AAFA9AAC4PQAADD4AALi9AAC2PgAAMD0AAKA8AACyPgAAfz8AAAw-AACAOwAABD4AALi9AABQvQAABL4AAGy-AADgPAAAxj4AAIC7AAAkPgAAqL0AANg9AAC4vQAA4LwAAKg9AAAQPQAAJL4AAES-AABwvQAAED0AACy-AAAkPgAAED0AAES-AABQPQAAgr4AANi9AABsvgAAkj4AAHQ-AACePgAADD4AAGy-AACgPAAACT8AAEA8AAAQPQAALD4AAOC8AADovQAAuD0AAJ6-IAA4E0AJSHxQASqPAhABGoACAAAUPgAAXD4AAFC9AAAxvwAAnr4AAOC8AABUPgAAgLsAAKA8AAB0PgAAqL0AAMa-AAAkPgAAor4AAKA8AACYvQAAuD0AAD8_AACAuwAAlj4AADA9AACOvgAAij4AABA9AACoPQAAyD0AALK-AABUPgAA6j4AAMa-AAA0vgAAgLsAAEC8AADavgAADL4AAJg9AACCPgAA-L0AANg9AAA0vgAAPD4AAEQ-AACSvgAAbL4AABA9AAA8PgAAf78AAHC9AAC4vQAApj4AADC9AAAwPQAAdL4AANo-AACavgAA6D0AAAy-AACYPQAAJL4AAIC7AADYPQAAmL0AAMI-AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CROTSM43bcI","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3281205880059569728"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4930481830583941055":{"videoId":"4930481830583941055","docid":"34-3-17-Z551C00815D373149","description":"(Sorry for the bell and announcement interruptions)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4103861/794be80d5df9ce75083546e3b046a353/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/-HlDXAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCkpzQQitG8M","linkTemplate":"/video/preview/4930481830583941055?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Convergent and Divergent Series Part 1","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CkpzQQitG8M\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhUKEzQ5MzA0ODE4MzA1ODM5NDEwNTVaEzQ5MzA0ODE4MzA1ODM5NDEwNTVqhAkSATAYACJFGjEACipoaHFzZG92dmllc3lzeG1kaGhVQ2xoMHZzd0pmR1FtNW1MZWhDQUdDLVESAgASKhDCDw8aDz8TqgaCBCQBgAQrKosBEAEaeIEG_voI_AQA8QcGCvgE_wEBCP4I-P7-APkFC_oDA_8A-gUHBPkBAAAFDgP3CQAAAAEHAf7y_gEACwz7AQUAAAAI9Qj_BQAAAAID-QAHAAAA_PkBCPoBAAAABg4EAAAAAO4S_wf_AP8ABAf-_gAAAAAB8QcOAAAAACAALXUd4Ds4E0AJSE5QAiqEAhAAGvABcxkwAOH46wHxLNkA6xr6AYEAAv9N_e4ArxfV_9kG4wHWDecA8-PyAMcl7_-nJx4AFwTZ_zIH9gAW5-3_BgAUAAkO-AFcBCICBxUV_wDwAwA3LxwA8_vzABLH7gAE_vQALO4dAOD9CwLdv-__--4qAA_3EAQj7wABGPcJ_wIYDgLmAP0A7-QA_eIYAQLl7gr_GP_m_CgO8QTpHesCHw_6CgT07wEkAugCGywBAwHuEfq62Qz_DQcY_iH5_AIRChoC5gn-9ezqDArsBfz0DcXkA_nzHfQc1_3_9Bnr9gwUEgUDJRf89Sf8-NjkEwMN5QUBIAAtv08kOzgTQAlIYVACKnMQABpgNQgAXfkc9BkPNebj1xbs-OItICTZ5f_58QAj-eDiGhjb1PspAErZ8O-0AAAAJyP7KtQAOGYy2AUa6kn29tnmAv5_6QceodIWIdn2KiMNxxTnLytEAOf_xA8OAONIH-wHIAAt4hkrOzgTQAlIb1ACKo8CEAAagAIAAFC9AAAUPgAAcD0AABQ-AACKvgAA9j4AACS-AAAdvwAABL4AAMi9AADIPQAADL4AAIC7AACAuwAAqL0AADC9AAAkPgAAML0AAJg9AADSPgAAfz8AAJi9AADYPQAAqL0AADy-AAAkPgAAcL0AAOC8AADovQAAQLwAAIY-AABQPQAAHL4AAHQ-AACaPgAADL4AAPi9AACIvQAAqr4AAPa-AAC4vQAAir4AABw-AAAEvgAA4LwAAKi9AACCPgAAyL0AAKi9AADIvQAA4DwAALi9AADgPAAAuD0AAES-AADgPAAAOz8AADA9AAA8PgAAoDwAADA9AACoPQAAFD4AAIa-IAA4E0AJSHxQASqPAhABGoACAAAcvgAAJD4AADC9AAAXvwAAQDwAAJg9AACCPgAAgDsAAEA8AADGPgAA6D0AAFC9AADoPQAATL4AAIi9AABAvAAAiD0AAFU_AADgvAAAZD4AAAy-AADovQAAfD4AAFC9AACYvQAAVD4AAKA8AAA0PgAAyL0AADC9AAC4PQAAQDwAAFS-AADYPQAA4DwAAAy-AAAwPQAApj4AAES-AAAcvgAA3j4AABA9AAAwPQAAyL0AAIA7AABwPQAAf78AAOi9AADovQAAcD0AAEw-AABEPgAApj4AAHA9AADYPQAAoDwAABC9AADYPQAABL4AAFy-AACoPQAAUD0AAFy-AAAkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CkpzQQitG8M","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["4930481830583941055"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2037696485"},"2300525925972317986":{"videoId":"2300525925972317986","docid":"34-3-4-ZDCFB88D2FF8CD4EC","description":"Contact info at www.DirtyBoogie.net...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4079344/6038b1f6c9d7e3d662b12dfca6cc972f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mbDZCgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtKcbUZ27obA","linkTemplate":"/video/preview/2300525925972317986?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Dirty Boogie Promo","related_orig_text":"Robb Syverson","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Robb Syverson\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tKcbUZ27obA\",\"src\":\"serp\",\"rvb\":\"EqcDChM5MzAyNjg3NDQxMDcwNTE3MTI2ChMxMTk4NTQ5MjkwNTIzODMxMzI5ChM3NDYwNTEyMzIyMTgzMzE4NTg0ChQxMjgwNDMzOTIwMjY1MDk3Mzg0MQoUMTUwMjI4NjEyNzQ4ODM1MDM3MTgKEzI4ODM4ODExNTEwNzY3OTM2MzEKFDE3NTQ2NjkxMjg5OTg3NDEyNzkzChQxNjQ4ODQ0NzA0OTAzMjI4NjcwMAoSNTkxOTg5ODIxNjgxNDMwNzY4ChMyMTA5NDgzOTc1NjQ0NTI2NzAyChI3NjYyNjIwNzgxMjk2MTA2NjQKFDE0MzcxNjc2MjgwMTYwMDQ1MTAzChM3MjUwOTk0ODA1MzM1MTYxODQxChI4MTEzNjY4ODA4NDgzODk2NzIKEzc5MjMyMTgwNTAxNDY2MTUwMDYKEzMyODEyMDU4ODAwNTk1Njk3MjgKEzQ5MzA0ODE4MzA1ODM5NDEwNTUKEzIzMDA1MjU5MjU5NzIzMTc5ODYKFDE1OTc0Nzc0NzcyNTc4ODc0MTE2ChMxMDcyMjE3MTU5OTE2ODM2OTI3GhUKEzIzMDA1MjU5MjU5NzIzMTc5ODZaEzIzMDA1MjU5MjU5NzIzMTc5ODZq1RASATAYACJEGjEACipoaHFzZG92dmllc3lzeG1kaGhVQ2xoMHZzd0pmR1FtNW1MZWhDQUdDLVESAgASKg_CDw8aDz8TUoIEJAGABCsqiwEQARp4gf7_-P_7BgD8-QYHAgf9AuP5A_z9AQEA8_v9_AYBAAD4BPf6BAAAAPz7Bv0CAAAA7gj1AAABAAAM-wb8BAAAAAgAAwT8AAAAAQ8ABP4BAAD2BQICAwAAAAD7_P0AAAAA9AEDCQEAAAD_-wb-AQAAAAL79wYAAAAAIAAt2W3kOzgTQAlITlACKoQCEAAa8AF_DtgCvwoD_ToN5ADjAx8B7w34ANEFCP83AAAB8xH9AOHx-ADp2_L_8wP1AP8jAv7W_gz_2g_xAM4HG_8nCugAJAQWAOff-gLq7dkA3Qn2AP7l-AD7HfX_7vT0AQbzGQAa9uQAFwv1ASMK9APl-gQAF_j2BPz9JwLzFPb_6AUa_-HnBAAA-BEC4uEHANDuDAD9_esF-uER_PwIFQjDChMA3vf9_fgPAAEUGfkJ__b5BTbs5gDu-gQCBPEF-yvtCwD2IvsA6wcR9Pgb_AcHFfwGCi_6--z79fsDAu4NDQ3oAQsX9v_JAv7zKPoOA_0JAwIgAC2AEEk7OBNACUhhUAIqzwcQABrAB87-sL5mHF69fkGBPaWdj71E5M-8hUu9vEvpSb6QV3a9rUhRvRUaaL47c7q9KKrIvCIYhzzDbPi8rYmFu-7RO76ndds85b82vbKBpD1Fvqa8zGONvBU3Tr6tNOm8ZTpPvNeuXz2Oyq29T4rgPC36pD17fGc8v6BgPBLeDj4_kHw97GIfvYmZLT4M-IY9qMjhvPj-5r0ZN9o8P78UvAbBjj0Lnn09Sm4ePWTmQr4QuyW931mWPLCv9T0ModS8zLF-u0VkWD29oOo8X3yPugcLBz4HhiC83HksvLX71T1RA_w8Gb-ZO5VShj0jMcE8u2VivDwwAD6MWQW9o4WVO4smxjwad3m9l6ufPB6I7L1ROay90s-KPKgRRLw3bak765WNPMAhhL3Jw2c8aeKKuby2L7txGzI8astvPDRT9bwPtCc8RTQTPDBsCL30oTC9Gb5wOerjxjx68Y890m-hu7VuA74zxDG9i-VxPKwUJ73yqx492O8uvD9wZT4XHV-9hPW9u50cxD0EuI-7pcMgvKYSlrvR5jg8oJ_SOzEFgD1BeP66Q-IivECYJbykSKk7EMOYPGHYhryg6n-5ysW1uxgGzD38c6w8sWRYOz2RcT34YS69-eaKu0M0n7wKAwA9CRUgu9pqQL2xfwm8VIupOVumoL0bRiY9uroEvPLkH724Nre7Uchnu2JsvruogTA9PoHJumBgsb2wvLe7uFQMufdY-r3SQAI96x5CupfxhT14eLQ8RMV2ut1rF71KqgC9Hkw9ud49ID0COl295ObIOZjHtT2G7m097NN0OTPFnLzjf5w9v-5aN-4-R76efDy7NNEMus2Rdb01RWC9HDIuOd-YVD3Tt5E9akXKN-SCszwO1yo9UONouqVNFT4jg567_CE3uY0_9jzxgX09Qh7TuBs67DwKD5o8X4IDubzUQ71BWBW7uUjmt4QMtD1maPw8EaoSuXCy7T0LT369vuVsORnLtDwCsjw9sS3PN0Yu07z2ARI9aAvxOFAGfbw9Uai9NqMBuUtshDuXBCM9gKTyuAyxujxRY6e88DenNsxdizycDq48dd8GuGOohL1mmS-9xz7JNwV5LDyOc8s96X3UODEhS70iFyy-SxBOOO5Rub3d1nE8V1ePNwDhqLxAdzg8khrJNb57ob3GtjY9GKlvthsJGT2VqpM9vBLKN-vJ3D0cOoe98LAtNwPsRDvkzSu9MqqZuPHlFL1Evku8YJOBuHu2Mzz-OsG8L_ZeuHLihjxL1AG9mXSvNupJETxd1ik900GrNiAAOBNACUhtUAEqcxAAGmAFHgBT6wQ4F6UZzvru5vHuAj0WoqoC_wFTADnS0MwC8wG99wcA16PrKZ8AAADsOfwFHAD4eNbI1Nnt98AgzfweQ38xOc796PflGPb3FxjtjxKbFTcA09Si8QMMS-wIpgggAC3oJQ07OBNACUhvUAIqjwIQABqAAgAADL4AAFy-AABMPgAAqD0AACS-AABMPgAAEL0AABW_AADGvgAAQDwAAGQ-AABQPQAAuL0AAFQ-AACYPQAAiD0AALI-AACAOwAA-D0AAJo-AAB_PwAAoLwAAJi9AACYPQAALD4AAOA8AACavgAAkr4AAOA8AAB0PgAAcD0AAIo-AACIvQAAUD0AAFQ-AACYPQAAiD0AAIK-AACuvgAAJL4AAIC7AAD4vQAAyD0AALI-AAAUvgAAyL0AANi9AACgvAAAuL0AAJi9AABQPQAAED0AAAQ-AAAwPQAAwr4AACQ-AAApPwAAkj4AAKI-AACKPgAA-D0AAFQ-AAC4PQAA-L0gADgTQAlIfFABKo8CEAEagAIAAEw-AACKvgAAQLwAAFG_AAA8vgAAMD0AAJi9AADoPQAAgLsAAPg9AAAsvgAA2L0AALo-AACOvgAAgr4AAFA9AACIPQAAbT8AAEC8AADoPQAAqr4AALi9AACGPgAAmD0AACy-AABsPgAABL4AABA9AAABPwAARL4AABC9AAC4vQAALD4AAKa-AAAcvgAAdD4AAHA9AAD4vQAAyD0AAOC8AADePgAAMD0AAJa-AAAkvgAApr4AADA9AAB_vwAAcL0AAKi9AAAUPgAA6D0AAAS-AAAkPgAAFD4AAFC9AADgPAAA2L0AAHA9AACWvgAAqr4AALg9AAAkvgAAir4AAES-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=tKcbUZ27obA","parent-reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2300525925972317986"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2426583994"}},"dups":{"9302687441070517126":{"videoId":"9302687441070517126","title":"Verifying Trigonometric Identities","cleanTitle":"Verifying Trigonometric Identities","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=arba2_zZ0s0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/arba2_zZ0s0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"http://gdata.youtube.com/feeds/api/users/rsyver","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":672,"text":"11:12","a11yText":"Süre 11 dakika 12 saniye","shortText":"11 dk."},"date":"1 mar 2013","modifyTime":1362096000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/arba2_zZ0s0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=arba2_zZ0s0","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":672},"parentClipId":"9302687441070517126","href":"/preview/9302687441070517126?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/9302687441070517126?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1198549290523831329":{"videoId":"1198549290523831329","title":"9-4 Transforming Quadratic Functions","cleanTitle":"9-4 Transforming Quadratic Functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_f0UZCW-8pU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_f0UZCW-8pU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"http://www.youtube.com/user/rsyver","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":233,"text":"3:53","a11yText":"Süre 3 dakika 53 saniye","shortText":"3 dk."},"date":"7 nis 2014","modifyTime":1396854000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_f0UZCW-8pU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_f0UZCW-8pU","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":233},"parentClipId":"1198549290523831329","href":"/preview/1198549290523831329?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/1198549290523831329?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7460512322183318584":{"videoId":"7460512322183318584","title":"Law of Sines Ambiguous Case Video 1 (of 3)","cleanTitle":"Law of Sines Ambiguous Case Video 1 (of 3)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2s5MLyg_esM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2s5MLyg_esM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"http://www.youtube.com/@rsyver","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":747,"text":"12:27","a11yText":"Süre 12 dakika 27 saniye","shortText":"12 dk."},"date":"16 kas 2014","modifyTime":1416096000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2s5MLyg_esM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2s5MLyg_esM","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":747},"parentClipId":"7460512322183318584","href":"/preview/7460512322183318584?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/7460512322183318584?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12804339202650973841":{"videoId":"12804339202650973841","title":"Simplifying Radical Expressions - Part 2","cleanTitle":"Simplifying Radical Expressions - Part 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0yzDJDv_E-E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0yzDJDv_E-E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"https://www.youtube.com/channel/UClh0vswJfGQm5mLehCAGC-Q","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":194,"text":"3:14","a11yText":"Süre 3 dakika 14 saniye","shortText":"3 dk."},"date":"20 mayıs 2014","modifyTime":1400544000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0yzDJDv_E-E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0yzDJDv_E-E","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":194},"parentClipId":"12804339202650973841","href":"/preview/12804339202650973841?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/12804339202650973841?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15022861274883503718":{"videoId":"15022861274883503718","title":"Conditional Probability","cleanTitle":"Conditional Probability","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2P7W3htUJ28","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2P7W3htUJ28?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"https://www.youtube.com/channel/UClh0vswJfGQm5mLehCAGC-Q","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":710,"text":"11:50","a11yText":"Süre 11 dakika 50 saniye","shortText":"11 dk."},"date":"15 mayıs 2014","modifyTime":1400112000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2P7W3htUJ28?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2P7W3htUJ28","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":710},"parentClipId":"15022861274883503718","href":"/preview/15022861274883503718?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/15022861274883503718?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2883881151076793631":{"videoId":"2883881151076793631","title":"Law of Sines Video 1","cleanTitle":"Law of Sines Video 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-nFzOkcYY_E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-nFzOkcYY_E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"http://www.youtube.com/@rsyver","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":432,"text":"7:12","a11yText":"Süre 7 dakika 12 saniye","shortText":"7 dk."},"date":"14 kas 2014","modifyTime":1415923200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-nFzOkcYY_E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-nFzOkcYY_E","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":432},"parentClipId":"2883881151076793631","href":"/preview/2883881151076793631?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/2883881151076793631?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17546691289987412793":{"videoId":"17546691289987412793","title":"Introduction to Trigonometric Identities","cleanTitle":"Introduction to Trigonometric Identities","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ctcEc1bfapI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ctcEc1bfapI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"http://www.youtube.com/@rsyver","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1283,"text":"21:23","a11yText":"Süre 21 dakika 23 saniye","shortText":"21 dk."},"date":"26 mar 2012","modifyTime":1332720000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ctcEc1bfapI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ctcEc1bfapI","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":1283},"parentClipId":"17546691289987412793","href":"/preview/17546691289987412793?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/17546691289987412793?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16488447049032286700":{"videoId":"16488447049032286700","title":"Ryan \u0007[Syverson\u0007] testimonial","cleanTitle":"Ryan Syverson testimonial","host":{"title":"vimeo.com","href":"http://vimeo.com/825824933","playerUri":"\u003ciframe src=\"//player.vimeo.com/video/825824933?api=1&byline=1&fullscreen=1&portrait=0&title=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"vimeo","providerName":"vimeo.com","sourceHost":"vimeo.com","name":"vimeo.com","secondPart":{"type":"CHANNEL","id":"dmltZW8uY29tOzExMTk4NTI2Mw==","name":"Rusty Osborne","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Rusty+Osborne","a11yText":"Rusty Osborne. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fvimeo.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":99,"text":"1:39","a11yText":"Süre 1 dakika 39 saniye","shortText":"1 dk."},"date":"11 mayıs 2023","modifyTime":1683779098000,"isExternal":false,"player":{"embedUrl":"https://player.vimeo.com/video/825824933?api=1&autoplay=1&byline=1&fullscreen=1&portrait=0&title=1&wmode=opaque","playerId":"vimeo","videoUrl":"http://vimeo.com/825824933","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":99},"parentClipId":"16488447049032286700","href":"/preview/16488447049032286700?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/16488447049032286700?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"591989821681430768":{"videoId":"591989821681430768","title":"Reviewing Transformations on a Function","cleanTitle":"Reviewing Transformations on a Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XaMtjr3dq3U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XaMtjr3dq3U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"http://www.youtube.com/@rsyver","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":564,"text":"9:24","a11yText":"Süre 9 dakika 24 saniye","shortText":"9 dk."},"date":"10 kas 2011","modifyTime":1320883200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XaMtjr3dq3U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XaMtjr3dq3U","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":564},"parentClipId":"591989821681430768","href":"/preview/591989821681430768?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/591989821681430768?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2109483975644526702":{"videoId":"2109483975644526702","title":"Proof of the Quadratic Formula","cleanTitle":"Proof of the Quadratic Formula","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=UxybDUggcYI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UxybDUggcYI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"http://www.youtube.com/@rsyver","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":374,"text":"6:14","a11yText":"Süre 6 dakika 14 saniye","shortText":"6 dk."},"date":"15 kas 2011","modifyTime":1321315200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UxybDUggcYI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UxybDUggcYI","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":374},"parentClipId":"2109483975644526702","href":"/preview/2109483975644526702?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/2109483975644526702?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"766262078129610664":{"videoId":"766262078129610664","title":"Introduction to Solving Trigonometric Equations","cleanTitle":"Introduction to Solving Trigonometric Equations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YP2iu0ljznQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YP2iu0ljznQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"http://www.youtube.com/@rsyver","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1222,"text":"20:22","a11yText":"Süre 20 dakika 22 saniye","shortText":"20 dk."},"views":{"text":"2bin","a11yText":"2 bin izleme"},"date":"14 mar 2013","modifyTime":1363219200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YP2iu0ljznQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YP2iu0ljznQ","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":1222},"parentClipId":"766262078129610664","href":"/preview/766262078129610664?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/766262078129610664?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14371676280160045103":{"videoId":"14371676280160045103","title":"9-6 Solving Quadratic Equations by Factoring","cleanTitle":"9-6 Solving Quadratic Equations by Factoring","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DyP6xpaPugA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DyP6xpaPugA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"http://www.youtube.com/@rsyver","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":254,"text":"4:14","a11yText":"Süre 4 dakika 14 saniye","shortText":"4 dk."},"date":"11 nis 2014","modifyTime":1397174400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DyP6xpaPugA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DyP6xpaPugA","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":254},"parentClipId":"14371676280160045103","href":"/preview/14371676280160045103?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/14371676280160045103?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7250994805335161841":{"videoId":"7250994805335161841","title":"Simplifying Radical Expressions Part 1","cleanTitle":"Simplifying Radical Expressions Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=e3QjRzQ_wPA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/e3QjRzQ_wPA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"https://www.youtube.com/channel/UClh0vswJfGQm5mLehCAGC-Q","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":708,"text":"11:48","a11yText":"Süre 11 dakika 48 saniye","shortText":"11 dk."},"date":"20 mayıs 2014","modifyTime":1400544000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/e3QjRzQ_wPA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=e3QjRzQ_wPA","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":708},"parentClipId":"7250994805335161841","href":"/preview/7250994805335161841?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/7250994805335161841?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"811366880848389672":{"videoId":"811366880848389672","title":"Permutations and Combinations","cleanTitle":"Permutations and Combinations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=k2R9dTXaWjU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/k2R9dTXaWjU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"http://www.youtube.com/@rsyver","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":986,"text":"16:26","a11yText":"Süre 16 dakika 26 saniye","shortText":"16 dk."},"date":"2 mayıs 2013","modifyTime":1367452800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/k2R9dTXaWjU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=k2R9dTXaWjU","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":986},"parentClipId":"811366880848389672","href":"/preview/811366880848389672?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/811366880848389672?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7923218050146615006":{"videoId":"7923218050146615006","title":"Piecewise Functions 1.avi","cleanTitle":"Piecewise Functions 1.avi","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kFjEYgdTS3o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kFjEYgdTS3o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"http://www.youtube.com/@rsyver","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":370,"text":"6:10","a11yText":"Süre 6 dakika 10 saniye","shortText":"6 dk."},"date":"16 eyl 2010","modifyTime":1284595200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kFjEYgdTS3o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kFjEYgdTS3o","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":370},"parentClipId":"7923218050146615006","href":"/preview/7923218050146615006?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/7923218050146615006?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3281205880059569728":{"videoId":"3281205880059569728","title":"\u0007[Robb\u0007] Guinto's Digital Influence #RobbGuinto #stunningbeauty #elegantbeauty #vivamax","cleanTitle":"Robb Guinto's Digital Influence #RobbGuinto #stunningbeauty #elegantbeauty #vivamax","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CROTSM43bcI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CROTSM43bcI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeFBpaVZFdFRWRTZUMDVZTnYwcm9DZw==","name":"Filipina Finest Beauty","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Filipina+Finest+Beauty","origUrl":"http://www.youtube.com/@FilipinaFinestBeauty","a11yText":"Filipina Finest Beauty. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":273,"text":"4:33","a11yText":"Süre 4 dakika 33 saniye","shortText":"4 dk."},"views":{"text":"104,1bin","a11yText":"104,1 bin izleme"},"date":"23 oca 2025","modifyTime":1737590400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CROTSM43bcI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CROTSM43bcI","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":273},"parentClipId":"3281205880059569728","href":"/preview/3281205880059569728?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/3281205880059569728?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4930481830583941055":{"videoId":"4930481830583941055","title":"Convergent and Divergent Series Part 1","cleanTitle":"Convergent and Divergent Series Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CkpzQQitG8M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CkpzQQitG8M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"https://www.youtube.com/channel/UClh0vswJfGQm5mLehCAGC-Q","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":810,"text":"13:30","a11yText":"Süre 13 dakika 30 saniye","shortText":"13 dk."},"date":"5 mayıs 2014","modifyTime":1399248000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CkpzQQitG8M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CkpzQQitG8M","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":810},"parentClipId":"4930481830583941055","href":"/preview/4930481830583941055?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/4930481830583941055?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2300525925972317986":{"videoId":"2300525925972317986","title":"Dirty Boogie Promo","cleanTitle":"Dirty Boogie Promo","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tKcbUZ27obA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tKcbUZ27obA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbGgwdnN3SmZHUW01bUxlaENBR0MtUQ==","name":"Robb Syverson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Robb+Syverson","origUrl":"http://www.youtube.com/@rsyver","a11yText":"Robb Syverson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":82,"text":"1:22","a11yText":"Süre 1 dakika 22 saniye","shortText":"1 dk."},"views":{"text":"6,4bin","a11yText":"6,4 bin izleme"},"date":"11 oca 2017","modifyTime":1484092800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tKcbUZ27obA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tKcbUZ27obA","reqid":"1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL","duration":82},"parentClipId":"2300525925972317986","href":"/preview/2300525925972317986?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","rawHref":"/video/preview/2300525925972317986?parent-reqid=1769523543040035-10645935443940557040-balancer-l7leveler-kubr-yp-klg-83-BAL&text=Robb+Syverson","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"0645935443940557040783","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Robb Syverson","queryUriEscaped":"Robb%20Syverson","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}