{"pages":{"search":{"query":"SIN","originalQuery":"SIN","serpid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","parentReqid":"","serpItems":[{"id":"2763524202448755904-0-0","type":"videoSnippet","props":{"videoId":"2763524202448755904"},"curPage":0},{"id":"10742302042762857256-0-1","type":"videoSnippet","props":{"videoId":"10742302042762857256"},"curPage":0},{"id":"16077895358980625456-0-2","type":"videoSnippet","props":{"videoId":"16077895358980625456"},"curPage":0},{"id":"video-related-suggest-0-3","type":"relatedSuggest","props":{"title":"Bunlar aranıyor","columns":[[{"text":"Trigonometry formulas","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Trigonometry+formulas&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Sine graph","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Sine+graph&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Inverse sine","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Inverse+sine&source=video-related-suggest&rq=1&src=int_discovery_recommender"}],[{"text":"Unit circle","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Unit+circle&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Cosine formula","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Cosine+formula&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Sin 90","src":"int_discovery_recommender","is_rec":1,"url":"https://twitter.yandex.com.tr/search/?text=Sin+90&source=video-related-suggest&rq=1&src=int_discovery_recommender"}]]},"curPage":0},{"id":"7281527085044920091-0-4","type":"videoSnippet","props":{"videoId":"7281527085044920091"},"curPage":0},{"id":"R-I-113683-5-0-5","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":5,"grab":"dFNJTgo=","statId":5,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","ui":"desktop","yuid":"7524589271769550972"}}},"isAdult":false,"position":5,"placement":"empty"},"curPage":0},{"id":"18140150045761845202-0-6","type":"videoSnippet","props":{"videoId":"18140150045761845202"},"curPage":0},{"id":"9084531608497530095-0-7","type":"videoSnippet","props":{"videoId":"9084531608497530095"},"curPage":0},{"id":"788606877771961357-0-8","type":"videoSnippet","props":{"videoId":"788606877771961357"},"curPage":0},{"id":"5996164232881940214-0-9","type":"videoSnippet","props":{"videoId":"5996164232881940214"},"curPage":0},{"id":"13119102848479071094-0-10","type":"videoSnippet","props":{"videoId":"13119102848479071094"},"curPage":0},{"id":"13331419191217578752-0-11","type":"videoSnippet","props":{"videoId":"13331419191217578752"},"curPage":0},{"id":"R-I-113683-5-0-12","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":12,"grab":"dFNJTgo=","statId":12,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","ui":"desktop","yuid":"7524589271769550972"}}},"isAdult":false,"position":12,"placement":"empty"},"curPage":0},{"id":"13678681481948372932-0-13","type":"videoSnippet","props":{"videoId":"13678681481948372932"},"curPage":0},{"id":"13973133148390888770-0-14","type":"videoSnippet","props":{"videoId":"13973133148390888770"},"curPage":0},{"id":"1897638725340761787-0-15","type":"videoSnippet","props":{"videoId":"1897638725340761787"},"curPage":0},{"id":"14687662431363470516-0-16","type":"videoSnippet","props":{"videoId":"14687662431363470516"},"curPage":0},{"id":"13373643506855282273-0-17","type":"videoSnippet","props":{"videoId":"13373643506855282273"},"curPage":0},{"id":"10698191944826446892-0-18","type":"videoSnippet","props":{"videoId":"10698191944826446892"},"curPage":0},{"id":"5695404303857586516-0-19","type":"videoSnippet","props":{"videoId":"5695404303857586516"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFNJTgo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","ui":"desktop","yuid":"7524589271769550972"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DSIN"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9120686247577888777233","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1466868,0,22;1457622,0,44;1186711,0,88;1424968,0,47;1460716,0,71;1460214,0,77;1472031,0,58;1471624,0,18;1431640,0,45;1339938,0,30;1464524,0,55;1463532,0,84;1282204,0,9;1466296,0,5;1467161,0,5;1475652,0,91;1464403,0,31;1471919,0,16;1279757,0,52;1467620,0,3;1404022,0,36;1469413,0,17;1357005,0,94;1470415,0,67;124070,0,15;151171,0,46;1281084,0,16;287509,0,13;1447467,0,68;1037339,0,46;1473596,0,29;1467129,0,43;912286,0,69"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DSIN","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=SIN","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=SIN","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"SIN: Yandex'te 3 bin video bulundu","description":"Результаты поиска по запросу \"SIN\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"SIN — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yc3c0c08e9fefa2d07911665882ecd892","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1457622,1186711,1424968,1460716,1460214,1472031,1471624,1431640,1339938,1464524,1463532,1282204,1466296,1467161,1475652,1464403,1471919,1279757,1467620,1404022,1469413,1357005,1470415,124070,151171,1281084,287509,1447467,1037339,1473596,1467129,912286","queryText":"SIN","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7524589271769550972","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769551039","tz":"America/Louisville","to_iso":"2026-01-27T16:57:19-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1457622,1186711,1424968,1460716,1460214,1472031,1471624,1431640,1339938,1464524,1463532,1282204,1466296,1467161,1475652,1464403,1471919,1279757,1467620,1404022,1469413,1357005,1470415,124070,151171,1281084,287509,1447467,1037339,1473596,1467129,912286","queryText":"SIN","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7524589271769550972","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9120686247577888777233","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":156,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7524589271769550972","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"2763524202448755904":{"videoId":"2763524202448755904","docid":"34-4-16-ZC854EE30CCFA897B","description":"For those new to trig functions - or those looking for a quick review. Learn how to use sine, cosine, and tangent to solve for missing sides of a right triangle. This video shows how to solve...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4575391/ecb515016c3d273e69872cb91e59ac75/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RiUQ5gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DgSGbYOzjynk","linkTemplate":"/video/preview/2763524202448755904?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Learn Sin, Cos, and Tan in 5 minutes","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gSGbYOzjynk\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFQoTMjc2MzUyNDIwMjQ0ODc1NTkwNFoTMjc2MzUyNDIwMjQ0ODc1NTkwNGqIFxIBMBgAIkUaMQAKKmhodWt2cnlocG5iaWRzbmJoaFVDeGhralJjMnpaNWFiUTlTMVU3OV9YZxICABIqEMIPDxoPPxO8AoIEJAGABCsqiwEQARp4gfT0-f79AwADA_3--wP_Ae36-v77AP8A6_j88wL_AQABBfn9_wEAAPoP_f77AAAA__L_-Pj-AQAPAfj8BAAAABL5Av_3AAAACv_7-P8BAAD99wH59gIAAQn98QsAAAAABwz_APn_AAH9DvQCAAAAABP8AAUAAQAAIAAt55jcOzgTQAlITlACKoQCEAAa8AF_-SgBzPrN_-LrHf_8BQgB1homAB8o3wDCEiUB0wbfARAh7wH6IgX-ItHL_tcQ5gAtDv7_4fztAP_ILAAkBfwBqRUBABoEEgA6EBgCNvoD__ziOv3r6xwC_Ry3_vX78vnn6fr8FPi-AewDwAIf6BcD_xjsBKz2Dv_3MO7_3hH_--8V0_3l-N4CtBEP--gIJwECGPIGARYC-fS5DQE73QQAPOb4AAQa4wUh8t8FwvYdAhMi6gjhy_4K-iIAAcze-Pv76Bn-0-QU9xPdIATCDPf28Pve9AIV9xIC6hMLAtj48RHs8gDCOgv4DfXtEAsD7fggAC3nWA87OBNACUhhUAIqzwcQABrAB5xNr77qwlm8SWf9u_9UwbyzfrO9mBAYvO0Dqr1f_KM8ONiLvYLKSD7ElIi8VUqRu9h-Er1Ndyi9wpidOxSUQj5GRRy9c-gAvOen2L2cU8k8AOIuO45ArL2h8Sk9mqmYu9z1Ej2RC868oAcQu-9Iyz3uig08iQwmPW-xDL1WWxu9UjjMvPihGjwfheu9vJF5vGc9AjwAEhm8pgcHPFsR67yvdU68enLJuucuUzzElv49tSAtuxaSYr0RXnW7PvTTvFo39zrM62u72t2oPP1avb2CA1Y7155-vPID_DtBTQi9s4mCvCZAqD2QqCs9b9GuvGn84r3c8_y86OaRvA1TK75csqY7Yro1vHSt4jwqjO097RD_vBU5FL5PlW88qxmjvGGIPD0hySy9Yd2dOzhoPz6H1i88-Kc3O9NKsT0CI1m9H47kvJQGTb0_jNA9xk-jPGycCD1mcVU9C9SivGueQz3yYry8l7MxO6b4U7yrcFW9rdo1PKVDTDwgGpc9hRzjO2nPkL2IXZU95SZqvAUjpT3WAju-SeWaOsmOTb1buXK8mIAIPJJWsT25Nek9ukyPuiIbKD6xacq826XLOoxMwDwgMlu9uUgMPDUpZT2hgbi9alAPO5h8fb0exmQ93VACvFKSmr2SPBc-C8xLuQ6i9TyLOcO98eyXujfqN715sns9YDboujwHgL21xiC9Sm4BvKGSKT1AoBQ842qJO6mjpTuzwwm97EXdO4y_yLx32S87Cr6Gu8yNMzyKZ5q9tbXmuAKmQjyfqRy92LKEuu65h70Pu8o805bRuG7hlDyU-iI-laGluJkunztMf8C9hpRWOFQb_L1iu_u9E9PyObvsF758IlM7yCncON_1_jz49jM9MTZpOc-NxL3t7iY8XGUMuerN6L1Mauw77iCTN50mljtL4o-7RLkquB_mQb3vFJc9166ZOdlXAby92la9fLeVuJ4DML0P8io-vcXfuGuYxjzzPPi8onxOuEk0fD3G_Dy9guSDOPtR-byL-ua7zjdOuMKbqj0i8FG9Uh8TOK1omLxupGy9P1MwOKuscj25G8A7_6zRuPj3fr1bxSw9GCm-OM5yhD2F9Io9OQdmOPinFD4D-k49H_TtNgJhTLxsteK8diIyOIquGz71ZgQ-p5iuuewJ3LzhKV-9xKVjuHdIhr3s-C-9QGo_uDMrJbxO1T08QB6jN9nGCT0wP4E88Bg7uIqWVz0QWPk9jRdAOKeMZL1BRAo9eBTkuLHhab22Ko07i7zCt_Q8brwmvJ4975CFOCAAOBNACUhtUAEqcxAAGmA0_wAz1hwizeMR5-Ptzh_48w_f_OAE__QKAM7mAAT8DcvR-yQAAPwZ2bYAAAAq8uEP9wDMX-SzBfnzG_zKyRH5-H8F3_7i3RgGuPb2IgrxFDIFZg8A8xnrJyi29A8dPCYgAC36XTg7OBNACUhvUAIqrwYQDBqgBgAASEIAALDBAACIQgAAXMIAABDCAAAsQgAAGEIAAAAAAADAwQAAWMIAAABBAACAwAAAwMAAAIBBAAAUwgAAwEEAAAhCAABgwgAAHEIAAKjBAACAQQAAJMIAAIDAAAA4QgAAIMIAADDBAABcQgAACMIAAODBAACAwQAAaMIAAChCAADWwgAAUMEAAKDBAABMQgAA0EEAAChCAAAMQgAAQMAAAFBBAACIQQAAMEEAAChCAAAAQQAAYMEAADBCAAAwQQAABEIAAIC_AAAQwgAAqMIAABBBAAAAQgAAMEEAAFDCAACgwAAAuMEAAMBAAABAQgAAyMEAAHjCAABgwgAA-MEAAJhBAABQwgAABMIAAFjCAADYwQAAoEEAABhCAAAowgAAJMIAADhCAACgQAAAPMIAABzCAADgwAAASEIAAHDBAADIwQAAKEIAANjBAAAYwgAA4EEAAEBBAABQQgAAgsIAAOhBAACwwQAA2EEAAABAAAAQwgAAgMAAACzCAACwwgAAuEEAAEBAAAAIQgAATEIAAKjCAABAQQAAAEAAALDBAACowgAAREIAAEzCAABsQgAAcEIAAFRCAABgQgAA8MEAAATCAADAQAAAoMAAAOBBAABIQgAAHMIAAGDCAABYwgAA4MAAALDBAACIQQAAEEIAAGjCAABswgAAmMEAAETCAABcwgAAAEAAABBBAAB8wgAA-MEAAK5CAAAgwgAAgMAAABhCAABMQgAAoMAAAIzCAAAMQgAAoMEAAMhBAAA4wgAAkEEAAGxCAABQwgAAoMEAACDBAACAwQAAKMIAABzCAADQQQAAMMEAAOBAAAAYwgAA8sIAAGDBAAAowgAAUEEAAMhBAAAUQgAAIEEAABBBAAAgwQAAjEIAAKjBAADIQQAAokIAADjCAACQwgAAgMEAALhBAABYwgAAWMIAAIDAAAAswgAA-MEAAFzCAACAQAAALMIAAOjBAAAcwgAAAAAAAIhCAAAQwQAA6MEAAKjBAAAwQQAAoMAAAERCAACQQQAAmEEAABDBAAAIQgAAqEEAAGBBAACQQQAAQEIAAIjCIAA4E0AJSHVQASqPAhAAGoACAACevgAAlr4AAK4-AAAQvQAAdD4AAL4-AACuPgAABb8AAPi9AADIvQAADL4AALg9AAAcPgAAND4AAPi9AABcvgAAQDwAAFA9AACGPgAAPT8AAGs_AACIvQAAQDwAAM4-AACyvgAAiD0AAL4-AACIvQAA-D0AAPo-AAAMPgAA3r4AAAS-AACoPQAAmD0AABA9AABwvQAArr4AAMa-AAB8PgAAcD0AADS-AAAUPgAAuL0AADC9AACoPQAAZD4AAKi9AABcvgAAvr4AAJa-AACovQAAAT8AACw-AACgPAAAMD0AAH8_AAAwPQAAdL4AADS-AACKvgAA2D0AADS-AACGviAAOBNACUh8UAEqjwIQARqAAgAABD4AAKi9AAA0vgAAU78AAIq-AACYvQAArj4AAOi9AABQPQAA4LwAADC9AAC4vQAAgLsAABC9AAAwvQAAQLwAAEy-AADaPgAATL4AAGw-AAAUPgAA2L0AAFy-AACovQAABL4AACS-AABQvQAAmL0AAKC8AACWPgAAJD4AABw-AADivgAAEL0AADC9AACAOwAA0j4AAIi9AAD6vgAARL4AAHA9AACCPgAAoLwAANY-AAAMPgAAUD0AAH-_AAA8PgAAnj4AABy-AAAwPQAAqD0AAKC8AAAEPgAADD4AAFw-AACgPAAAQLwAALg9AACAOwAAVD4AACQ-AAAQvQAAqr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=gSGbYOzjynk","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2763524202448755904"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2004627039"},"10742302042762857256":{"videoId":"10742302042762857256","docid":"34-7-10-ZAF9E5C585E586E70","description":"View more at http://www.MathAndScience.com. In this lesson, we will learn fundamentally what the sine function and cosine function represent. We will learn that the sine function, also written...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3468180/740a07473f27132444b76d17237736c0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LangGQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvuoNyvMvDtA","linkTemplate":"/video/preview/10742302042762857256?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"05 - Sine and Cosine - Definition & Meaning - Part 1 - What is Sin(x) & Cos(x) ?","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vuoNyvMvDtA\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFgoUMTA3NDIzMDIwNDI3NjI4NTcyNTZaFDEwNzQyMzAyMDQyNzYyODU3MjU2aocXEgEwGAAiRBowAAopaGhta2xsZ2p4aWZna2RzaGhVQ1lnTDgxbGM3RE9MTmhuZWwxX0o2VmcSAgARKhDCDw8aDz8TxRaCBCQBgAQrKosBEAEaeIHtBPv3A_wABgUQBfkJ_ALv_P8E-v__APQA9PMDAv8A6_sD-gP_AAAEEwH9_wAAAP_5_u7__QEAEgQC9AUAAAAbAv0A9wAAABkH9fn-AQAAA_b4-AP_AAABAfQEAAAAAAkLBO0AAAAA_RDzAgEAAAD8Afj7AAAAACAALZzVxjs4E0AJSE5QAiqEAhAAGvABbPgN_4Hv_fkt8QEAN_z3ALQLGf9V9w8AmOX2A9kMwgEtAfgBHeX7_wAe9P_ABwH_9Bjt_vgQJgDeAgb_ERcJAPgN7gAd8-QAMiQXAPUBGwHhIRD_9RMLAOT3AwAr7swA9Pol_Q4G7QEA2eAEAO0U_wUXCQDdDegA2wIJBgUM6AHxEtn-Nej5A-T4Cf_bI-UBJR_3AOrv1f_tIf4ECecFA_gG9QEYAxH9AxbiBioQ8fgaB-gCEAHhAflBAQMfF_QB3eMJ9wn59v0TKvYGGggPBfn2-v3p4AUP8C_yA-kC9gncAgMI8dMBCvr0_Q361vMBIAAtMookOzgTQAlIYVACKs8HEAAawAeM9vi-XgImPPEN6rxUqgQ-WvACvUGfSDy5pfU9OSeGPRrKX73P29g9yOSJvdYvYr2Xx6q-E8fsO74Rnbz9vXQ-klRLvQOx7Dw1eTq-DquRO0p-RDz1oWu-hNMHPXQ1w7ser3Y9fbsbPQ54qryphAq83USIvPMQ17xGlMY9WPE8vU9ZLb0P4CM9oBNnvbnkEz3XVge9g-VjvanDZbwgB7o9gpE3vYiynLz1JUA8h7-mvKBsirx6tqi9ruLDuymL6zvjNU8-edrrvINdwzwhlNc96-J2PQKZHzwMIx09OD25vG85jbw2iYs9bQC2PYRLR7w4oZA8zFiZPESL7Lsyfaq994mIPXF8Zbv19fw9nKIIPesrWbwIjsu9Qk0hvGZ-GrxmZR48CQKeu1YWgbsPr5A8Hfp2OwUCuLz5psQ9zohSPXfkvrwwbAi99KEwvRm-cDmAgDU83PEGPSUHqrs8Yrm9UWwFPQiAnrlQBgI9alukuxNAtTtpV8w9phMkPW0rCzzBi-M80uxwPOcZr7m2FAs9kVSAveVrhbzRj6u75DQfvbKRNbwRS2-8dq7DPP2loDxqEMk7TJOtPHPIvDmbXEc9ojiBvX99nbvDPps9E481vSUkEjxy-e892Gw7PS0eRTqRCw49IdO1PM6cAbyuiQC9ix9-PeyReTrIgIe8nfKovDyY-zu5wyY9IM9OvVPUlbvJXY-9kzfhu7PiJzvsfaQ9WMudPb7OuLqmltI8k8f0u96WQDvsqTA95y4yOx7mDjrEWAu9O-Y3vSC3WzvwTl49c7I-PcFWQjlJfkk9rMVHPWQKXrjuc-O70qGIvcMjPDl2WjK9-xUdvC_ftDcc1g89WmKlPHBd5bl7i-I7DLLAvXq66bf5wOm7-aRuvA4vkLjVcIY91ussPUukVLkSEZ-7nwC6PUsqErkUTTY9xLU1POL9n7n9xhI9GZrhvNmVergdKbE9_E2tPQLbA7hB43i8fEftvWETqzmV4cs65wGHPTIxizcYPFE9Cx7wPAuDAbdTM7W8DiByPSSYIrmIJKO79aYdvUh2RDiUX0e6DWcGPB4xZTc8Xz29HKwkPZIT5jic25k9c24OPSeQvzegzms9zSa4u66rvTf2pEK9MCUXPYPDyDdPiMo8i8AYvLi2trhmgpG9epULvVTUhLdjM1Y9dlG0vT-bnThBSZG9kiWzvBO-Nrdy-KQ7qPmPvOOnxLeIhM89a7JLPYm3hThOsY-8poAUvV9Mu7joVbO9FiTsPM24ITigzos87aZqPX8GLzggADgTQAlIbVABKnMQABpgIv8AKuss7N4LNAb16On33wgO6PLuCP_0AAD999fkAgjdxAQI_xLdAum6AAAAJuf5E9gACVbd9e8e9QoNzaz49gR_KOcJ5tcB49nXAwz_9S8k9CQwANU7vicu8d8NJBM2IAAtVE9JOzgTQAlIb1ACKq8GEAwaoAYAABhCAAAMwgAA4kIAAEjCAACwQQAA8EEAAJZCAACIQQAA6MEAACDCAACgQAAAYEIAAFjCAADgQAAAQMEAAEDBAABUQgAAcMEAAADBAADwwQAAFEIAAPjBAABgwQAAhkIAAEBBAAAQQgAAQMIAAIDBAACOQgAABEIAACjCAAC-QgAAdMIAANBBAABwwgAAcEEAAOBBAACIQgAAmEEAADTCAAAgwQAAHEIAAABBAAAAQQAANEIAAADCAACQQQAAAEEAABxCAACgQAAAAMIAALjBAADgwQAAKEIAAMDAAABIwgAAEMEAAARCAABwQgAAREIAAFRCAAD4wQAAlMIAAITCAACAwAAAZMIAAIDAAACswgAAIMEAACDBAAAAQgAAGEIAAJLCAAAkQgAAgL8AAFjCAACgwgAAQMIAAKDAAABQwQAAKMIAAGBBAAAIwgAAQEEAAEBCAAAwQgAARMIAADDBAAAEQgAAEMIAAIDBAACMQgAAEEEAAABCAACgQQAAcMIAAATCAADAwAAAqEIAABxCAABUwgAANEIAAPhBAACgwQAAksIAAMhBAAAAwQAAfEIAAIBBAACOQgAAhEIAAEDAAADAwQAAEEEAAGDBAAAYQgAAOEIAAGDBAAB0wgAAksIAAGBBAAC4wQAAmEEAAFjCAAAAwAAAUMEAAEBBAAAowgAABMIAAIC_AAAAQQAAAMIAAADBAABUQgAABEIAADBBAAC4wQAAwMEAAOjBAACewgAA0EEAADxCAABAQAAAgMAAAEBBAACgwAAAgMEAAFTCAAAwwQAA4MEAAFDBAACAQQAABEIAAEzCAABQQQAAsMEAALDCAAAQwgAAnMIAAAhCAACIwgAAXEIAABBCAABgwQAAUMEAAOBBAACgwAAAdEIAADRCAACQwQAAWMIAAKBAAAB8QgAAAEEAADjCAABgwQAAkEEAAOBBAACYQQAA-EEAALrCAACYwQAAGMIAAIA_AABwQgAAIMIAAGDBAAAAQQAAEMIAAJhBAAC4QQAAoEAAAEBBAACAwQAAgEEAAEBBAAAQQQAAyEEAADDCAABQwSAAOBNACUh1UAEqjwIQABqAAgAAmL0AACy-AACKPgAA4DwAANi9AABsPgAATD4AAJa-AADovQAAfL4AACy-AACgPAAALD4AAMg9AABEvgAAgDsAAFA9AAAwvQAAfD4AAOY-AAB_PwAA-L0AADA9AACCPgAAvr4AALg9AACSPgAAiL0AAFQ-AACyPgAAHD4AAHy-AACCvgAALL4AABC9AAD4vQAAoDwAALa-AACCvgAAFD4AAOA8AADSvgAAsj4AAKA8AAAUPgAAbD4AAKY-AADCvgAADL4AAIa-AAAsvgAAuD0AAEQ-AAA8vgAAhj4AAHA9AABFPwAAQLwAABA9AABAvAAAoDwAAKC8AAAMvgAAwr4gADgTQAlIfFABKo8CEAEagAIAAAy-AADIvQAAjr4AABm_AAA0vgAAMD0AAKo-AADYvQAAML0AAKA8AABkvgAAmL0AAIC7AAAQvQAAEL0AAKC8AABQPQAA7j4AABC9AAC2PgAAdD4AABA9AADIvQAA-D0AAKC8AACCvgAAEL0AADC9AACgPAAAMD0AAIg9AABEPgAA3r4AADA9AADgvAAAmL0AAAU_AADovQAA0r4AAIa-AADYvQAAjj4AAOA8AAA8PgAA8j4AAOg9AAB_vwAAuD0AAPg9AADIvQAABD4AACw-AABQvQAAnj4AAES-AAB0PgAAoDwAAHA9AABUPgAAHD4AAEw-AACoPQAAQLwAALK-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=vuoNyvMvDtA","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["10742302042762857256"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1732153009"},"16077895358980625456":{"videoId":"16077895358980625456","docid":"34-1-14-Z99C6EA07FE055EAB","description":"We have two exponential equations with trigonometric functions (sin(x))^(sin(x))=2 and (sin(x))^(cos(x))=2. The tetration equation (sin(x))^sin(x)=2 requires us to use the Lambert W function...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3467492/06f2012f6b7a276f62dbbb79c72cd055/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/naZROAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTf0jetLbFX4","linkTemplate":"/video/preview/16077895358980625456?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solving sin(x)^sin(x)=2","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Tf0jetLbFX4\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFgoUMTYwNzc4OTUzNTg5ODA2MjU0NTZaFDE2MDc3ODk1MzU4OTgwNjI1NDU2aogXEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E4UFggQkAYAEKyqLARABGniB9wT6_voGAAP-Cvv9A_8B9gH4APn-_gD3-_v9_gL_APT89QQLAAAA9gn8-gQAAAAD-_37_f4BAAf_AvYEAAAAEgAEBP0AAAAOA_j__gEAAAcI7_cC_wAA-wD8AgAAAAAICgPwAAAAAPwD_vYBAAAAAAACBgAAAAAgAC1aVOQ7OBNACUhOUAIqhAIQABrwAX8M7ALR_Oj_8AXbANwPFAGyKCD_GiLkALYREgHEA-UA7xf4ANXg0f8UCgr_8CIL_zj30f_61QIAJdwMABzUAgD9BQQBMNAOARoFGQH74u3-zxAxAQPjCwASye4AGyfn_yH9H__3CeUCCe3BCBrrFAIV7zMA-fIUBPb25wHr9_YC7uHe_g0S_v4V3BX_3QQeAgLg9gINBQf2BwgPBgjoBAP-4xT9GRjl_vrw9g344hADzun-Bfzl9wUb-h8F5AzxAuryFfnN6gT_D94K9TTo8P7cHQEH--oECCf2CPsJ4wr8Fun29AYWBvvT_O4Lz_rwAiAALZE3KTs4E0AJSGFQAirPBxAAGsAHiIK5vsUlAbxaRf-8GKmgO3f8sjzDiR4783cOvGIcMj1fCHm92pAfPqYFMzvnrZk6mx2hvkahm7zIZ6g8iZkNPsw_X73rnZ-5ehcvvgg8MD0pn9S8Sk3BvWbmODtPGo88nb0jPni7uTxFw5i8vrh5O1csFL1D2Pq8bya7PcHgmrwZBJa83GoZOvURWL0TfFi9C6cWvVVXtDyYCju8uyYEPq2Hn71Ad_i8jV6NPdKw8zwDoAK88Q97vb4aGz102Le6CVRPPqaWcj0FiIK7LpnZvH_4eTwRwuC4_gVnvcBDbD08mQe7O-WsvXp-hzwiiV48giSHvCA-lbwU0e-83rDtvJvVMT3Z9iw82XxXPeoQbrs4JeY7oV2PvMl3CT4H0iQ7kfqRPYIl8jyQNoY7odsGPQvoqj3nkX27egCmPGLgVL3EH0k7LQ4fvFVWLj0QQhs9xsS2vT4oQz0ZuZ28KQrPvGqtjj0HiAQ6wdY2vEscrj20PXq8pCyNPZ0cFbx5bJE778qZvZnlXD27RVc6RYDzPbxhtr17Lx07TqQKPRifnb0vaYw8YsjAvdK3Ozy0ztc7V1gVPYtUeL2SEN272e0DvmLY5bt0LIy6yUmnPXu0oj3nmn-5VCU9OvBVxjwpE-m6_izWvGFcoLzzvju8v4BePQpHFb3WKBo8zKq5vTi0cr1D_7g5DAMWPX0IKrz61FK7UwbOvdiVWz3jRIk6VPqePZroOL14Wk84QaabPWoko70MRAm7xRNLvfiNyr0_7Ue5PL3yPUrIUb1XwY45a3tAPZty5T0q3ok5Tv1SvVcpmLwssQE4gUMIPqeRG73HXAm5BdP6u_hOgb0J-ZG5gHDTuxfNpL1Ekps4FK0BPQTAnTwq8KO4Ccl9vQiwyD14CAi6Hk2KPXW0Ijtj0F65atX0OwVOlr2gNjM4FE02PcS1NTzi_Z-5ZNiXvbk_Tb2Fvns5wMwXPplyTz2cQAA54pIDPo7Dpb2CMaE5w0-XvdODAj7Tfkm5lnZqPE9HVj1NzD64xrpdPPCFKb1iRq83lQZDPXDpPT1L5ig4qBedOyIV6zwHq362PYdovPOsRTtpvb84OcuRPeLRYb26rGQ4S4-7PUI-CL08Y3w4JFp3vR1twb0OFho5FU4XPQEj3Ls5Q5m4jNsoPUV_Tb1fQBM3OFpEPCPuVjw8Xo43zJrYvOO1YT2Q36G3gsgCPjmgwL08AT84zn3mOzwflD29Er84_wp0PRjAmj1PdHE3fQkwPZq1ND3gcSS4oM6LPO2maj1_Bi84IAA4E0AJSG1QASpzEAAaYCUBAB36LtP0GRnxAtsbC7IS3N3Vzhr__88ACgXy3yAiudMs-P8y6fD-pgAAAD3R9e4LAA1vDPcIYRXD69etwzn4fwT-HMLnIxDuFDLz_eo7QcUUHQC0Ebs2MrjGLP_mNCAALYDfHTs4E0AJSG9QAiqvBhAMGqAGAADAQQAATMIAAKRCAACWwgAAoMEAALBBAAAsQgAAAMEAAKrCAAD4QQAA4EEAABxCAABAwgAAAMAAAEBCAACAPwAAAAAAAGzCAAA0QgAADMIAANhBAADgQQAAPMIAAIBBAADAQAAA0EEAACTCAAD4wQAAUEIAADRCAAAcQgAAAEAAAODAAACQQQAAKMIAAIBCAAC4QQAAtkIAADBBAADgQAAAcMEAAAhCAAAQwQAAQMEAAPhBAADAwQAAEMEAADBBAACuQgAA0MEAABjCAACAwQAAMEEAALhBAACowQAAXMIAAIjCAACAwAAAOEIAAPhBAACgwQAABMIAACDCAAAwwQAACMIAADBBAADIQQAAsMIAAIDBAAAEwgAAkkIAABBBAAAowgAAzEIAALhBAACIwgAAqMIAAABBAABwQQAAwEAAABDCAADIQQAAQEEAAPBBAABsQgAAskIAACDCAABcQgAAcEEAAEzCAADAwAAALEIAAOhBAAAQwQAA4MAAAIjBAADAwAAAQEEAAIRCAACYQQAAMMIAAKRCAADEQgAAsMEAAPjBAABAQQAAiEIAAEBCAAAAwgAAPEIAABBBAAAUQgAADMIAAMDAAAD6QgAAKEIAAAAAAACgwAAAQMAAALDCAAAswgAAKMIAACTCAACEwgAASEIAAOBBAABQwQAAGMIAAIjBAACwwQAAJMIAAGDBAABAQAAAnEIAAMhBAACAPwAA6EEAAAAAAADAwAAAaMIAAHBBAAAIQgAAMEEAAMDBAACgQQAAoEEAAKDBAAAkQgAAkMIAAKjBAADYwQAAyEEAAFBCAADowQAAwMAAANDBAACAwQAAIMEAACDBAAAwQQAAEMIAAKhBAACgwQAAgEAAAMBBAAAAwQAAGEIAAFDBAADoQQAA-MEAAGDCAADAwAAAAEIAAEDAAAAAwQAAOEIAAMBBAABkwgAACEIAALhCAAAkwgAAeMIAAHjCAADgwAAAaEIAAFTCAABAwAAAYEEAAAAAAACgwAAAQMAAAAhCAADYwQAAUMEAAIA_AACIQQAAOMIAAFxCAADQwQAAisIgADgTQAlIdVABKo8CEAAagAIAAOg9AAAwPQAAuj4AAOC8AACgPAAAzj4AAFQ-AAAjvwAADD4AAJi9AAAEPgAAML0AABw-AAAEPgAAqL0AAAQ-AABMPgAAcD0AAJ4-AAD-PgAAfz8AAJa-AACAuwAAhj4AAMa-AAD4PQAAoDwAAOC8AAC6PgAAfD4AACQ-AACavgAAgDsAADC9AAB8PgAAJD4AAAy-AACWvgAAnr4AAJi9AACyPgAAmL0AAK4-AADoPQAAoDwAAAQ-AADoPQAAMD0AAEC8AAAUvgAA6L0AALg9AAB0PgAAFD4AAJi9AABkPgAAVz8AAOA8AAD4vQAA1r4AANi9AACAuwAAMD0AAJq-IAA4E0AJSHxQASqPAhABGoACAADgvAAAMD0AAHA9AABTvwAAPL4AADS-AADSPgAAVL4AAIo-AAC4PQAA6D0AAJg9AAD4PQAAgDsAAFC9AABAPAAAur4AAAs_AAAMvgAAfD4AAEQ-AACKvgAALL4AABC9AACIvQAAPL4AAAS-AABwPQAAoLwAAIg9AACAuwAATD4AAIq-AADgvAAAoDwAADC9AACuPgAAyL0AAKq-AAAMvgAA4DwAAFA9AAD4vQAABD4AAJY-AAA0vgAAf78AAJo-AACePgAAnr4AAIC7AAA0PgAAED0AANg9AAAkvgAAkj4AAIi9AABEvgAAXD4AADC9AAAcPgAAor4AACy-AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Tf0jetLbFX4","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16077895358980625456"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"876889322"},"7281527085044920091":{"videoId":"7281527085044920091","docid":"34-0-11-ZCA9DA07670293777","description":"Learn how to solve this complex impossible-looking trig equation sin(x)=i. Of course, we need to use Euler's formula and the complex definition of sine. sin(sin(z))=1 • Math for fun, sin(sin(z))=1...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1575538/af768ac12bdf5454489942fd3451e0ac/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/sT7dUQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"4","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIsadvaKb97Q","linkTemplate":"/video/preview/7281527085044920091?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"how to solve sin(x)=i?","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IsadvaKb97Q\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFQoTNzI4MTUyNzA4NTA0NDkyMDA5MVoTNzI4MTUyNzA4NTA0NDkyMDA5MWqIFxIBMBgAIkUaMQAKKmhocndwaXprY25xbmFneGJoaFVDX1N2WVAwazA1VUtpSl8ybmRCMDJJQRICABIqEMIPDxoPPxOBBYIEJAGABCsqiwEQARp4gfUEAPj8BQAD_gr7_QP_ARsC-_8DAgMA8Pj9Bf8BAAD1AfYEAQAAAPEU_v8EAAAAA_v9-_3-AQAM9wPwAwAAABIABQT9AAAADgP4_v4BAAANC_z89AQAAQD_AAkAAAAACAoD7wAAAAD8Bwb1AQAAAPv6BwoAAAAAIAAtK-TeOzgTQAlITlACKoQCEAAa8AF_IwoD6QPcAakfyf8D5Q0B-hQv_wkz8QDIDOcA6RXqAf4Z8wAV9MkCJg3uALEr-P8U17AC0AXzADC3DQILyv0A8fnYAQLz-gAiFDECBfXvAOoKKADs6eAA89mwACAawgDu8R79QQ2_AiD83wDtDzMCDgguBA7P8Pv09OIBp-wAAQrk6P-6DxMDGtUZ_9I0DwAU_uoJEB8a-QQy_gMJ0gv8CO4Z9SEFCwkCBeUDD_oJ_rvpFv3O9f4G4u8JB8_a4wbV8TAG9-D0AyAGEvjx_wT_EBflBNu98AfuzQj0-wH3-iYV-vrxCe8K6wvpB73n_fsgAC229ww7OBNACUhhUAIqzwcQABrAB24T1r5Rau-8gtYPPKNTPL30yBu8600xvPN3DrxiHDI9Xwh5vT9zRj4O7jO9lvl9O_aWYr4FeIE8eT8NvCb_8z3xBbe9oGUnPIbjCb7fIPU8rAEqvW6wJrwYaRg9GXyzunj9lzviecQ8_uqGvYhlcz2lapu9cAKZOuTDxzzD8iC6g5rrvE8IfDty0kW934pEvE7R0b1-Kri8zg3Zu_nQjz2FRIq9rqDEvAzyqT3ZAXw8X-qpu0A3T72MSf89N1n-u4_97D20FWU9_GRguiC46r08l_M7xIErvW5Tl7xYU3k9t3nju4x4Dzrw4wO927IyPAT5o7ymX-K8-AHEud6w7byb1TE92fYsPEFe9DwAESw9bC3lOx093r2-wAw-uwgLugLz0D0UJme8jFAmOzd1Wb0QO5g9-0PMO4kXmj3VAh68IRSlupQGTb0_jNA9xk-jPFhwlL1oYnU9ouAUu1-VkD2aRLg9UG5bPDY8HjzLpQw94TxBvF8dwb1fNSA9eJkFuBa8iTuprjK87lhwu99mxj05tfO9hx8YPPpYpr3LUJC9Haeuu5yiCDz6hog9dmU8vFs-lz34pMO9qNQ6u2uLQT1N_kK9ZDxKPMvEYz0hygc-shXuuwgvC72rICu8uUHlOihyUr10MDE9Pqn-u6Z98z1DVAQ8eNXeOy-_071yo-2817Reu3tsJjwR1rG7uWlYuzw-kDx6Z768TUxQuoFb9z0IS5a9-F_uOM41Cju_jY69tkHUujcW1DzsQKy9A1fQuJRAtD3gzWS94odqOWlEH73tvJ09Ageguahz5b2h6fa8gJlvuX5Rhz2OEze6P3dnufr9DL0_S2G9v1eTuf72ED2JmJK9FR_1uCQmLb20IxM7-mzduCPEgD09_Gs8Dv5junk_7j1kt2o9r1f_t9LMbryS8sm8rdjtuOIlVbvugjm6OPgIuGa2lb0aVkw9N02GOZZSoT2a9iM9Zc1oN-KSAz6Ow6W9gjGhOXQ-oTyFf5w9jJZEuQBaEDvWl1s8a7wouE8rWz07J6w9PEyEuHkCxjy-D5w9qtbxN7DiVD2yV0y75dGFOGh1Mr5kpCg9F8pMt9-fVz3Rx2G97neqOL0Dl7skmxu-Z_JPt1fCA7wACI48jOKaOP7PhjzbrMW9dU4uOLqWHLxJ6k69WEx9ueD_nT01Bh88ho3INuY7OL2oLX89yhDIssegAz5gjXi9F8haOELLXz1jGrc9bpCOOCSmmj074RU-pFxuuDEHQb1WHg0819-tNlfbA70g8OA991IuOCAAOBNACUhtUAEqcxAAGmAZ6gD67x7N7xAE_fnFGwPLPcnc5q82_-7h_-8VFAcrEcnYH_j_ExYJvp4AAAAo1Pf-yAA0d-7iBRglC9e80Lw-2W8T9uzZxfMr0wop6yoSLknOCToAgSTZOxyvzxv92VEgAC039Bc7OBNACUhvUAIqrwYQDBqgBgAAJEIAAJ7CAABkQgAALMIAADjCAACIQQAALEIAAIjBAAAAwQAAoMAAAJBBAABgwgAAIMIAAIzCAADIwQAAIMEAAADAAADowQAAsEEAAGjCAAAwQQAAsEEAAADAAADAQAAAgMIAACxCAABQwgAAmMEAAGxCAACQQQAAoMEAAEhCAACAwAAAFMIAAFTCAADYQQAAmEEAAIxCAAAgwQAAyEEAAIDBAACIwQAADEIAAEDAAACAvwAAAAAAAIBAAABEQgAAYEIAABBBAAAAwgAAEMIAAODAAACAQAAAQMAAAODAAAB8wgAAMMEAACRCAADIQQAAUEEAABjCAABgQQAAlsIAAFTCAACqwgAA4MEAAFDCAAC4wQAABMIAAKBBAACiQgAArMIAACRCAAAcQgAAAMEAABjCAAC4QQAAcEEAAIDAAACowQAAhkIAAJBBAADgQAAAYEIAAABAAACKQgAAgEEAAOhBAACKwgAApMIAALxCAADAwAAAgMEAALBBAACwwQAABMIAACBCAACoQgAA2EEAABDCAACoQQAA0EEAABTCAADQwQAAEEIAACBBAACaQgAA6EEAANRCAADGQgAAqEEAACTCAAAcQgAAgL8AAADAAACAwQAAQMEAAOBBAACAQAAA0MEAANzCAACwwQAAgMIAAADBAACAwgAAcMIAAMBBAACAQAAAsMEAANDBAAAcQgAACMIAAMBBAACYwQAAIEIAANhBAADAwQAAZEIAAAzCAAAAwgAAAAAAAAxCAADIwQAAbEIAANhBAAAswgAAVEIAALDBAABAwQAAmEEAAMBAAADwQQAADMIAAHRCAADAwQAA2EEAANDBAAAAAAAAgMEAAEjCAADgQAAAAEEAAMLCAABgwQAAWEIAABBBAAC4QgAACEIAAODAAAAQQgAAkEEAAPhBAAAgwQAAIMEAAHBBAADgQQAASMIAABBCAADGQgAAgMIAALjBAAAAwQAAgMAAAABAAACiwgAAIMEAAKDAAACgwQAAoEAAAHBBAABwwgAAAEEAAHBBAABgwgAAyEEAAADAAAAAQAAA8EEAAPjBIAA4E0AJSHVQASqPAhAAGoACAABQPQAA-L0AAK4-AAD4PQAAuL0AAII-AABcPgAAyr4AALg9AADIvQAAEL0AADC9AACIPQAAUL0AAEy-AAAMPgAAHD4AAOA8AACIPQAAZD4AAH8_AAAMvgAAEL0AAJY-AACivgAAuD0AAPg9AACAOwAAsj4AAAw-AAD4PQAALL4AAIi9AACoPQAAPD4AADA9AABAPAAAur4AAJa-AADYvQAAVD4AAAS-AAB8PgAAQLwAAFC9AAAcPgAAJD4AAMg9AACovQAAML0AAHA9AACoPQAATD4AAEA8AADIvQAAmD0AADs_AADovQAAgLsAAI6-AADovQAAQLwAABA9AACWviAAOBNACUh8UAEqjwIQARqAAgAAdL4AAKi9AACoPQAAOb8AAAQ-AAAQPQAAtj4AAIK-AAB0PgAAQDwAADS-AABUPgAAij4AABA9AABwPQAAMD0AAGS-AAAjPwAAXL4AAJI-AACIvQAAZL4AADC9AAAUPgAAuL0AAI6-AABwPQAAcD0AAIg9AABcvgAAEL0AAHw-AABEvgAAuD0AAHA9AACAOwAACz8AAJi9AACqvgAAsr4AAES-AAC4PQAAcL0AAIC7AACOPgAAVL4AAH-_AAB8PgAAbD4AAOi9AACAuwAAuD0AAMg9AACiPgAA3r4AAIo-AABAPAAAPL4AAKI-AAAsPgAAJD4AALq-AAAsvgAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=IsadvaKb97Q","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7281527085044920091"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2631997934"},"18140150045761845202":{"videoId":"18140150045761845202","docid":"34-4-10-ZE97107D8D3B34771","description":"Sin Cos Tan Example. A basic introduction to trig functions. Learn how to find the sin, cos, tan, csc, sec, and cot of any angle.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1029292/7f26320e09058fd12909ac81f9fb48cc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xVyCEAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DO74LFU4VmlE","linkTemplate":"/video/preview/18140150045761845202?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sin Cos Tan","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=O74LFU4VmlE\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFgoUMTgxNDAxNTAwNDU3NjE4NDUyMDJaFDE4MTQwMTUwMDQ1NzYxODQ1MjAyapMXEgEwGAAiRRoxAAoqaGhwaXF1ZHJ1em9vY2V3Y2hoVUM1bXE0WXdkMGxQUFFKbktfNWdxLXlBEgIAEioQwg8PGg8_E6oCggQkAYAEKyqLARABGniB9vv7-_sFAPsKAPz9AwAB7gP2APr__wD2APX1AgL_APT-_PwIAAAA-g_9_vsAAAAA9QADAP4BAA8B-PwEAAAAGAL9APgAAAAMBv_6_gEAAPz78_MBAAAA-fv8CAAAAAANDvz4AAAAAAUM-gIAAAAAB_v-CQAAAAAgAC1ZkeI7OBNACUhOUAIqhAIQABrwAX8ICAHc97AB5QvsAN0w_QCfNAP__DTSAMD7IQCmE-f_AA7fANIU5f8f6O4B2R_7ACXr2P8QxPb_NO4A_y_p-ADaAvwBGun1AW0XCAEW9_cBvRr___4AGgHn8O8B9hPg_vr8EwD5Acj_Cuq4CSX7LgEOCBcEEwQGB-n1GP7cHxYA9_jG_gIQ7ArfBPT31xsgAg7v-voPHhn58AvrBAQQFwQH8fz5HOPjBjcJ8vvw8gQF2d0EAQvj6ALz7hwBzRTr_RP1IPMA5gv4ACAUARve_gHe9Qv39gUACB76Af4E5_f57_P6_b0t-QXcDfX9DvXoASAALY27Ezs4E0AJSGFQAirPBxAAGsAH6WLTvorwBT2QeMM8sd_DvTyoX71wvge9FNqYvSdPeT0LEYm72pAfPqYFMzvnrZk60EcZvm-L6LyXo0-7FJRCPkZFHL1z6AC87-VOvhCoQz0YrMC7t7IkvikVwzxE0GK8Kz9fPX5fcbufzSq8J8BwPfTOGbxPseq8kVZGPLSOqryUgB293GoZOvURWL0TfFi9rX_hPLPFv7zETy28L1H9PbEFYLqfq628gN4KPdSZ_7uE1G07rHDrvfDTgjwyBam7ySJtPUWE2jslMyg87WaGPBgzkz379yq8D0LEump-4zpcilC83_zGPewb8zyHWT69jpKXvEJ-cb0ApYa8d_UKvqCfLj1c-VG85Gb4PWZM4T0YI9Q7nrTwvfeK1Tv_2Nq8nKuBPOg5GL15Wv4856cIPrEsXT1G8nC7QgNWPcTdzzx5aKs6w6Novf5OCT1rlP88U3nbPdbxDj0NRja8NNk_PE67U72owVm8qjiPvSEjWz2zO6g7NEfWPfQ2NryhZz26vrNqO51J-z0yFIG8BSOlPdYCO75J5Zo6Yyp9vKNFzL2HKka8IrCYPRbGcTwju3e8Wz6XPfikw72o1Dq7nBxZvY7V-7v502s8NSllPaGBuL1qUA87Wmq4vZs08jwVqwa8GlUBvYuBHz11LCW8pBeYu2LqV7vqd4K7VqVIvcQaGbxgoNY7MQRFPS9nHbt67G06OwZfPXi3Ej1BxrO6F96LPSKZwDu3KJK77ECnvCFKqLvPtwk7-afvPDN347zzb1m7k2KRPaaBP72Dk6y5wJCbOjwUhT035rQ4chGEvGIQ2D2E1A638nwGPc-br719GeA4XFQLvZwV8b3cnnU5X9y8vdXiuLy0JVy3qdMqu8BeYTzdW2s2IviEvVN3pbxF6Hg6CK7SvVhqJz0SXiG52h5dPQq0Zb07UMY3W9pfvNImHT1I3tG4-acvPGIgmby9kO24eH1mPDtU8z1THCg4t8lyPG0tHb3Lo8K4Rj86PfTOhz1s_re4ckswvRJDvLyc0163BZsEOxt7m73nlm62nQ5HO3efA75D3oy3sOJUPbJXTLvl0YU4uOQovtF_hbyd-Bq5AooHPJ85oL2zEZ23QXF2Pd40Qj1fnKK2cU_hPLmAwLqkzK23weMrPtylaLwHiXS5VMXUvf97S70YUVe2DZ-6O89cUb2hRa624tMXvZk-Bb10xta2va8FPaVJCb6tnoW4Iv_sPTUpBT7zflu4uhOsvHLcuT10MBi56Qshvit8Bz3utlk4fZEUPNhBSj0UYwg4IAA4E0AJSG1QASpzEAAaYCcBABfkL-_j7xHfRe7f7qPPD84exgf_3DL_AeXS1_DwyLTEKv8OIR_SoAAAACPt9h_qACN_2MMa3tEWDNu7ByM5VvEKUs3FCCvIz_Qc8e1W8TYiPQDsDqwRRtn4JS1BBiAALf7RGTs4E0AJSG9QAiqvBhAMGqAGAAAAQQAAwMAAACBCAACowgAAbEIAAIDAAACSQgAAiMEAAKBBAACowQAAMMEAACDBAADYwQAAcMEAAOjBAACIQQAAIMEAAIDCAADoQQAAuMEAAAxCAABwwQAAyMEAAKBBAACoQQAAwEAAAJZCAACqwgAAgMEAAKBBAABowgAAcEEAAJTCAABwwQAAXMIAAIDAAACAQQAAPEIAAIBAAAAAwQAAQEEAALBBAAAgQgAAikIAAJZCAAAowgAA4EAAAGDBAAAQQgAAgEEAAEDCAAAIwgAAkMEAAMBBAADgQQAAUEEAACjCAAAAAAAAEEEAAIpCAABAQQAAiMIAALjBAABswgAAkEEAAKLCAAC4wQAAhMIAAHDBAAAswgAAKEIAAOBAAACswgAAHEIAAAzCAACgwAAAQMEAAIC_AACQwQAAQMAAADDCAAA8QgAAuMEAAMDAAACaQgAAPMIAAAxCAACAPwAA8EEAAEDCAADwQQAAlEIAAFzCAADAQQAAMMEAABzCAADgQAAARMIAAKxCAACQQQAApMIAAJhBAAAsQgAABMIAADBBAAAgQQAA-MEAANhBAACIQQAAVEIAAChCAAAAwAAAUMEAAMhBAABUwgAAoEEAAEBAAAAAAAAA3MIAAODBAABQwQAAgMEAAGDBAACgQAAAQMEAAJDBAAAwQgAAgD8AABDBAADoQQAAwMEAABDCAABgQQAAQEIAAMBAAAAIQgAAYEEAAIBBAACMwgAA0MEAACBCAADgwQAAIEIAACDCAACAwQAA8EEAAFDCAAAEwgAAYMEAACTCAAAkwgAAYMEAACRCAABAwQAA2EEAADzCAAA4wgAAWMIAAFzCAAAAQQAAFMIAAARCAABswgAAMMIAADjCAAAQQQAA0MEAAIRCAAAoQgAAmEEAAIDAAAC4wQAAQEEAAHTCAACYwgAAIEEAANBBAAAEwgAA8MEAABDCAACwwQAAmMEAANDBAABQwQAA6kIAAKDAAABgwgAAdMIAAGBBAADIQQAAgD8AAMDAAACKQgAAAEEAAKxCAACUQgAAMEEAANBBAADwwQAABMIgADgTQAlIdVABKo8CEAAagAIAALi9AACmvgAApj4AAOC8AAAEPgAAmj4AAFQ-AAANvwAA4DwAANg9AABMvgAA4LwAAMi9AAB0PgAAqD0AAJi9AAAQPQAAgLsAACw-AAAFPwAAdz8AANi9AAAQvQAAsj4AAJK-AACAuwAAPD4AAMi9AAAkPgAACT8AALg9AADGvgAAqL0AADA9AAAsvgAAJL4AAOi9AACmvgAAvr4AAOY-AACYvQAAyL0AAEC8AABQvQAAEL0AAOC8AACGPgAAPL4AAJK-AABkvgAAVL4AABA9AAD2PgAABL4AABA9AAC4PQAAfz8AAHA9AACovQAAED0AAOC8AABUPgAAuL0AAHy-IAA4E0AJSHxQASqPAhABGoACAAAkPgAAND4AAFy-AABHvwAAor4AAES-AACmPgAAFL4AAKo-AABQPQAAoDwAAIC7AAAQPQAAMD0AANi9AABAvAAAqr4AANo-AACOvgAAVD4AADw-AABkvgAAyL0AAAS-AAAkvgAA6D0AAFA9AADIPQAAUL0AAJY-AAAEPgAAVD4AAAW_AACIPQAAnr4AAIg9AAALPwAAcL0AAL6-AACmvgAATD4AALg9AADovQAA8j4AAGw-AABwPQAAf78AAPg9AABEPgAAuD0AAJi9AAA8PgAAHL4AABw-AAD4PQAAij4AABC9AABwvQAABD4AADA9AACaPgAAML0AAPi9AACiviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=O74LFU4VmlE","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["18140150045761845202"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"250788291"},"9084531608497530095":{"videoId":"9084531608497530095","docid":"34-9-5-Z74BB4FEAD1067DA9","description":"If you find this video useful, Join our channel to support : / @engineeringfacts Subscribe to Buying Facts channel : / @buyingfacts Follow me on : Facebook : Engineeringfactsfb...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4314090/e7b96dc495d4cfd908fb775564f5d460/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/M49MMwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Di8PxyTmm3Gs","linkTemplate":"/video/preview/9084531608497530095?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simple explanation of sin, cos and tan functions in trigonometry...","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=i8PxyTmm3Gs\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFQoTOTA4NDUzMTYwODQ5NzUzMDA5NVoTOTA4NDUzMTYwODQ5NzUzMDA5NWqHFxIBMBgAIkQaMAAKKWhoaHl4dWx5a3BzZnlpamhoVUNYelVMQ1d1dmJuam03UTBGNlJCS3N3EgIAESoQwg8PGg8_E-QEggQkAYAEKyqLARABGniB7_oBAPwFAPP5AgD6AwAB_QH0Bvj9_QDs-PzzAv8BAP0EAP0FAAAA-gr7AwIAAADy7wH5-v8AAAj89v34AAAAHQAJ__oAAAAQAPzx_wEAAO7-9PkCAAAABff1Af8AAAAND_z3AAAAAAcQ8PwBAAAABgYDCf8AAAAgAC18Zd47OBNACUhOUAIqhAIQABrwAX_vTv_K5N3_vwPjAbQd1v-HQQT_MzXyAKfozQC__-cB4BBW_6ADFP42z-z_whMxACMBtADw7hoAOakPAgHhzv-z7xsARbwUAS35CQHz5PMA1jDfARTl__812c4CJP_Q_w3vF_gzB87-JBy9AlQIHwH6IC__8Sb1A7QdAADMLOIAz8Xc_dgqGP4KFwH24wkvAvX2__kqCQb_7j7a_BX0A_kUIuv9Gw7cBfPv2gW_3xUFz_X-CAq85wAV3PoI8ALe9sjqBvvU2yYEFvsV-_jaAvPO-QUIDjby9w7mDvnVBAYS_zYFCQntEgAG3-L__9f5-CAALcae7Do4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6qfcUvEQlw7t3Lsy8S9O2vZbLKz2s7ge9_g3aPV8tUjyc9OO8vY6QvnznXL3Ypik7FJRCPkZFHL1z6AC8DjEOvk0GkTxH6EK85_4qvl3L_zxIdCo8wTo-PomuED3lK0G9wsmMPS9SQ718Gbs8soJfvfQIpLx5fJa8D1hDvT8ZY7xsiea825lTPZILmb286-y7dfWEPRSCKz3ywfy8krMQPXWKqj1L5e27rHDrvfDTgjwyBam7CXmTPQ3WyTz8jmE8ic8NviJ8jr2Yb5g8E1EjvMGGELxQtOG805klvRc5ejxbqEa8SHe2PQJ4VTy_CtU8JxaYvYsDg7wsqtW7R1L3vO-EyD17Rsc8SuGLPFga2D0gOHi8ZmUePAkCnrtWFoG7C5YqPXCVJ7yqzDk8My02PSAqTT2lKx47QVw9u2vUwz3EGwI8RB6cvUnEvz2Tc2K89wY6PABCej2uJCA8p9yOOoIoTr0f3k68trVqvXqvVT2_1iU8nRzEPQS4j7ulwyC8j-AWPlt4Dr4D5w68AwyWPZVQsLxb5EO8GahxPecKhT0lyXM8xNaFO5gqQr3I4Pa7KHbZvFcIq700iIu7dVCRur9amjwihuM6mPkOvujdiD0avHE7VK7su-RZeD2WFRa84-BSPG--bDzzE_c78uQfvbg2t7tRyGe7Yt-pPNOueDy1d1u7sdWKPI2hNbtGmUu75lsAPESQnrwlIVO7PgNquzfh3r3ZfM65Wx6QPTguAjzz1DO6zHpxPQZVWTyB4-657ECnPDnWJb087nG5izy0vX01UT04Hxg4eatTPJNxbL2qhgM5QdS9vdocB72FqYG5O7hFvUSVkD0c6L44EWpLvZjDSTyxZZk5F4W4vVqssrx_Iu654gy5vekiKjxkmj242h5dPQq0Zb07UMY3mrafPQRHuLzNGwc4Dw0LPbWVTbzk4ai4nKbPPSO6Jz71CrC5sv5lvSpjMjz8jBS50SWnPc7ZZz3-jyQ5sOmcvHY2BD7X8123L2uku3uqeb15UDq3u9TIPQNANb3Yvns3yD7tvKUntr1XCMk4SlGovWNu7Tz7BT44359XPdHHYb3ud6o4-KcUPgP6Tj0f9O02hBtfvNoVPz0kVA4464RhPSsY1bw8k_G4-UrgvQyP3b1jM0S4PjxwvOfjOTt4ZqQ2-y-hPboQEL3Bx4o3aVLKPBdLTL2SAFu4QstfPWMatz1ukI444hiuPG-loj1MJ1K4NXoVvSthNzwusg83mGdKvUEUJzzyREw3IAA4E0AJSG1QASpzEAAaYFD5AA7qFdTiChndG9ba78zM-AAXxxD_4O4A7TgFHCQi5cDzCQAS-Rz6sgAAAAUZEBfuAOZq_N0nIwoYB8DEwiUQfwcRDAbsDf-g7QY5B-oeD_IiEwDY_rsRUfH2Xz1ISCAALbGhKDs4E0AJSG9QAiqvBhAMGqAGAAAwQQAA2MEAAKhBAAAgwQAAqEEAAAhCAAAAQAAAyMEAANbCAAAYwgAA4MAAADDBAADOwgAAUEEAACBCAAA0wgAAAEAAAMDBAAAAwQAAqsIAAFBBAAAgwQAAoEAAAIBBAACgQQAAsMEAAJbCAABAwgAAoMAAACBBAAA4wgAA2EEAADDCAACgQQAA4MEAAGDBAABQQQAAXEIAAOhBAABEwgAAaEIAAFBCAAD4QQAAiEEAAODBAADGwgAAAEEAABDBAAAIQgAASMIAACDCAABIwgAAMMIAAIBAAABQQQAAYEEAAJLCAAAAQQAAAMAAAAxCAACIQgAAoEAAAKhBAAC6wgAAoEEAAKDAAABgQQAA6MEAALjBAABQwQAAmkIAAPhBAAB4wgAAaEIAADhCAABgwQAALMIAAKDAAAAcwgAAwMEAAIDCAACAwAAAnkIAACxCAACYQQAAWEIAAMBAAAAQQgAAoEEAAADAAACwwQAAyEEAAAjCAAAEwgAAKEIAADTCAADAQAAATEIAACxCAACgwAAAQMIAAEBCAACeQgAANMIAAFTCAABQQgAAuMEAAExCAADQwQAAyMEAADhCAACowQAA2MEAANjBAACSQgAA0EEAAEBAAACgwAAAIMEAAITCAABgQQAAgsIAAIA_AACMwgAAUEEAAGxCAACIwQAAmMEAADTCAABgwQAARMIAAAhCAAAwQQAAlkIAAFxCAADgQQAAwMAAADBBAABYwgAAkMEAAJhCAAAwwgAAsMEAAKBAAAAoQgAAMMIAAMBBAAAAQQAAgEEAAJBBAADwQQAAAEEAAEBAAAAcwgAA4EEAAOjBAADgQQAAhMIAABTCAACmQgAAbMIAAIZCAADwQQAAoMAAABDBAAAAwgAAmEEAAIxCAABoQgAAsEEAAFjCAACIQgAAgL8AAKDBAADgwQAAGEIAADjCAAAowgAA0EEAAIRCAADAwAAAeMIAAGzCAAA4wgAAJEIAAKjBAAAQwgAAEEEAAMBBAACoQQAAFMIAACxCAADoQQAAuMEAAExCAABgwQAAYMEAAFBCAAAswgAAHMIgADgTQAlIdVABKo8CEAAagAIAADC9AADGvgAA2D0AAEy-AABkPgAACT8AAHQ-AAApvwAA4LwAAKA8AACovQAAgDsAAKA8AADaPgAAyL0AAHS-AADovQAAoLwAADw-AAAfPwAAfz8AAFS-AACIPQAALD4AAOK-AABMPgAAfD4AAAy-AAAUPgAADz8AAII-AADevgAA2L0AAKi9AACIPQAAQLwAAFC9AAA8vgAABb8AAJ4-AADovQAA4DwAAIo-AAD4vQAA4DwAACQ-AADWPgAAbL4AALi9AADKvgAAnr4AAGy-AAAXPwAAgDsAAIC7AADIPQAAUz8AAPi9AAD4vQAAZD4AAKA8AAD4PQAAQDwAAIq-IAA4E0AJSHxQASqPAhABGoACAADoPQAA-L0AAKi9AABFvwAAdL4AACS-AABEPgAAcD0AAHC9AAD4PQAAmD0AAKC8AAC4PQAABL4AAOC8AADgvAAAyL0AAAM_AAAwPQAAhj4AAGQ-AACgPAAAED0AABS-AAAEvgAAUL0AAKi9AABAPAAAmL0AAII-AADIPQAAPD4AAOq-AAAUvgAAML0AAEC8AAAFPwAABD4AAAm_AAAcvgAAoLwAAKg9AAAMvgAAqj4AAMY-AABUPgAAf78AAMg9AAC4PQAANL4AAIg9AADIPQAA4DwAAAQ-AABwPQAAND4AABA9AAAcvgAAbD4AAOC8AACCPgAA-D0AAKi9AACeviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=i8PxyTmm3Gs","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["9084531608497530095"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2112576765"},"788606877771961357":{"videoId":"788606877771961357","docid":"34-0-13-Z78076F46C5165DC1","description":"Trigonometry is an easy way to work out the unknown sides and angles of a right angled triangle. The trick - know the side names - the opposite, hypotenuse, and adjacent, and know how and when to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3926584/bebbcc54e12f91fd34d26186890beb53/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/-Sz8lwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DE9_d_ET9yjI","linkTemplate":"/video/preview/788606877771961357?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sin Cos Tan - Basic Trigonometry - Working out unknown sides","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=E9_d_ET9yjI\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFAoSNzg4NjA2ODc3NzcxOTYxMzU3WhI3ODg2MDY4Nzc3NzE5NjEzNTdqhxcSATAYACJEGjAACiloaHRheXN4b25ueXRjbnpoaFVDYjd3NWFUbnQ3WWVYQmNWQ1kwbWdGdxICABEqEMIPDxoPPxPbBoIEJAGABCsqiwEQARp4geoGCwIE_AD4BwwH-Af9AgH79fz3_f0A4gLv9gP8AgDy_fz8CQAAAPQL_PkFAAAAB-4G-v39AQAJ8vbyAgAAACD98vr8AAAAEgD77_8BAAD8-v32Av8AAPvrAgX_AAAADhD89gAAAAAFC-0KAAAAAAL69QcAAAAAIAAtTMXGOzgTQAlITlACKoQCEAAa8AF_-SgB3fboAez7_QDtLBYBpxwKAPw10QDWFxQAoxPm_xUbAgH1EPz_LNjw_8Qf1gAtDv7__PwC_zXIIv8z898AwPIXAB0H7QE6KRoANwDi_90mE__45BIA89mxAP0W-wDyxAD-B8nN___kyABN-iwA-xsn_8jlBgL09wP78B_3--L11v0ZAO0D6Pn6-gMMNP4YuwoDJfv7_u3pAvs17RMDI_D_CA4UzwAbEtn53v4TBAgM7AYSxQcKIxIT8t_x6QHl4B__tfQN_NfrGP_tLfvw5_Tu9v4q-w0b8w8E-fEPBfT66v_WIQ_7_gDnCPXm8OcgAC3nWA87OBNACUhhUAIqzwcQABrAB5xNr77qwlm8SWf9u6Wdj71E5M-8hUu9vFGH9b3Xl4Y9hadhvVDIPj6Qbr67prk1vVBIfL1x0aS8ATzYvBSUQj5GRRy9c-gAvGLZLL5yAqo7w2QKvSxDgb3-odO7SQJDvWyw8DwKa6E7DtmjupA4ej1YnWa8X-lBPZFWRjy0jqq8lIAdvfihGjwfheu9vJF5vCGGlz14yQk9RAIBvZSUBT3nON25GbsQPMbEgTwYcrE9zamJPBaSYr0RXnW7PvTTvBIduDxvwrO80BzjPD08lb0vn9E8cuwwu-VeAL1NmLq82P9vvMx6ET4WhxM9fJOLvFuDUr2zUz0728-Yu2UXXL54p4w8KAS8uymuqjyWSq49-D_Zu8hFJb5p0YE9nQjHvD8ojj2sHxu9M7yfOyieAz6srVi88eXPO_5aoz3wUmq9paq_um1eCz2JTXo9EGIhO8eOfD0wL8A7JtvlvP6vjz3MKuy8YKiJu1BBNL1gYbe8KeWaPKQsjT2dHBW8eWyRO8QdlLwbuR4-0gyYugUjpT3WAju-SeWaOtGPq7vkNB-9spE1vEt2bD0N7cI9OeajO7QgBD4YCAK92CA3unmVkLzwNT-9KGBgPAPBLT3svHK9l7hBuI-sF71HcW49qlAVvE-5GL0wZus9U2bCuSC9vLyCaHe9f8uUO7ycbTycKHM9uHDiO9NBqLwSnEA7gDnEu4Yo1ztNsbQ8S-JuOofp0rv0eJA8KP0Uu9kQEr1Jzei8WkKlO9mbszwsq3-9RmOZueJbmD26JJi8HZ97Obcp_Tp_ukY9NfpOOTT9iD0yyjM-jlcuOonI1Tx9P4W9R1qFOVQb_L1iu_u9E9PyOdQblL3d2tu7wYFwODQH0rwLuAI9515KOm3dUr1jXLM7eQeCuUNxh73LvBe8AyGfuBuLfD01yRk9bTuCtmN82L1OOfA8gZ6Hudn5ijtBqKG95Te8OQ_Rqrtvngo-oKIZuW_zRrxTwbK8G6uRuO1EST1b7PY843xnOG4YBb15bJW8neFRt2rS9zxrbLq95fh9OAacJbyMatG9-lP3N9iYPD20JcY8zh-AuCL7AL7GXyQ9F5hlOKTCmD23P907gQP_OPinFD4D-k49H_TtNhWDUTxvVs68JSYQOKOxFj6mVZ49RyMkuaVcqzyyT4u9RRhHuOoBOL3DLqW8rhHJt6WCij2Fac688s5AuLf2GT0OVUe9bKlYuMr0cD0i4Ss-8cuKOLXPub2yQYs8AsE_uKclBr7PGYu79I40NjoKDLvw3tE8SNeEOCAAOBNACUhtUAEqcxAAGmBA-AA86wfl3BA93_Pb4hHWwhTVBK3g_9sB_w0V2iwTH7626B__JtYMvJsAAAAl3dZBGgD7f-aoKwAIQTyfvMxYJWYX8ArqC0Qc9doUJxH0GfYRThkAKhvVJTzLDUEcXyMgAC2LeRI7OBNACUhvUAIqrwYQDBqgBgAAoEEAAIBAAAA8QgAAnMIAAMhBAADQQQAAQEIAAJDBAAAowgAAAMIAAIA_AABAQAAAkEEAAIDAAACIQQAA8EEAABxCAADgwQAAHEIAADDBAAAQwQAAgsIAACDCAACeQgAAAMAAABBBAAA4QgAAIMIAAMjBAACgQAAADMIAAMhBAABkwgAAEEEAAFjCAACAvwAAyEEAAHhCAAAMwgAAgEEAADRCAACAvwAAAEAAACBCAABcQgAA-MEAAOBBAAAQQgAAwEEAAMBBAABYwgAArsIAABTCAAA4QgAAgL8AAIDAAADAQAAAcEEAACBBAAAEQgAADEIAAI7CAACIwQAAFMIAAEDBAACKwgAAEMIAADjCAAAQwgAAIMEAADBBAAAUQgAAhsIAACBBAAAAQAAAAMIAAIbCAAAYwgAAgEAAAEBBAADQwQAAkkIAAHBBAABAwQAA-EEAAODBAAAIQgAAHMIAABBCAACIwQAAdEIAAKBCAACKwgAA-MEAAKrCAACGwgAAMEEAAJDBAADQQgAAjEIAAKLCAAAUQgAAcEEAAGzCAABwwQAAMEEAAPDBAABwQQAAYMEAAJZCAAAAQQAAsEEAAEDAAADoQQAA8MEAACBBAADAQAAAAMIAAATCAADgwQAATMIAAIDCAACgwQAAAEAAACjCAAAAwQAAqMEAALDBAADYwQAATEIAAIC_AABowgAAgD8AAFhCAADwwQAAPEIAAEDAAADgQQAA4MEAANDBAABQQQAAoMAAAKhBAAC6wgAAFEIAAIxCAAAwwgAAgMEAAKBAAAAYwgAAYMEAAABCAAAkQgAAMMEAAOhBAAAcwgAAtsIAAFDCAACgwgAAUEIAAKBAAABUQgAAMMEAAIDBAAAAwQAAqEEAABxCAACiQgAAgMAAAIhBAAAIwgAAyMEAAIA_AACQwgAAIMIAAIDBAACgQAAAoEAAADjCAACAQAAAmMIAAIDCAAAEwgAAwEEAAL5CAACAwQAAeMIAADjCAACYwQAA6MEAABBCAADYwQAAPEIAACDBAAAgQgAADEIAADBBAACAwQAA4EAAAPDBIAA4E0AJSHVQASqPAhAAGoACAABwvQAAXL4AAM4-AAAcvgAA2D0AADQ-AADYPQAA7r4AAES-AABQPQAAqr4AAMg9AABwvQAAFD4AABC9AAAMvgAAFD4AAMi9AAAUPgAAET8AAH8_AADIvQAA4LwAAEQ-AAA8vgAAgDsAABw-AADovQAA6D0AAM4-AAAQvQAAgr4AADC9AABcPgAAEL0AAFy-AABAvAAAML0AAL6-AAA0PgAAfL4AAEw-AABEPgAAED0AADC9AACoPQAAgj4AADC9AAAMPgAAQDwAACy-AAAQvQAAtj4AADw-AACqvgAA4DwAADk_AABAPAAAdL4AABQ-AAC4vQAAPD4AALg9AACCviAAOBNACUh8UAEqjwIQARqAAgAA-L0AAEw-AAAwvQAAQb8AACy-AAAEvgAAHD4AAFy-AAD4PQAAVD4AAHC9AAAsvgAAQLwAAEC8AABAPAAABL4AAJq-AAAtPwAAFL4AAKI-AADIPQAAsr4AAFA9AAAUvgAAgLsAAAS-AAD4vQAAqD0AACQ-AADYPQAAMD0AABw-AACKvgAABL4AAKg9AABwvQAAsj4AAOg9AABcvgAAiL0AADQ-AACIPQAAHL4AAKg9AACgPAAAED0AAH-_AADoPQAAyD0AAIA7AAAwPQAA6L0AAJi9AABcPgAABD4AACQ-AABAvAAAoDwAAMi9AABQPQAALD4AAKA8AADoPQAAPL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=E9_d_ET9yjI","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1264,"cheight":720,"cratio":1.75555,"dups":["788606877771961357"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2105247368"},"5996164232881940214":{"videoId":"5996164232881940214","docid":"34-1-12-Z50E9A648F63042E1","description":"write sin(3x) in terms of sin(x), angle sum formula for sine, double angle formula for sine, double angle formula for cosine, simplifying trig identities, trigonometric identities examples, Verify...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3319679/2c842aad7bd5ebb254ea8c6e5f4a656b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/4O6_nQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DaSq9vwGHLTg","linkTemplate":"/video/preview/5996164232881940214?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"sin(3x) in terms of sin(x)","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=aSq9vwGHLTg\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFQoTNTk5NjE2NDIzMjg4MTk0MDIxNFoTNTk5NjE2NDIzMjg4MTk0MDIxNGqTFxIBMBgAIkUaMQAKKmhocndwaXprY25xbmFneGJoaFVDX1N2WVAwazA1VUtpSl8ybmRCMDJJQRICABIqEMIPDxoPPxPIAoIEJAGABCsqiwEQARp4ge4B-f38BQAD_gr7_QP_AfED_Aj6_v4A8_v9_AcBAADp-QMGCP8AAPUK_PoEAAAAA_v9-_3-AQAM9wPwAwAAABL5Av_3AAAADgP4_v4BAAAHCvj7AwAAAAgEAgoAAAAA_AL_7gAAAAD8Bwb1AQAAAAL79wYAAAAAIAAtcYbeOzgTQAlITlACKoQCEAAa8AF_-_QB4PfqAe8G2QDJC_r_jgko_zQSyQDE-x8A3PLuAe886wDNAd__I-0F_9EgEgAbAccA9PIUABfm7P8d6O8A6OnkAT_y4gBB4Qf_5PPWANDwLwD58vsAFtnVAwIW6QMk_SL_GSH1_Rz84wAL9B__Hu0jAij89_8CCvz-v_wWAeX22v3e3vwDIfcLA8MfFwMRDewB_Afv_90q9QIUzOf_Ab4d_xAV8wAe8-IF__0ICcf7AwHx9en4BAcp__QC5_no8Rf5yf8B9goKFvUN6Aj9FQ3-B-rZAAIj8PIAGQAY_t4I8PwBDgD55yD9Bu_4_A0gAC1jyx07OBNACUhhUAIqzwcQABrAB8Gq4r7LKLu8trC4PPUKDzwaNuc7VT1PvZn1gj1I8qY8GmiEO5gw2j0FIKS8HtZlPJfHqr4Tx-w7vhGdvJjdIz6BSZC9Q_T1vHXJKL7aVJ09k5CjPOf-Kr5dy_88SHQqPPCG9D2ns9M8d5scvW_AAj040VO9CgmivGJRLL1kUqg8qJZjvF2psr3BnCq9PR5EvPY6jr3ZvQu9ucOmvIYecT1Pmye91YItvSBXVD04rhU9xgTKurREgryAKeM9Wan7uywoPD46gZ88_QKwvAR2cL1erF48qOukvH_u1TyA4AA9yqFqPNEbk71PNFm8bmSDPGOSArngXj68JBW8vALrXTv2f447iHqmvOyG7T2M94M9cluRO9zvhb3dCfY9yJ3ruipwkj1lcX-8G_ZWvNP627xsmco6arfCPDMtNj0gKk09pSseO262I735WHA9CRLAPHbVnb15Edw8f-x9u_zgHD2540g9arvsu8CCaj27E1o6yxibu6cdY71_WZC6br70u4IE_zus0eE87S1AvLYUCz2RVIC95WuFvJXcPL088cG9Q-nmuxmocT3nCoU9JclzPDrUyrs54Km9dh-6O8R7zj2FNa-9hxWPO2BDKz3CGIE9-fcZvHZxWbq47yy8Z63TOs9MwL1V8es8SXXwunnzSj1cLQU8s5ouPGaEV702kgS9LBD7O2NMNT1QXya7dMI6vFFtSz1h1Qu7toZvO1T6nj2a6Di9eFpPOHX1eb21t7W9rP-Uuqzhxzx8h5G82-w8O9FIyj0L6oC8ju3guKL3Qb00ILw9HUR7uZ1enr1DAVu8wQYauT2ayj3E2Ii96JtSuPyzVb13PbK9hRswuN-7Mj27r-88KxTjtzuYAz3OCvu7vTHrupclpT0T48Y8-sddufvttj0WPHs9RpgLufrESzwtHHS62_9ItwwHgry0i8y7D7P_OQfIIbxFqwk99aDyNxcDFT2_fHc9PQcHORgIEj6SIgK-FGsQOrNGmL2qK589qfo6uJjyRr0DGlY95OmFOHLCZD3f_wI9bA0MOL3IRD0u0Y88BKalNlU13LxrD_s8pxegN2VTzr3C6Kg8_jLoN28Egz2AYKO94wTqOMLz2rtiTeW8HAXEt3l6gLxJCP87uB5nOICgVz1Y2Yi9TsmFuEfHF7zxudM8UE90t3jclj2Zdlu94b_HOAX65L3tBnY9KnvPOL2vBT2lSQm-rZ6FuCL_7D01KQU-835buGCamDxbmvs9hK39uD2ART13qUc8onbIt1gkgb0WCmI9jJI4uCAAOBNACUhtUAEqcxAAGmAgCAAl6CXL5A4T9fLB2uTo4QbT7scR_yDR_wf56QIBHMa4SPr_J-sW4qEAAAArxenqBQDWfcjr3zLv6t7UhOQJGn8TJfjh6Sfj49MRKgwRBHPyI0AA6_-mNEqo6RQp9SUgAC39Ihk7OBNACUhvUAIqrwYQDBqgBgAACEIAAI7CAACEQgAAQMAAAGBBAACAPwAAMEIAAGDBAAA8wgAAgL8AAIA_AAAwwgAAEEEAAFjCAAC4wQAAAEAAAAAAAACGwgAAlEIAAJDBAABAQAAAUEEAAIDBAADgQQAAgsIAAKhBAAAQwgAAoEEAAFRCAADAwQAAuMEAAAAAAACowQAAgMEAABTCAABMQgAATEIAAIBCAAB4wgAA4EAAAIC_AABAQAAA2EEAADBBAAAAAAAAoMAAANBBAADAQAAAIEIAAHDBAACgwAAAuMEAAEDAAABAwQAAkEEAAAhCAAA0wgAAcMEAAERCAAAgQgAAAEIAAMjCAACgwAAAQMIAAAAAAAC4wQAAUEEAAIzCAABQwgAAQMEAAABCAAC4QgAANMIAAOBBAABQQQAAZMIAACDBAADYQQAAkMEAAFBBAADQwQAAMEIAALDBAADgQQAAgD8AACRCAAD4QQAAREIAACDBAAC2wgAAiMIAADRCAAAAwQAAqMEAABTCAACYwQAAAEAAAFBCAABwQQAAiEIAAMjBAACYQQAAkEEAAHDCAAAIwgAA6MEAAKDAAACYQgAAqEEAAIJCAACSQgAAFEIAAIDAAABUQgAANEIAAKhBAACAPwAAdMIAACRCAAAcwgAAqMEAALjCAAAIwgAAjMIAABBBAADAwQAAZMIAAABAAACMwgAAIMEAAIA_AAAAQAAAoEAAABRCAACowQAADEIAAGBCAACAQAAAqEEAANLCAACgwQAA8EEAAKjBAABAwQAAJEIAABRCAABgwgAAWEIAAAAAAACowQAAkEEAABDCAACKQgAAiMEAAEDAAAAIQgAAgL8AAIzCAADowQAAFEIAABjCAACQwQAA6MEAABTCAADAwQAAUEEAACDBAAA0QgAA6EEAANhBAACgQAAAqMEAAEBAAAAAwQAA8MEAACBCAAAYwgAAVMIAAIBCAADoQgAALMIAAODBAAAAAAAA4MAAAGRCAACawgAAAMEAAIDBAAAAQAAAQEEAADBBAADowQAAbEIAAMDBAAAwwQAAikIAAHjCAAAwwQAA4MAAADjCIAA4E0AJSHVQASqPAhAAGoACAABwvQAAcL0AAKI-AAAQvQAA4DwAAKI-AACIPQAA1r4AALg9AABAvAAAHL4AAOg9AADoPQAAqL0AAIi9AADIPQAAFD4AAIi9AAAUPgAArj4AAH8_AAAMvgAAqD0AAHw-AAC-vgAAJD4AAEA8AADovQAAfD4AACQ-AACIPQAA0r4AAMg9AACgPAAAED0AADC9AAD4vQAAor4AACS-AAAQvQAADD4AABS-AAA0PgAAoLwAAKg9AAAQPQAAhj4AAKi9AABUvgAAdL4AACy-AABAPAAA-D0AAOi9AAC4vQAAuD0AADU_AAC4vQAAML0AABS-AAAkvgAAoDwAAOC8AABkviAAOBNACUh8UAEqjwIQARqAAgAAnr4AAJi9AAAwvQAARb8AAIi9AAC6vgAAHD4AAIa-AABMPgAAgDsAAIA7AAD4PQAAcD0AADA9AACIvQAAoDwAALa-AAADPwAAQLwAAPg9AAC6PgAAgLsAACS-AACYPQAADL4AAAS-AABAvAAAyD0AAIC7AAC4PQAAyD0AAGw-AAAsvgAADD4AAIC7AAAQvQAAAz8AADC9AAC6vgAATL4AAKg9AADoPQAA-L0AADQ-AADOPgAAgr4AAH-_AACmPgAAyj4AAJK-AACAOwAAiD0AAIg9AABcPgAAuL0AAJ4-AADgvAAAmL0AAEQ-AABQvQAAiD0AAIa-AACGvgAA2L0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=aSq9vwGHLTg","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5996164232881940214"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3167837765"},"13119102848479071094":{"videoId":"13119102848479071094","docid":"34-11-16-Z20D4FE40E56D66D6","description":"What exactly is Sin? Where did sin come from, and what’s the problem with it? In this video, we answer the question: “What is the definition of sin?”. Source Article...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3413061/2806a7ecdee99d113c6d639d9d4154dc/564x318_1"},"target":"_self","position":"10","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dvc4jJGUBOZg","linkTemplate":"/video/preview/13119102848479071094?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is the definition of sin? | GotQuestions.org","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vc4jJGUBOZg\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFgoUMTMxMTkxMDI4NDg0NzkwNzEwOTRaFDEzMTE5MTAyODQ4NDc5MDcxMDk0aq8NEgEwGAAiRRoxAAoqaGh6ZWZhcGFiZXRiZmRvZGhoVUNySEFEVThIMFAyUV83OXNBaFlqbEdBEgIAEioQwg8PGg8_E_oBggQkAYAEKyqLARABGniBAgD0_QL-APv1Dv4HBf0B3AEKB_0CAgDlAwT9Cf0CAPIACPz7AAAA_wYB_wUAAADt-P_z9QAAAPwHCfMFAAAAFu_29v0AAAAa_fYE_gEAAAT6AwED_wAACPsHDP8AAAAD9wbwAP8AAP4K-AsAAAAACQkBFAAAAAAgAC3Os847OBNACUhOUAIqcxAAGmAnBgAsDBbh7PsX9wzw3PL0BwL82-Dx_-HmAM0F2uT0IODS2v4ALq4LA7sAAAA24fYasgAFWeT_vzYGAxDs7dbv-H8B4s4D0jbj4Rbt_iPuCg0GDjkA8_7tGvD5_CHwKFMgAC2uHkM7OBNACUhvUAIqrwYQDBqgBgAAyEEAAHDBAACAwAAA6MEAAMjBAABAwAAA2EEAAIhBAAAQwQAAqMEAACBCAABkwgAAZMIAAEjCAABwQQAA2MEAALDBAAB8wgAA4MAAADBBAAB4QgAAlMIAAEBBAACYwQAAUEIAACDBAADYwQAAtMIAADRCAACoQQAAaMIAAOhBAACYwgAAUEEAAMDBAAAwwQAAgD8AAGhCAACAPwAAYMEAAIJCAAAwwQAAZEIAAIBCAACkQgAAEMIAAHzCAAAowgAASEIAACTCAABMwgAAQMAAACBBAAAwwQAAREIAABxCAADWwgAAUMEAAHhCAADYQQAALEIAALhBAACAQQAAXMIAADjCAADAwQAAUEEAABDBAAC4wQAA4EEAAIBCAACKQgAAiMEAAKhBAADgwQAALMIAAIC_AADgQQAAMMEAAIrCAADAwgAAQMAAAAxCAABkQgAACMIAAGDBAAAoQgAA2MEAAEBAAAAMwgAA0EEAACRCAAAUQgAAWMIAADDBAACawgAAgEAAAMhBAACAwAAAJMIAAEBBAAAQwQAAbEIAAEDCAABAwgAAgL8AAKBBAAAcQgAAjkIAABhCAACgQQAAdMIAAADCAAB4wgAAlEIAADDBAADwwQAAYMIAAKDBAABcQgAA4EAAAFDBAADYwQAASMIAALpCAAAAAAAAcMEAAOBBAADwwQAAOMIAAAhCAAAMQgAAgEAAALBBAAAkQgAAeEIAADDCAACAQQAAkMEAAJrCAACgwAAAEMEAACDBAACwQQAA6EEAABxCAABEQgAAgMAAANBBAADYQQAAIEIAALjBAABQQQAA6MEAAFDBAAD4wQAACMIAANDCAADwQQAACEIAAPDBAACWQgAACMIAADjCAAAQwQAAUMEAAPhBAABMQgAA6EEAAJjBAABcwgAA-EEAACjCAACYwgAAuEEAAOhBAACwQQAA8MEAAIBBAACEQgAA0MEAAAAAAADIwQAAUMEAACRCAACowQAAhMIAAGBCAAA0wgAAAEAAAITCAAAIwgAAIMEAAChCAAAAwAAAwMAAABTCAAAQwQAARMIAADjCIAA4E0AJSHVQASqPAhAAGoACAABMvgAAnr4AAAQ-AACePgAAor4AANI-AABMPgAAwr4AAKK-AACovQAAbL4AAHA9AABAvAAAUD0AAOC8AAA8vgAAoLwAAFC9AAC6PgAAPT8AAH8_AAAwvQAALD4AAGQ-AACuvgAAuL0AABQ-AADgvAAAuj4AAPY-AAA8PgAAXL4AAI6-AACgvAAAPD4AADA9AABEPgAAbL4AAMa-AAB8PgAATD4AAM6-AACqPgAAEL0AALg9AAC6PgAAij4AAL6-AAAQvQAAIb8AALK-AACoPQAAnj4AAEQ-AABsPgAA-D0AAGE_AAAQvQAAoLwAAIC7AABQvQAAEL0AADC9AADCviAAOBNACUh8UAEqjwIQARqAAgAARL4AAEy-AAA8vgAATb8AAFS-AAA8vgAAFD4AAAS-AABQPQAABD4AAFy-AADgvAAAtj4AADC9AAAQvQAAgLsAALg9AADqPgAAij4AAN4-AAAcPgAAmj4AAHA9AAAQvQAAqL0AAFC9AADgPAAAoDwAAAy-AACYvQAAEL0AAII-AAAwPQAA-L0AANi9AABcvgAAEz8AABA9AACOvgAAXL4AABS-AABMPgAAZL4AANg9AAC-PgAAgLsAAH-_AACAuwAA6L0AANg9AACCPgAA-D0AAHA9AADyPgAArr4AAEw-AACAuwAAHL4AALY-AAAcvgAAdD4AAEA8AABEvgAAhr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=vc4jJGUBOZg","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13119102848479071094"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3489967801"},"13331419191217578752":{"videoId":"13331419191217578752","docid":"34-8-8-Z9D1F36ACF5EC0B44","description":"This trigonometry tutorial video explains the unit circle and the basics of how to memorize it. It provides the angles in radians and degrees and shows you how to evaluate sin cos and tan.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3273229/82d20a5760cdcb0cefde4f7a81212af3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/tY97nwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"11","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DV5ArB_GFGYQ","linkTemplate":"/video/preview/13331419191217578752?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Unit Circle Trigonometry - Sin Cos Tan - Radians & Degrees","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=V5ArB_GFGYQ\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFgoUMTMzMzE0MTkxOTEyMTc1Nzg3NTJaFDEzMzMxNDE5MTkxMjE3NTc4NzUyapMXEgEwGAAiRRoxAAoqaGh3ZGFoaXlkcG1kcW9kYmhoVUNFV3BiRkx6b1lHUGZ1V1VNRlBTYW9BEgIAEioQwg8PGg8_E-0bggQkAYAEKyqLARABGniB8P0KAP4CAPb-AwX-Bf4B8AT8Cfn-_gDr-PvzAv8BAPcBEwEBAAAA-hAE_gYAAAD39f39_f8AABT69PQDAAAAGAgKC_sAAAARAPzw_wEAAPLz-PUCAAAABff1Af8AAAADDfn9__8AAAcR8PwBAAAAAP_-_wAAAAAgAC3oDdc7OBNACUhOUAIqhAIQABrwAX_cJgDQzuQB1wT2APb1pALkP-oAOEHd_8YN5v_N7v4A5A5L_9sc8wAi5uwBpgUqAR8BvgDp3foAWLgK_xnt3QLm0vIBHef0ATIgBgD-Bub_IDAD__LJ7P8Z8L__AhrlAyPeIf8Z898AGSblAf4FMQD4Fv0C4Bz__uft_QPPGAICFccI_Nc2CgUE-_bz4NIqAwLWCQlGGfL_-CL_-ugMCgYBGRQH4wwGA87p4AH6DAP95PIV_vCd-gMd4QwH2Sni_unrCwDa1QAA0dv_Byj8Bf3fAPYGLRoCCzH0C_rt6QAKAkHwBRjxA-jx7P0DHgDt7CAALXyzBjs4E0AJSGFQAirPBxAAGsAHu-7VvtsZJryC8UI79QoPPBo25ztVPU-9S9O2vZbLKz2s7ge9FHYRPt8O3rwmvoM7irm6vRAsHb0tVMg8pkI8PmVhOb08fEM9ehcvvgg8MD0pn9S8_Qeyvb-txzt7DhO8wvm0vYp2dDs4hyu9POmuPejUursTYGY6c69dPPMsgj0lweW8KBMyPbBfK72xpz29EBcKvb7_qryZAuM64nU7uzn8pDxkk5m70WPKPc5-Lj2al8O7ARVevgu8izowdSG8L-LWPM7cqD0wx6E8nS7rva9Pb7xfmsO7NMPBvdpXPj3BE8A7fPFFPfsEPTnFh2G7vJsiPcADqL3DP7I7JxaYvYsDg7wsqtW7wNFpOpIkGD7KNLs6rtcEvg2fPj3sRZm8zWEyPWVRWDz7Tl28kdZ4PZ_CNrwQSeM8uLc2PGSR5jxNagi9w6Novf5OCT1rlP88VxgMvVcbCD1b5EO83fN0O-8O3zw18dE5Qk3fO2HHmrwHoCw8k_7evClHzD39n-Q7iFcoPaWNmTx8Z826BSOlPdYCO75J5Zo6mhEZPTDy8rztoiu6n7C0PemPS7m4Rny7V1gVPYtUeL2SEN27x3lJvHVnmjrNGyu7s0VSvWJEJ702Fl68NtPIvXyUNjwucxu8NhqlvVvKnjzrKg-8xxw6PaxSGr34PWK7TwJbvT5LBj07HYY7eB-MPSKxcz2Acgi7zQrgPAGWprshntu7d14UPX2h9jxYEcG6PUoCvHwsfbwq1Ac8zI0zPIpnmr21tea4TyMdPpW4Dr0Ne9I49SksvTWYhrxjKjs5lInbvQndmj3vveg4udJhPS7elL1zT904VBv8vWK7-70T0_I52G-cPFUngb337se4FbVqvBKJIr0BFt24z43Eve3uJjxcZQy56IOlvCUSO70ecna5FkBCPF7aED3ceYe3uYy8u6Jq7DtDTbo65qULO1O7Nb193MI4_WTBPUAyjT0bLho4exLYvM8Gar3xp6E4AikRPqzUIj0rEgA5iaxaO_Z_Lj68OxW5A8zhPPHejL0kShQ5mBqsPdfwqb0C6F64C7UmPJV_LTxgmSo4WjSjvXxaSj1yIGw4Uqknu9cdZjwezxc4HF7wPX0E_jz055C4gCanvF2Dwz2iMsw0mXJvPeejMb2AAB64OcXEvWe3Jr7WR3I4Ns02vc_RzzwgkwA4CQZGPX1Ckb282JQ3PXOQPcivZL0ksgQ3ITK2PDs54z0EGwY5h9VJPUAv_D23qge5naYqvc3deLx-6Lu3egyAvSmAPTzEWbe3IAA4E0AJSG1QASpzEAAaYCz3AA4jBKr_Lx_c2LzD6czJ88MMkfr_3Nf_LA3WDAfw0bLzIv8O-hTonQAAABsjCBkQACp_3cQnIR4TCMK1vFMLWiAg_gWzFTS42AY7CPQm_hEmLgDUCsICKrUoTzpGHyAALYMhFDs4E0AJSG9QAiqvBhAMGqAGAAAgQQAAUMEAACRCAABswgAAuEEAANhBAADIQgAAmMEAAIDBAACAQAAAsEEAAPBBAABowgAAHEIAAMhBAADYQQAAQEEAAGDCAAAcQgAAAEEAAABAAADwwQAAgMAAAFBBAACgQQAAgL8AAJ5CAACIQQAAkMEAAJBBAABcwgAAkEEAAMTCAABQQQAAksIAAATCAAAEQgAAIEIAAKBAAAAEQgAAbEIAABRCAAAkQgAAQMAAAOhBAACWwgAAVEIAAChCAADoQQAABEIAADzCAACAPwAAEMEAAABAAADgwAAAAEIAAGTCAADoQQAAcEEAAHhCAABAQAAAgsIAAMDBAACgwAAAcMEAAIrCAAAEwgAAJMIAAJhBAAAMwgAAJEIAAERCAACMwgAAkEIAAODAAABMwgAAsMEAAKBBAADAQQAAZEIAAGjCAACQQgAAEEEAAIjBAAD4QQAAmEEAAEBAAAAAQAAAKEIAAIBAAACgwQAATEIAAAjCAAAQwQAAYEEAADDCAABAwAAAQEEAAJBCAACYQgAA0MIAAKDAAAAgwgAAsMEAAPDBAAAcQgAAMEEAAMDAAACgQQAAPEIAACBCAACIQQAAKMIAAHBCAAAcwgAACEIAAKhBAAC4wQAAQMIAACjCAACCwgAApMIAABBBAAAIwgAAOMIAAHDBAABwwQAAEMEAAGDCAABwQgAACMIAAJjBAACgwAAAeEIAAJDBAAAEQgAA4MAAAJRCAACIwgAAyMEAAHBBAABgQQAAWEIAAAjCAABwQgAAQEIAAKDAAABAQAAAoMAAAATCAABYwgAAMEEAABRCAACAvwAAqEEAAOBAAACswgAAjMIAAJDCAADgwAAAOMIAADBCAACAQAAAYMEAAFhCAABQQgAAwMEAANBBAADIQQAAoEEAABBBAABAwAAAMEEAAKLCAACAwgAAgMAAAMDBAAAkwgAAUMIAABBCAAAswgAAgEAAAPjBAAAAQgAAoEIAAMBAAACowgAAUMIAAIDBAACAQAAA0EEAAPBBAAAMQgAACMIAAPhBAACAQAAAAMEAAHBBAADYwQAABMIgADgTQAlIdVABKo8CEAAagAIAADC9AAAEvgAAxj4AAIK-AABUPgAAlj4AAFQ-AAAHvwAAHL4AANg9AADevgAAmj4AAIi9AACiPgAAiD0AAPi9AACAOwAAML0AADA9AABxPwAAaz8AAFy-AACgPAAAND4AAMK-AAAQvQAAXD4AAES-AABEPgAAEz8AAEC8AAABvwAAgDsAABw-AACIPQAAwr4AADy-AAA0vgAAvr4AAPg9AABAPAAA-L0AAIY-AAAcvgAABL4AABA9AADGPgAAdL4AAHC9AACOvgAAnr4AABA9AAAsPgAADD4AAGy-AAC4PQAAfz8AAOg9AAAcvgAApj4AADA9AAA0PgAAED0AAHS-IAA4E0AJSHxQASqPAhABGoACAAA0PgAAUD0AALi9AAA5vwAA6L0AAFA9AAAsPgAALL4AAAS-AAC4PQAAcL0AAAy-AAAEPgAALL4AAKA8AABwvQAATL4AAC0_AACAOwAAwj4AABQ-AABcvgAAML0AAAy-AADovQAANL4AAIC7AABwvQAAoLwAAIo-AACYPQAAyD0AAMK-AAAwvQAAJL4AADC9AADIPQAAgDsAAMa-AAAkvgAAmL0AAFQ-AADoPQAAXD4AABA9AACuPgAAf78AADS-AAC4PQAAPL4AAEA8AACAOwAAuD0AABA9AACgvAAA-D0AABA9AACAuwAAiD0AAOA8AAAsPgAAJD4AAKC8AADSviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=V5ArB_GFGYQ","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["13331419191217578752"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"535316761"},"13678681481948372932":{"videoId":"13678681481948372932","docid":"34-1-10-Z603ABDBAAFDF79D9","description":"This video is a quick introduction to sine, cosine, and tangent. It teaches you how to find the values of sine, cosine, and tangent if you are told the lengths of the sides of a right triangle.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3810141/4d649ff73fcb1f7c8b83cd4d7292114f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/f-ARpgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dn9SgF-iWIaM","linkTemplate":"/video/preview/13678681481948372932?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sin, Cos, Tan Explained (Sine, Cosine, and Tangent)","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=n9SgF-iWIaM\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzJaFDEzNjc4NjgxNDgxOTQ4MzcyOTMyarYPEgEwGAAiRRoxAAoqaGhraXlxdGxremdvc2x1Y2hoVUNQX1RGdmdFTGpObXZiZi1hMTdESndBEgIAEioQwg8PGg8_E9YBggQkAYAEKyqLARABGniB9wT6_voGAP0CBQL6Bf4B7_729_r-_gD2APX1AgL_APQA_v7_AAAA_wkB9wAAAAD_8__4-P4BABgF8f4DAAAAGAL9APgAAAAPEPr5_gEAAP8B9P0C_wAAAQH2AwAAAAAMDvz4AAAAAPkJ-v8AAAAAAfwCEQAAAAAgAC1aVOQ7OBNACUhOUAIqhAIQABrwAX_0Nf7I0cAA3eci_xEm5wLyRib__D_IALQuEQHl4dIBDsX_AS4q2v_nBbIAp9fQ_iVM8gAD4hwAP74p_xEJ7AHO7fUBBwzxAUQTHAMeBfD_5gwvANH_F__8AsEA5TP9__n7FwA81Ob96QS0AkIqIAQA8OMDsxAb_QIN-_3wMhwFzRrg__Aa-QjD_R__BA4-_gHyAwnxCP7-Gtjz808lGvob8wkCIyHa_f4My_uv0BcAHyAdAvKx_wE8GhEDzb4M9vrkHv3N8g8H4fM77Mb-_vrS7-wCAxn1FhoCHwT71fAaByTo4sdH8f7gIQX1XBT4CiAALU178To4E0AJSGFQAipzEAAaYC0DACbYIA4M9gTOJ8Xm-NHG7c8T8Q__zi0AAuDeARDs5t68FwAbBiPPsAAAABTqDDbTAAhh8cku5A4KJ9XJ2E37f_vS2g_XARS06Qfo4b41GwE6MQAHGPE3JsveBCEjQyAALUu4Kjs4E0AJSG9QAiqvBhAMGqAGAAD4QQAAgL8AAPhBAACswgAA0EEAAKBAAAD4QQAAgMAAAKBBAAA8wgAAMEEAAAhCAAAsQgAAEMEAAATCAAAEQgAAAEIAAMjBAAAIQgAAgL8AAJRCAACAQQAAHMIAAABAAAAgQQAAQEIAAORCAACQwgAAAEEAAAhCAAAkwgAAAEAAAADCAACQQQAADMIAADBBAACIQQAAgkIAACDBAAAAQAAAwEAAAHDBAADAQQAAykIAAABBAACwwQAAQEAAAHDBAADwwQAAwEEAAGTCAABMwgAA2MEAAIBAAAAQQQAADEIAALDBAABEwgAAIEIAAM5CAABwwQAAYMEAAJDBAAB4wgAAmMEAAIrCAABAQAAAyMEAANDBAACAQAAAIEEAABTCAABIwgAASEIAAJjCAACAQAAAyMEAACzCAADgwAAAIMEAABzCAACSQgAA8MEAAIBAAAAEQgAAfMIAAFBCAADYwQAAAMAAALDBAAAoQgAACEIAAHDCAABUQgAA6MEAADTCAAAQwgAAYMIAADxCAAAQQgAAJMIAAIA_AAA4QgAASMIAAMjBAAAMQgAAIEEAAARCAACCQgAA6EEAAIBAAAAEwgAAEEEAACxCAAA8wgAANEIAAGBBAACAwAAAksIAABDCAABAwQAAMMEAAFBBAACAvwAAwMEAAIzCAADYQQAAoMEAAMDAAADwQQAA0MEAACjCAABEQgAAlEIAADBBAABYQgAAoMAAAKjBAACEwgAAsEEAAEBBAADIwQAAYMEAADDCAACAPwAAjkIAAOjBAAAowgAAgEAAAKjBAAAAwAAAgD8AAADBAAD4wQAAoEEAAIDAAACuwgAAYMIAABTCAADQQQAAwEAAAGxCAACQwgAA2MEAAPjBAABQQgAAoMAAAAxCAABsQgAAIEIAADDCAADYwQAAgEEAAETCAACWwgAAAMEAAABAAAAswgAAlMIAADDBAABkwgAAwMAAACzCAADYwQAAlEIAAMhBAABcwgAAUMIAACBBAACAwAAANEIAAIC_AADoQQAAOEIAADRCAADeQgAAwEEAAPBBAAAAwgAAyMEgADgTQAlIdVABKo8CEAAagAIAAJi9AAAcvgAAjj4AAKA8AACgPAAAJD4AAMg9AADqvgAAyD0AAFC9AACIvQAA4DwAADA9AACKPgAAqL0AADy-AADgPAAAQDwAALg9AADCPgAAfz8AAHS-AABAvAAAfD4AAJ6-AABUPgAA2D0AAHC9AABMPgAAuj4AAMg9AACivgAAHL4AAIg9AABcvgAA4LwAAAS-AACWvgAAxr4AABw-AABwvQAAgLsAAAw-AAAQvQAAEL0AAIi9AADOPgAA6L0AAJi9AAAwvQAAJL4AALg9AADyPgAAiL0AAEA8AACIPQAAMz8AAIg9AACYvQAAqD0AAKi9AABwvQAAoDwAADy-IAA4E0AJSHxQASqPAhABGoACAACovQAAoDwAAOi9AAAbvwAABL4AAOC8AAAcPgAAML0AAIC7AAAQPQAA2L0AACS-AAC4PQAAML0AAHA9AAAQvQAAcD0AABE_AAAQvQAAij4AAIg9AABQvQAAEL0AADC9AACAOwAAML0AAMg9AABAvAAAUL0AAEQ-AACoPQAAPD4AAMq-AAA8PgAAcL0AAHC9AACqPgAA6D0AALa-AAB8vgAAED0AAPg9AACAOwAAgj4AACQ-AAAwPQAAf78AAIg9AADgvAAAgLsAALg9AABwPQAAUL0AAEQ-AABwvQAALD4AADA9AAAUPgAAmD0AANg9AABMPgAAEL0AAKi9AACSviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=n9SgF-iWIaM","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["13678681481948372932"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"205743913"},"13973133148390888770":{"videoId":"13973133148390888770","docid":"34-11-12-Z9EFCC1EC371412DD","description":"This video introduces and explains calculators with sin, cos and tan for GCSE Physics. You must make sure that your calculator is set up to 'degrees' mode when you're dealing with angles.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3820482/63586c4432cce2bd1954ffc8f13732f1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cJQCPgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dz925v3v9Va4","linkTemplate":"/video/preview/13973133148390888770?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculators with Sin, Cos and Tan - GCSE Physics","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=z925v3v9Va4\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFgoUMTM5NzMxMzMxNDgzOTA4ODg3NzBaFDEzOTczMTMzMTQ4MzkwODg4NzcwapMXEgEwGAAiRRoxAAoqaGhweHpwaXN0amVveGRpYmhoVUNaemF0eXgteEMtRGxfVlZVVkhZRFl3EgIAEioQwg8PGg8_E5cBggQkAYAEKyqLARABGniB9_78AP4DAAD5_wP7Bv4CAAP_-Pj-_gD0Dvf1AwEAAP38_f0HAAAAAQz7_QUAAAD9-PgC-_4AABP69PUDAAAADvr89fYAAAAWBvb5_gEAAAUB-PgD_wAADv4BCAAAAAADDfn9__8AAAUN-QMAAAAAEAcMC_8AAAAgAC0AU9s7OBNACUhOUAIqhAIQABrwAWA2R_X0DdwDrRvW_4H1Kf6YLfUAaUX-ALsr2f4D7xoBn-UQAPgS5QLCIN8A4PRMACgBqwBdRhj_ALnX_gYh2wElNPMBPgZVAMH39P_rEgP9LD4__dfw2wDz7PEB7-nuA1TnGPzs5Tf_Hs33ABPy9gLa4CMACDcsBTq_AgO-RL0FrcULBKvo0gFHMNUA5rjxBBMZy_4V_x77DULc_yYBBwfs7yf26gTwDRAWCf-b9Qz6qAzlAC8LNvpPEs4ANB0zA-Ir_g-4CyMCwtML6vsQ_f0CJvnzUu3cD8IbDQ4eQBf7GRAUCR01CfHEsAoG3REM5SAALcPf0jo4E0AJSGFQAirPBxAAGsAHpg1XvhLfw7oHMvE8zv4AvhlhQDxOneI8FCCSvojjLzwVqCW9UbuvPZ7OOrwIoji8JEM-vohyWD1J6Jm6Dsi0PXtrO71VkYC8TH-wvcYcXzz4_ds8xKROPftG6rw49SI7jsgnPvNEZj2waCO8k28GPm-wIT2ckA68TFTPvRHuxLzDxFU8DUHEPB5wGL3f_ly8xFvnPeqdAL1fKUu74ZcKPnGolL26q2y7VdfGvQJrMDylhAA9dHvpvaUWyry7WpO8Wjf3Oszra7va3ag8Ht9ePS3x2zzRckU8NMPBvdpXPj3BE8A7DU9UvOtbob0iHA49noL4u6-HhT08xQW9v54vPMLVJj3I6vs8J5J-PXz5iD3gfI88BeS2PYyx3TwDs0K87ZmKPCNoTDxj5gc9DdxGvb1cX73yqe86ldl7PKuw2b1_AK08_VvTPKAf4TyTFtO8U1aovQkzrbzntHq7ssuBPGoEgT3JDIq8DfYLPXKmCT3mPCU7IIsDvTvwGz20TBC8Ij4rPeXnoD3YuvW6sUiIvXD_Ojv3AhY87EO4vY9QA75_QBC7S3hCPSDmNzzfWOk7beOyOixjYz2cjXA7i8zCvYejcD2y83Q73035uuNMOL1lGcG6SXBZvXQuwbsrkNE7M4N9vXctMb5m1V05UfXrPWk1ZL1fZcg5LxG0PUqaD76KV-K5Wt-2PCVuHz2nWqw7axVYvHJKJb1-IDO7zKwvPcW9s726ocY6KbcovaWhZj2wUce5vCLIvTKqwb2cAVK47nScPazizb0q_705VpLGPIkEiL35Uvk404k_Pd5HATwYcG86dfmAPetn-7xROY24XFQLvZwV8b3cnnU5HAGGvWiXL74C8Iy5LkC2vMwC0rxY4405l6AQvYlBAD2YzRC5161UPeCvE7ycmKy58923vPhEyL3_BdC4FnCqvT6Ai73IR5Q2C8VnPZCe4j0Rd5K5nGkCvtinkr0AStE3SIjyPSRSyTxSjm05WTNSPaIzX73v6FC4mMAdPl-t_7y7Sv04gSUHvjlEDD4YRtO3YXyHPZLzEzwrAmG4T5k2PY2yo7ysAmg3gFfVvGqgCT51Tlk4vaYHPtDaSDyqrlk5LxuYPcoV_j2PGQo12o4JPi13hj26CwA5ol87PUUfPT2H83K4iAIsPSM-AT1TFOY3-KcEPlWcD73ag5c2PTvsOwy0Nr3NhCi4nsidPfAlrj22PPC4L2mhPV0E4TxH-BA5BwunvL387j2DtB65S7GOPX-rjjsGnGe3j7k8PVDBxjxtdJU3IAA4E0AJSG1QASpzEAAaYCECAEwiLcr0BDr8G8f3374JH80us___Ce3_Ls729uAZr83aMQAcDz7onwAAAAj24wL-AOp_7LsOGDgsKcKK4DQPWfkWDOoS7Re88jsR4sBEDPBDOADA98ALGb7gXSs-CCAALd74FDs4E0AJSG9QAiqvBhAMGqAGAACMwgAAEEIAAMDBAABgwQAA-MEAAKBAAABQwQAAwMEAAIpCAACQwQAAoEEAAEjCAADAwQAAQEEAAAhCAACAQQAAYEIAAJBBAAAUwgAAdEIAALhBAAC4QQAA4EEAAPBBAAAQwQAAcMEAAAjCAAAIQgAAQEIAACTCAACEQgAAiMEAAJDCAADgwAAAoEAAABBCAAA4wgAAjkIAAKjBAAA8QgAA8EEAAEDBAAA8QgAAUMEAAABAAABwwQAAqkIAACBBAAAAAAAAAEAAAFDBAAAsQgAAmsIAACRCAABsQgAAUEEAAKTCAADQwQAA2EEAAAxCAABwwgAAuMEAAOhBAAAwQQAAJEIAAKjBAACCQgAA-MEAAIjCAADAwAAAgMEAAIA_AAB4wgAAAEAAACRCAACKwgAAJMIAAAxCAABYQgAAcMIAABDCAACgQQAAFEIAAJjBAAAwQgAAlkIAACRCAACAPwAAYMEAAETCAAAAwAAAEEEAAOhBAAAAQgAAsEEAAIjCAADowQAAwMAAAIDBAADwQQAA2MEAAKhBAADAQAAAjEIAAEhCAAC8QgAAsMEAAPhBAAAcQgAAAEEAAMBAAADgwQAAskIAAERCAABAwAAAAEEAAABAAACwwQAAWEIAAIDCAAAgwQAAmMEAACDBAADAQAAA8MEAAABAAABIwgAAoMAAAIDCAADQwQAAVMIAAGDBAABgwQAAIMIAAHRCAAAQQgAA7kIAAJDBAADAwQAAiEEAAEBCAACAvwAAgMIAACBBAADgQAAA0EEAAADAAACIwQAAHEIAABhCAADowQAAEEEAACBBAABswgAAoEAAAJrCAACgwAAAUMIAAAjCAACIwQAAhMIAAETCAACgwQAAMMEAAHzCAAAAQAAAsMEAABDBAABwQgAAyMEAAFDBAACYQQAAAMAAAKzCAABswgAAdEIAANDBAADcwgAAMEIAAKDBAAAwwQAAHMIAAABBAAA0QgAAQEIAAKDBAACmwgAANEIAACTCAACAwAAACMIAAHBBAAAAwQAAjsIAAMhBAAC4QQAAAEIAALDBAADYQQAA4EAgADgTQAlIdVABKo8CEAAagAIAAIq-AAB8vgAADD4AAJi9AAA0PgAABz8AAM4-AAAxvwAAgDsAAOA8AAAMvgAAcL0AAEQ-AAB0PgAAJL4AAFS-AAAQPQAAqD0AALI-AABFPwAAbT8AANq-AAAQPQAAuj4AALa-AAAQPQAAIT8AABS-AADgPAAA6j4AAFQ-AABTvwAAyL0AABQ-AAA0PgAALD4AAES-AADGvgAA4r4AAOA8AAAkvgAAVL4AAEQ-AAAEvgAAcL0AAFC9AADmPgAAFL4AAL6-AAD-vgAA9r4AAHC9AADiPgAAiL0AAOi9AAAQPQAAfz8AALg9AADgvAAAUL0AAOi9AAAkPgAADL4AADy-IAA4E0AJSHxQASqPAhABGoACAADgvAAA2D0AACy-AAAxvwAAuL0AABC9AABcPgAABL4AAKC8AACYPQAAuD0AAMi9AAAwPQAAJL4AAIC7AABQvQAAiL0AANY-AADIvQAAbD4AABw-AABwPQAAgLsAAGS-AACAOwAAgDsAAEA8AABAvAAA2L0AADw-AAAcPgAADD4AANq-AABAvAAAFL4AANi9AAAkPgAAFD4AAM6-AAAkvgAAqD0AANg9AADYPQAAmj4AAMg9AACYPQAAf78AANg9AAAMPgAA-D0AANg9AADgPAAAQLwAAMg9AAAUPgAAyD0AAKA8AADgvAAAiL0AAJi9AABQPQAAMD0AALg9AABcviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=z925v3v9Va4","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13973133148390888770"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1010441518"},"1897638725340761787":{"videoId":"1897638725340761787","docid":"34-5-9-Z5D5541BC60099BD7","description":"MIT grad shows how to find sin, cos, and tan using SohCahToa as well as the csc, sec, and cot trig functions. To skip ahead: 1) For how to find the adjacent, opposite, and hypotenuse sides of the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/910407/7f2258912d10c4286017f4afb4527960/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/-AsDlwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbSM7RNSbWhM","linkTemplate":"/video/preview/1897638725340761787?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Basic Trigonometry: Sin Cos Tan (NancyPi)","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bSM7RNSbWhM\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFQoTMTg5NzYzODcyNTM0MDc2MTc4N1oTMTg5NzYzODcyNTM0MDc2MTc4N2qSFxIBMBgAIkQaMAAKKWhoeXdnbXJneGZ0ZHltemhoVUNSR1hWMVFseFo4YXVjbUU0NXRSeDh3EgIAESoQwg8PGg8_E-gFggQkAYAEKyqLARABGniB8P0KAP4CAP8B-Qf4B_0C_QL0B_j9_QD1BfX99QL_AP0EAPwFAAAA7wkAAQAAAAD68gP6A_4AABT69PQDAAAAGQL9APcAAAARAPzw_wEAAPz7_fYC_wAAA_D8Bv8AAAAND_z3AAAAAAUD8PwAAAAAAgL8DQAAAAAgAC3oDdc7OBNACUhOUAIqhAIQABrwAX8GRv718OABzMr3AMkw2wG1PxAAJTDYAJb5IgHP680AOer6AfcCCwBRwg7_ozP2_wgS2P7gwDAAMuYX_xId9wDg6PUAIecqAjAgIv9Q_-_-Ais2_j_0MwE02c4C8evwA-vvI_zs58r9_t-9AGTiGAAqDv0I9e4A_A_Y9wLLDPQC9fa4_Q7_8wzE8-7-3j0sAv_YBfYWPuz_1L0GBEnDIwMq4uoD0iPG_eUe_fvw7Sr_DSb4ANvB_Qz2WgIE7A_-BgEPO_rMA_f_F_QlCOHq6gQYOuMCMh0CDSDwEgXe8PrzBdf3-LwXBQL0A_8I8uDt4iAALY5g7jo4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe7HMg_vQnqjDuczC69dHx0PaqBpj25Fxi8IJbCPQqjGb0QBp689pZivgV4gTx5Pw28xVWFPlQwb72bfyq8nmKFvpG6fT0sc4S8n8K2PA8WxDxKRPi8CYf-PX39ej04uBm9fnl8PRnFsrwWnjw8JLoivQkMg71L6iS98FUGPc2Edb3mNcC84yiKPaxDRD1GFhu7j7KEvY-Rhzy6tZa8vhTePaSkjD2dD0882DVOuxt0eDwUoUe8OwRJPWER6LyP3Qe8gpCsvCIEvzvByGu9bAeDvc0W2jyWMIm8Y15sPDsODT0tTuu8J_KpPUcfcz2DO8i7oLWRvBLZB70jxgG98H9sPWapwD3lZQk8ZDvEvRV1gTykC3u817aSPWxUcT2ygZU7fqzLPexuebxUVYm7uLc2PGSR5jxNagi9K23xu1IBgzvkg9w7v1paPHkXyT3DUAG8xLHwO3jAKz2xnv87U6YiPUycprxrjMy8e33SPFcseT1dLgc7NJyyPR2s3z39B0O7BSOlPdYCO75J5Zo6-ePuu1th-r2FAr47LJEVPERcTz0jNAA8dy8HPgh7br2T5Dk8cWOJvcwRvb0stSQ76Lv7PQsWXb2g5hw8Cnm-vZgAFz2DLgY8JpPuvHCl6DyUncA6ofwYPdF8ST12Kio8nYRSvba_Tj2zyMA7NSL9vNl2WrwbPnY6up6dPdN70zt5NYo6e7m0PNXfXDyNon-7LPHgvS5w_bsgJxg6iVaTO7CFqryKAZa71umbPKI_OT04nx05aUQfve28nT0CB6C5ofLPvU7tHD7Gqu25WBIqvbxB1L2P8mK5ppf4vfOrqb2qNHU4Bz7rvA9YQ715vQK6RwkVvbdif7xLN106su2JvTTaqjwDi5a4XOEiPdlVTT0Sxwy49Ls1vTr9xbzoAcM31QIAPfry3TzHoje4cuGbPdJ-Vb0UJH25w3iSPRRUiT2x_DU4O9ZWPClgdr3JUFC4p70XPVZswjy1l0U5jNCZPNJr2DxNSu23cVpwPLr12r35nwo5sRODPLaxs70Vqek4Z_iqvGHJsLzsJ404-Pd-vVvFLD0YKb44RK9VPX_Yd7xzGpU39icBPkRSS70bbDg4m_mavS4mLD3XXZc31EP0PVZgTT2Ui125HVVNvOEMvryhMiS4eTMUvWoslr1I6DC3WlrXvOGaO7wBmRe4XqpIvTrpHb60Y_q4Iv_sPTUpBT7zflu4khO7Oj0oKL0cS2q4K6aSvAY53jsOZp83GSOtPKpiCj1HrIQ4IAA4E0AJSG1QASpzEAAaYEEGABD2D7m_ByHvHOjeEevXBa8lpQL_0P__GQfwLQr15KjcNgAl-uzQogAAACLr5y3SAC140-Id-gsPEdmn1xIWfz_XK__uGCXN4QBuGyQQFSA_JAAmF7c2UMUQLDR0LSAALbz5ETs4E0AJSG9QAiqvBhAMGqAGAAAgQgAAQMEAAMhBAAAcQgAAUMEAAIRCAACIQgAAZMIAAIbCAABAwgAA4MAAALZCAADwwQAAoEAAAADAAABwQQAAREIAAFRCAABQQgAAFMIAACBBAAA4wgAAAMEAAJhBAADgQAAATEIAAHDBAACYQQAAhEIAAEBAAACAvwAAokIAAOjBAAC4wQAAJMIAAIC_AACoQQAAFEIAAABCAAAgwgAAgD8AAIxCAADYwQAAWEIAAGDBAAAQwgAAuEEAAMBBAADQQQAAgMEAAHDBAABQwgAAaMIAANBBAAD4wQAAgD8AAKhBAAAAwgAALEIAAKBCAAAAwQAABMIAAHjCAACgwAAARMIAAODAAAAQwgAAwMEAAIzCAACgwAAAIMEAAIDAAAAUwgAAAEIAABRCAAAAwwAAssIAAABBAABAQgAAAMEAANjBAACAQAAAAEAAAITCAACgwAAAgMEAAKjBAAAAQQAAEEIAAIC_AAAAQQAAPEIAAABBAADowQAAgEAAAKTCAADgQQAAgL8AALBBAABkQgAAAMIAAABBAABcQgAAsEEAAILCAACwQgAAQMEAAKhCAACAvwAAQEAAAAhCAAAQQQAAgMAAAChCAAAAAAAAiEEAAHBCAACwwQAAVMIAAK7CAAAQwQAAwEAAANhBAAAAwAAAAMIAAIrCAADQwQAAqMEAABjCAACQwQAAAEIAAKDAAABUwgAAikIAAEDBAAAgwQAAHEIAAAjCAAAMwgAAtsIAAIJCAAAQQQAAMMIAANBBAABAQAAAKEIAAFBBAACEwgAA2EEAAHzCAADgQAAAiMEAAMhBAAB0wgAAQMIAACDCAACawgAA6MEAALDBAADAQgAAuMEAABRCAADAwAAAcEEAAABBAADQQQAAQEEAAIBAAACQQgAANMIAALjBAAAwwQAA2EEAAAzCAAAYwgAA8EEAAIA_AABAwQAALMIAAJJCAAAgwgAAkEEAALjBAADYwQAAkkIAAARCAACAvwAAAEAAAJhBAABAQQAAwEAAAPhBAAAgwQAAZMIAAGDBAAAgQQAAKEIAAEhCAADAQAAAgMIgADgTQAlIdVABKo8CEAAagAIAABS-AAC2vgAAqj4AAMi9AAAkPgAAlj4AAII-AAAVvwAAgLsAAOg9AACOvgAAuD0AAAQ-AAAEPgAAMD0AALi9AACgPAAAQDwAALg9AAA9PwAAaz8AAKi9AADgPAAAkj4AAOi9AAC4PQAAZD4AAEC8AAAEPgAA3j4AAHA9AADqvgAAPL4AAMg9AADovQAAfL4AAEy-AABEvgAAtr4AAKY-AACYvQAAiL0AAIg9AAAEvgAAyL0AALg9AAB8PgAALL4AAAy-AAB0vgAAqr4AANg9AADKPgAAuD0AAJi9AACIPQAAfz8AAFA9AAAUvgAAgj4AAOA8AAAUPgAAyL0AAIq-IAA4E0AJSHxQASqPAhABGoACAABAPAAAhj4AANi9AABTvwAAkr4AAOi9AAC4PQAAiL0AAEA8AABsPgAAcL0AAPi9AABAvAAAgDsAADC9AAC4vQAAlr4AACE_AACYvQAAbD4AAJg9AACCvgAAQLwAACS-AAAMvgAAqL0AAHC9AAAQPQAAED0AADQ-AABQPQAABD4AAJK-AACovQAAHL4AAJi9AADCPgAABD4AAJq-AACWvgAAQDwAAAQ-AAAsvgAARD4AADQ-AADYPQAAf78AAMg9AABcPgAAqD0AADw-AAAwvQAAgLsAAGw-AAAQPQAAFD4AAKA8AABwPQAAqD0AABA9AACiPgAAqD0AAEC8AACuviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=bSM7RNSbWhM","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1897638725340761787"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3651369209"},"14687662431363470516":{"videoId":"14687662431363470516","docid":"34-5-2-Z481060ED6B75C215","description":"We will compute sin(i). The procedure will feature Euler's formula, complex exponential, and also the hyperbolic sine function. Check out how we can prove Euler's formula by using the Taylor...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2352503/4c7c3f0eafdbb2062f9bea664dfadf76/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qJyXDQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dcm0GsGP1K1Q","linkTemplate":"/video/preview/14687662431363470516?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"can we have sin(i)?","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cm0GsGP1K1Q\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFgoUMTQ2ODc2NjI0MzEzNjM0NzA1MTZaFDE0Njg3NjYyNDMxMzYzNDcwNTE2apMXEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E4YCggQkAYAEKyqLARABGniBAgr6BvwFAP0CBQL6Bf4B9Pr6Agn_AADv8QT9BgAAAPUB9gQBAAAA9gn8-gQAAADx8fr7AgAAABADAvUEAAAADfz8BvsAAAAOAPwG_gEAAP_8-_8D_wAAB_z7CgAAAAD-__37AgAAAPcI-PYAAAAAA_EABQABAAAgAC3BWuA7OBNACUhOUAIqhAIQABrwAX8G-_7g7MgByhn2Ad3e6QCgDh__IizcAKL-AADeAOgB6h71ANgE5gAm_gL_3R8g_xbTqgPWug8AOsMm_yz18__40vgAJu0FAT8uHAD_8d7-wRU_Af_b1QEb0cwDHh7ZAPC_AP5HDroCBjXSA_rpNAEqFEEADtn__frg7P3Z7uMG6djU_c7u8wcI8gf6zOkiAh759gE1MCP-9g8LBOzmAfwT3Cr8CTTP_Qn57QAJ9R0LoAL8BOT2BwMvAhUC_Oja_NLwNAaz7R8E9vcD8gv-A_L9Ju4LALYIEwPoFQy5BfQP_wj17QcW8urG--kO1g7w_yAALSyqAjs4E0AJSGFQAirPBxAAGsAH14XnvkS8Or0KoaQ7yXeEutU15Dz78c28PIs5vXIbCD3HgR46gspIPsSUiLxVSpG79pZivgV4gTx5Pw28Jv_zPfEFt72gZSc8ehcvvgg8MD0pn9S8lWc5vKObeD1ezYs8lq9QPcK3VbzIpma94Nl-PVJxTb3NN0e8_DaEvIl5GLvoHcA777K6PADVCb0ae4A86UOnvUPonLukgz-8j0T5PF-mnL2iuAC84BHVPUJaiDuYsoK8ZXuTvfuWpD3_da68j_3sPbQVZT38ZGC6K20RviUF2LsBrMS8yRpKOgoxpz3TO407DU9UvOtbob0iHA49-eKGvUAJ_bysXAO9TPobvbPprTthzZa7r126PY3rhDyVd_o8TzwHvQ15yj2HYOY7O2WvPas4GzxYYH68ecGBvWlkgDsuOpc7pyqIPb_Cl7vb5nw8mfuPvZtFjj1nbck87Qudvd6cnTvMgBC8qOyqPKFeFT39HcC7JbkRu5KG5LwaZFy8IIsDvTvwGz20TBC8HOOzut89Nr23kA-8hJ6dPUPyhL2Zt2o8ldw8vTzxwb1D6ea73cF-Pby7JD2Ie5G8cUGRO6hXZb2NEeQ7xHvOPYU1r72HFY87mvYDPZHuJz3xKmu8CC8LvasgK7y5QeU6ah1QvedjaD0Lag08V5bIPR5zGb1UhwE7KMyVvYD5ILzLQ6478D9oO565YjtnTnw6-5trPfYLVj0OKye6CY3APafbqL3frNq5PHyjvILnqb3Wf1-4fWuBPTb7SL09c7O4oZ3TPVGBmL2XnVE5aUQfve28nT0CB6C5LdEJvpYhLj2euGC4btySPTuyKL0jTiO5AeAzvIZc47sW7FA66YtzPBsNJb2hxRu6TKWfOqaOn7xycHE3jCpovJMH2DxnmyQ6eT_uPWS3aj2vV_-3gMzYPH_qab0sVHg43n3lO1eebLk0Eau4Vwn2vVMPLLzhDg06gr-EPT6ITj0Oa0c4p-kzPg1sWr2Egxc6429yOcm_oD25_Sc4E2NZvc67Gz0_fzw4FnFXOzSkpT3tNwK4AJlMPdahhD3txSU45ba9POwlV7tInW44yuEDvhDXHjyX_U43xeFxPXgm9L39TRU5bTRFPW2arb1W9a04OOyEuhHuxLwrB143K3mGO2tGBr4XrqU3TsGQvT--Tr1TTmU3xcVRPQkpybz4z5-2lLSsvGytND0EGPO1x6ADPmCNeL0XyFo4qWuNPYsLkT0TJyI4JKaaPTvhFT6kXG64pLAmvVQG6bwgfh64tJFrvddJsj1SG9U3IAA4E0AJSG1QASpzEAAaYDEKABHqMgwJC_z30uYL8O4tDuv4thj_Es4AwTEHBf4Y2ddAIf8n6QverQAAADbi4vbcAPdu6fb7Fujg2sC5vw0gfxn-SbPiDgDe5CcT8eowIgg-MgDINMYaAbEMV-kJIyAALe3iJTs4E0AJSG9QAiqvBhAMGqAGAAAwQgAATMIAAFBBAACAQAAAIMIAACRCAADgQQAAeMIAAMjBAAAAAAAASEIAAMLCAABYwgAAhMIAAABBAAAYwgAAgL8AAIDAAACAQAAAKMIAAIxCAACIQQAA2EEAAABAAABAwgAA0EEAAOzCAABwwQAAwkIAAEDBAABQQQAAQEEAAJTCAACAwAAASMIAAJhBAAD4QQAAjkIAAOBAAADwQQAA2EEAAABAAACQQQAAMMEAAKBBAAB0QgAAgMEAAPBBAAAIQgAAwMEAAIDBAACQwgAAuMEAAODBAAA4wgAAYMEAANjBAAAUwgAAEMIAAMDBAADIwQAAIMEAAADBAAAswgAAzsIAABjCAAAIwgAAmMEAAODBAABAwAAAAEAAALpCAACmwgAAiMEAAKhBAAB0wgAAVMIAAEBAAACgQQAAgD8AAHzCAAB0QgAAkMEAAAhCAADQQQAA2EEAAAxCAAAgwQAAQMAAAJjCAACAwAAADEIAAFBBAABIwgAAEMEAAOjBAAAMwgAAGEIAAEBAAABAwAAAZMIAADxCAABoQgAAwMAAAEjCAACAwAAAQEEAAK5CAABoQgAAyEIAAIRCAACyQgAAAAAAACDBAAB4QgAAqMEAADBBAAAwwQAAFEIAACDBAADIwQAAYMIAABzCAAAUwgAAgMEAAAzCAABAwgAAXEIAAADCAACAwQAAwMAAAJhBAADgwAAAgEIAADjCAACYQQAAYEEAAHDBAACIQQAAgMIAAKDCAACAwQAA2MEAABxCAADQwQAAMEEAAKhBAABYQgAAAEAAAODBAAAAQgAAgD8AACBCAACAwQAAwEEAAABCAADwQQAAcMEAAFBBAACAPwAAgMAAABDBAADYwQAACMIAAEDBAACEQgAAGEIAAEhCAAAwQgAAsMEAAOhBAACAQAAAoMEAAABCAABQQQAAQEEAAEDAAAAgwgAAMEEAAP5CAABgwgAAAEAAAABBAADAQAAAAEAAAHTCAAAcwgAAkkIAAMDAAAC4QQAAUEEAAHjCAAAgQQAAgEAAAIjCAABYQgAAgEAAAEDAAAAAwAAAcMEgADgTQAlIdVABKo8CEAAagAIAAFC9AADYPQAALD4AAKA8AACgPAAAfD4AABQ-AACmvgAAFD4AAIC7AADgPAAAFD4AAKA8AAAwvQAAUD0AAOg9AAAsPgAAED0AABw-AABcPgAAfz8AAJi9AAAEPgAAXD4AAGy-AAA8PgAA4DwAAKg9AABUPgAAnj4AAAw-AAB0vgAAcD0AAJg9AACIPQAAoLwAAIi9AAAkvgAAxr4AABS-AABMPgAAlr4AAFQ-AABAPAAAgDsAAHQ-AAA0PgAA2D0AAOA8AACYPQAA2D0AAIg9AAAEPgAA4LwAAOA8AAAkPgAAJT8AAKi9AAC4PQAA2D0AAMg9AAAwvQAA2D0AAI6-IAA4E0AJSHxQASqPAhABGoACAACIvQAAED0AAMg9AAA_vwAAcD0AAIi9AABcPgAAjr4AAFw-AABEPgAAUL0AAIA7AAAMPgAAgDsAAJi9AAAQPQAAPL4AAD0_AAAcvgAATD4AAOA8AACCvgAAoLwAAHA9AACIvQAAgLsAADC9AABwPQAAED0AALg9AABAPAAAHD4AADS-AADIPQAAmL0AAIA7AACyPgAAfL4AAJa-AACavgAAEL0AABw-AAAQvQAAMD0AAKg9AABwvQAAf78AACw-AAB0PgAA6L0AANi9AADIPQAAED0AAFw-AABsvgAARD4AAIC7AADYvQAAPD4AAAw-AAAMPgAAwr4AADS-AAAwvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=cm0GsGP1K1Q","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14687662431363470516"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2275028784"},"13373643506855282273":{"videoId":"13373643506855282273","docid":"34-7-11-Z4E2FAF6773C60CC8","description":"Integral of sin(sin(x)). Yes, it is possible, if you express your answer as a series of special functions called Bessel functions. I also give a quick overview of Bessel functions at the end.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4109310/a54cf6668d334c98ee05ca84779ee8c0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/O0jyqAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DC641y-z3aI0","linkTemplate":"/video/preview/13373643506855282273?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral sin sin x","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=C641y-z3aI0\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFgoUMTMzNzM2NDM1MDY4NTUyODIyNzNaFDEzMzczNjQzNTA2ODU1MjgyMjczapMXEgEwGAAiRRoxAAoqaGhncnRnZnRxeGJtc2VrZGhoVUNvT2pUeHotdTV6VTBXMzh6TWtRSUZ3EgIAEioQwg8PGg8_E7YMggQkAYAEKyqLARABGniB9wT6_voGAA4KBP_9BQAA5AP7BPwBAQD5_f4DBQL_APju_wYHAAAA9gn8-gQAAAAD-_37_f4BABADAvYEAAAAEvkC__gAAAAOA_j__gEAAAAE-vACAAAAAAMCAf8AAAD8Av_vAAAAAAP7BfcAAAAAAvgFBgAAAAAgAC1aVOQ7OBNACUhOUAIqhAIQABrwAX8hDALY-_r_997bAOoMBgGTCSf_GyPjAMDbAgHd8sgB8PXpANXrDQAEAwYAoCYAAeHZ4gAR8AsBLA_2AC0PGgDsGxcASOQMATIOFQL8-___4SEQ_w_5HP8W29cCBwrV_hHrJP33CuQC7SHaAw7-OAEjHR4EKAIL_wH-6__zBSIDBBjTAPMUDwMX6wYCxR4WAxzy6gP7FOz_ABkMBB_iCALl8N4AJALoAi4h6vwFFQr-9Az-9wcJ9PrrCyED9iPu_-bxBfAJ-fb9B-wHCwTR9wH2CfUP8O_7CQX58P3_7Af05_kBCNbzBfb69P0N7s_4ByAALXZIJDs4E0AJSGFQAirPBxAAGsAHpOEQv8Lg9TsyDuS8Ndq1PU1PMzwryCW93EkkPtVp0zxEfPG8PtDqPZnO8zydh1G7oUh3vnNWujykNjG9_b10PpJUS70Dsew8dXT8vS8Tmj0LAhC9iQsQvjZqrrrOj_k7o4osvH1ft7s5QcA7ch5pPTtqcb28tDy95MPHPMPyILqDmuu8Vj_AvBf4Rb07eYm7t3-FvefT2bzQj9A6GkEZPRRBnDzI9Ua7DPKpPdkBfDxf6qm7EwvcvaX8_zwh5Dw9HejBPYb8frnqSY88MUIYvcL6_zwxr4i8SkXfuw339rzPKpu5D3uGPey5kT05oSu97QehPFLoIb2Pnky9bazkvaYRLj2UTsE7KtGIPYoNDD0spsg8rvQqvm3F3j2K1Au7jptQvZx3UryOzOG7qgZmPaHoiz0b1au70ICVPUOQgzzBfZG7wLFnvJrGgDx7r5C8bJwIPWZxVT0L1KK8QVliPe0bDj0XlVy7JS-hvKO5hDznlFu8qLieO0IZVD1hn2e6871QPSJrETzWbn07RPO1PdjU2b06cSC8udqvvYq0BzwK_Dy8d9zwPEb7Lj32Dae8WYfDPQrPVb30glM7m1xHPaI4gb1_fZ27A8EtPey8cr2XuEG4mT6FvGKg67yg3pC72L_GvMTeVTx_8TG8fw4YvaBnmDymrE875wfkvGiXj72ZtRi7tGBYPc_56TzEL6s6QYfUvJ_HCD3WJbo79z-rPUMh3bsq-bu7m9zUvPNNJL3-XBc7asJ2PMOrNj2FTL259X6IPTPfAb1AfGw52xVZu5V-wryTG9O3lEbBvQbPjrxNMKW4m_NCPCSBAjzhJKc4G48IvWZDiLxcHFw5JSWYPfYlmzzb9IM548dTPahlNb3Lr2m5AYIcuyzCCD2QVFc760uAvUAHpzxbxEa5nlCePdjpLD2Z_HW440w4PD8XMjzi_gG62eR1PSdgxbxi9jm4USacO062Jzo_Kjo366RjPKKMor2_UmQ5zfIrvOMmmT3azh-4Go4EOyFC9zzlqz244-PTPMaFAz3N4TK4zMgKvbNPNr22j9U4ZRmiPea7SrxEHnM4OKu0vEvW1TvKKDU5ZXOwvMs8A7xNimK4T9RoPXd-Nr0TCSM38BdTvWdrWLzX-BM3O9qdPVlRQ71xldO4hA-lO2vtQr0GjpO4nqagPKSp3ryd9yE3B62cvcaEKjqPU7Y35NWevHqJ8b1lVTC4Iv_sPTUpBT7zflu4ZlwCvXQWTD2AeJi4Wu3GvQ8UMz1o2_s32OBzvcz8dL3MFo24IAA4E0AJSG1QASpzEAAaYC8EAArbH73uMCL858AeBdsV6vHIwRj_8NQAA_QBx9wIx8koHQD2Af_-qwAAAB_33fjIABhu09D0F9EK-B6B6y3sci0HUc7I-ejk4SHn_dUlMRQFJgDwFqoxHbnlHgweJCAALXnmIzs4E0AJSG9QAiqvBhAMGqAGAABwQQAAOMIAAOBBAACowQAAmEEAAJhBAACsQgAAAMAAAGDBAAAgQQAAkEEAAK7CAAAcwgAAjMIAAABBAACAQAAAmEEAAIjBAAAMQgAAOMIAAIBBAABwQQAAQEAAABDBAABowgAAoMEAAKjCAADgwAAAukIAAMBAAACAwQAAUEEAACjCAAD4wQAA1MIAAMBBAAAgQgAA2EEAAEDAAABgQQAAgL8AAKhBAAAgQQAAAMIAAHRCAABkwgAAyMEAAPhBAACcQgAAmEEAAADAAADIwQAAEEEAAFBBAABQwQAAQEAAAKbCAACYwQAAiEEAANBBAABAQAAAlsIAAKDBAADIwgAAuMEAAIjCAACAPwAAPMIAANDBAAAYwgAAVEIAAMBBAACqwgAA0EEAAJhBAACGwgAAwMEAAJDBAADAQAAAMMEAAIC_AABsQgAAAMEAAEBBAADIQQAAgMAAABBCAACgQgAAYEEAANTCAADgQAAAtEIAAK7CAAAAQQAAmEEAAEDCAABAwQAAgMAAAGRCAAAcQgAAaMIAAMBBAABMQgAAgD8AAIrCAACQwQAAgMAAADhCAABwQQAAxkIAABhCAADQQQAA-MEAAIC_AABQwQAAkMEAABBBAACIwQAAKMIAAJjBAABIwgAAoMIAAADCAAAQwgAAsEEAAEBAAACwwQAAAMEAABTCAAAgQQAAQMEAAGBBAAC4wQAAhEIAAEDBAACCQgAADEIAACjCAADgwAAAUMIAAPDBAADAwAAAwEEAAEDBAAAQQQAAoEAAALjBAABAQAAAAMEAALDBAACAwQAA6EEAAFxCAACowQAAkkIAAIBAAAAAAAAAbMIAABTCAABAQQAAfMIAAJDBAAAcwgAA8MEAACDBAACCQgAAcEEAAMRCAABcQgAAgEEAAEBCAADAQQAAgD8AAFBBAAAQwgAAoEAAALjBAABgwgAAEEIAACxCAAD4wQAAQMIAAPjBAACQwQAATEIAAJLCAABcwgAAYEEAAIDBAACgQQAAuEEAAEjCAABQQQAAMEEAAIDAAAB4QgAA4MAAAPjBAAD4wQAAVMIgADgTQAlIdVABKo8CEAAagAIAAEA8AAA0vgAAnj4AANg9AAAQvQAAuj4AAFA9AAC6vgAAqD0AABQ-AADIvQAAyD0AAEQ-AABAPAAAgDsAACQ-AAA8PgAAEL0AACw-AADaPgAAfz8AAJi9AACIPQAAZD4AAKq-AACWPgAAgLsAAMi9AAAsPgAApj4AADA9AADovQAA6L0AAMg9AAAMPgAA-L0AACy-AABMvgAAhr4AADC9AABMPgAAJL4AAIY-AADgPAAAiD0AAPg9AAAwPQAANL4AAKa-AACWvgAA2L0AADw-AACKPgAA4DwAAHC9AADIPQAAOz8AAJg9AABQPQAAiD0AANg9AADIvQAAuL0AANK-IAA4E0AJSHxQASqPAhABGoACAABQvQAAgDsAAFC9AAB5vwAAHL4AAEy-AADqPgAAzr4AAFw-AADoPQAAML0AAIg9AAAkPgAA4DwAABS-AADgPAAA0r4AAAE_AABQvQAAbD4AAGw-AABcvgAAmL0AAHA9AADYvQAANL4AAGy-AABQPQAABL4AADA9AAAQPQAAXD4AACy-AABwvQAANL4AANi9AAAFPwAAlr4AAI6-AABsvgAAgLsAAOg9AABsvgAATD4AAL4-AAAsvgAAf78AADQ-AADCPgAAuL0AACQ-AAAkPgAAgDsAAIo-AADKvgAApj4AAAS-AAA8vgAAqj4AADC9AACSPgAAFL4AAI6-AAA0viAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=C641y-z3aI0","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13373643506855282273"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2463740198"},"10698191944826446892":{"videoId":"10698191944826446892","docid":"34-5-2-ZB7661A1E4C224742","description":"sin(pi/12), using difference of angles formula, sin(15 degrees), using difference of angles identity, simplifying trig identities, trigonometric identities examples, Verify trigonometric...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3839317/0fc9df6eac78efe109ca22dc40cd9ad8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/7A4D8FD060A06362CBE8EF9E8C582FF233C5C447DBFF4744BB2038F56DB06B2BF8A4281A6BB4B6D92C03810BAE180E855FC95B2DF770B2D8137C24ED8B8310B1.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D13enJ0GMj6Y","linkTemplate":"/video/preview/10698191944826446892?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"sin(pi/12), using difference of angles formula","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=13enJ0GMj6Y\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTJaFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyarYPEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E7ECggQkAYAEKyqLARABGniBAwAACwP9AOr8A_36AAEACwDvAfb__wDnAff7-P4BAPf8CgsJAAAA-gv7AwIAAAAD-_z7_f0BABgY_fsEAAAACQIAAPMBAAAKBvYJ_gEAAAL0_uwBAAAAFv4GAwAAAAD9Bvf5AgAAAP8HBfwAAAAAC_QFDQAAAAAgAC1n-c07OBNACUhOUAIqhAIQABrwAX_l6v_347wD2ynuAPzv5gG7IxcAQBe8AK_65QDS7dAA60rmANcJ-gAVBfkAuk_yACEBugD66fcAJ7b0_ikF-wHO8tEBSen6AVsZEwEG9O0A1dgQ_vzhAgAqCAL_HCr5AgnLIP5mKNb-G-_tA_kdIQI5AC8B9e8A_e4G4f6v-xsB6NfS_bT09QIqBgz8tNQsAhAU1P4BGQP55yr-BRm_4f4Bxg_-7yHm90_38v8QFgAEl9jq-w757Qz7-BwN8QLh9_QFGu-tCOj5MQ4UCx35GPISJ_gM7Or5DPLf9QfePhUJ9yTzBQr_Af_yJ_UYEPPkAiAALVZo_jo4E0AJSGFQAipzEAAaYDL-ACgPEuj-EwH78b7q9enYJe3y3x__-PMAKPHW_DQe19IX5P8q5vfytgAAACgH-_clAP1h9t_9FeIM6dGu3y8If-wCIfHTFeG9zPkTIhEDFSQVWgDfEcIcL8veIh0eASAALUh2Ojs4E0AJSG9QAiqvBhAMGqAGAACQQQAAQMIAAKZCAABUwgAAuEEAAIBAAACAQgAAIMEAALjBAAAgwQAAQMAAADTCAAAAQQAABMIAAKBAAABgwQAAUMEAALjBAACKQgAA4MAAAFDBAADgQAAAUMIAAExCAABEwgAAgEEAAHDBAAAAQQAAOEIAAADBAACAwQAA4MAAANDBAACgQQAAgsIAACRCAABgQQAAwEIAAGTCAAAAQQAAiEEAAIBBAAAoQgAAQEAAACxCAACGwgAAgEAAALBBAABEQgAAYMEAAEDBAAAAwgAAgD8AAEBBAAAAQQAAAEEAAIjCAAAgwQAAUEIAACBCAABoQgAAxMIAAIjBAAA0wgAAgMAAALjBAABAwQAAhMIAABjCAABEwgAAFEIAAIJCAACcwgAAikIAAADBAABYwgAAoEAAAMDAAADwwQAAcEEAANDBAAA4QgAAQMAAAChCAAAAwQAAfEIAAFBBAABUQgAAIMEAAI7CAACewgAAFEIAALDBAABgQQAAcMEAAKjBAACgQAAA2EEAACRCAABUQgAAoMAAAIhBAAAMQgAAgMIAAIjCAAAowgAA0EEAAIBCAAAAwQAAoEIAAIpCAADoQQAAFMIAALBBAAAgQgAAJEIAAEBAAACKwgAAoEEAAODBAACIwQAAvsIAABTCAAA0wgAAUEEAAMjBAABMwgAA4MEAACzCAAAAAAAAwMAAAIDAAADAwAAAUEIAABzCAABQQgAAOEIAAKBAAABQwQAAmsIAAKDAAAC4QQAAwMAAABzCAABUQgAAoEEAAJjBAAC4QQAA4EAAAMjBAAAgwQAAAEEAAGBCAABQwQAAQEAAAFDBAAC4wQAAoMIAAEDCAAAwQgAACMIAAODAAAAAAAAAYMIAAMDAAADIQQAAgEEAAIxCAADgQQAAkEEAAIC_AAAMQgAAwMAAAADAAABYwgAAiEEAAIjCAAAUwgAAVEIAAJxCAAAYwgAAEMIAAKDAAABgwQAAJEIAAJjCAADAwAAAOMIAAKhBAADoQQAAAEIAANDBAAAsQgAAEMEAAMBBAABsQgAAVMIAAKDAAACwwQAAFMIgADgTQAlIdVABKo8CEAAagAIAAJi9AABwPQAAqj4AALi9AABEPgAAqD0AAEw-AAATvwAAMD0AAKC8AACovQAA6L0AAHS-AADKPgAA-D0AAAS-AABkPgAAUD0AAKg9AACuPgAAfz8AAEC8AAAMPgAAPD4AAHy-AADgPAAA6D0AAPg9AADGPgAAij4AALg9AADavgAAyD0AABA9AAAQvQAAEL0AAOA8AACqvgAAgr4AAIC7AABwPQAAlr4AAIg9AACIvQAAuD0AAFQ-AAAsPgAAoLwAAOi9AAD4vQAABD4AAOg9AABwPQAAML0AAAy-AACYPQAAZz8AAKi9AADovQAAPD4AAEC8AAAwPQAA-D0AAIi9IAA4E0AJSHxQASqPAhABGoACAACSvgAAcD0AAOi9AABDvwAAML0AALK-AAD4PQAAxr4AAIA7AAAwvQAALL4AAAS-AAA0vgAAyL0AANg9AACAOwAAqL0AAB0_AAAwPQAAnj4AAGQ-AAA0vgAAML0AAIi9AAD4vQAAUL0AAOi9AADgPAAAML0AAGw-AADIPQAATD4AAES-AABAvAAAUD0AAMg9AACWPgAAJL4AAHy-AADovQAA2D0AAAQ-AAAUvgAAbD4AAEA8AAA0PgAAf78AAMK-AADovQAAFL4AAJg9AABAPAAAML0AADw-AAD4vQAATD4AAKC8AAAMPgAAqD0AAOA8AAD4PQAAiD0AAMi9AACCviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=13enJ0GMj6Y","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10698191944826446892"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3738565146"},"5695404303857586516":{"videoId":"5695404303857586516","docid":"34-10-0-Z2E181CFDFF8A1771","description":"This calculus video tutorial explains how to find the derivative of the trigonometric functions Sin^2(x), Sin(2x), Sin^2(2x), Tan3x, and Cos4x. Calculus 1 Final Exam Review: • Calculus 1 Final...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2122117/7b9c3ec1e903d734529a2db9e6451eba/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kCmAKwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZyWHTWJ2XpM","linkTemplate":"/video/preview/5695404303857586516?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How To Find The Derivative of Sin^2(x), Sin(2x), Sin^2(2x), Tan3x, & Cos4x","related_orig_text":"SIN","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"SIN\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ZyWHTWJ2XpM\",\"src\":\"serp\",\"rvb\":\"Eq8DChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKEzcyODE1MjcwODUwNDQ5MjAwOTEKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKEzU5OTYxNjQyMzI4ODE5NDAyMTQKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM2Nzg2ODE0ODE5NDgzNzI5MzIKFDEzOTczMTMzMTQ4MzkwODg4NzcwChMxODk3NjM4NzI1MzQwNzYxNzg3ChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTMzNzM2NDM1MDY4NTUyODIyNzMKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyChM1Njk1NDA0MzAzODU3NTg2NTE2ChQxMDcwNDE1Nzk0MDU5MTY4NTE4MQoUMTU5NTQ2OTEwMzQzMTcxOTQ0MTkKEzk1MDA1ODgzNzk4OTQyMzI4ODUaFQoTNTY5NTQwNDMwMzg1NzU4NjUxNloTNTY5NTQwNDMwMzg1NzU4NjUxNmqTFxIBMBgAIkUaMQAKKmhod2RhaGl5ZHBtZHFvZGJoaFVDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQRICABIqEMIPDxoPPxPCAoIEJAGABCsqiwEQARp4ge4B-f38BQAFBA4F-gj8AgEI_gj4_v4A9PH5_wUC_wDu_fwDBP8AAP4LBwIAAAAAE_H1CPz_AgET-vT1AwAAABkC_QD4AAAAGP33BP4BAAAJBwP6AwAAAAEB9gMAAAAACAoD7wAAAAAFBgH2AAAAAAH8AhIAAAAAIAAtcYbeOzgTQAlITlACKoQCEAAa8AF_F_AAz_vQ__kb4QD3GA8BojMD_x0l4QDKAg4AtvT2AAAO4QDR-sn_HunuAbwYCAAbAcUAC_kBADvo6f80yQsA_BH7ARLW7wI6Eiz__gL4_80gG_70FAsA4t_Q_vUEzwH7_BMADwfsAgrruwkP_jwBF-05ACPNDAHm3wkK-BfvBArw2AD1C_L-4vgK_9kaHwIa6f4BDx0Y-gQQAgAaB_367AAH9w0S0gAf8-EFE-0R-ufgEfjw3v0EBAcr_-AO8ALhyiQG0xP68gYgCPAlFgUEyBjzB-QN-g8nFw0BD8v58vX66__tAQH33jIAAuIl-AYgAC3vuRg7OBNACUhhUAIqzwcQABrAB5xNr77qwlm8SWf9uyNeqLy0rLu8pB6_uzyLOb1yGwg9x4EeOp9bOD7nE3692Ao_vIEIAb43Pkk9rm2AvKDiKD5R28a8RA42PNlDS75DknY7KX-CvUW89b1n6MQ8rLgnvKOKLLx9X7e7OUHAO5V6Wz0qnxc6_sG2PMoufb1J56474JcfvdxqGTr1EVi9E3xYvTb7aL1WgkU8NMqpvGzPzD1COh-8d4FUOzaWKz3s7os8EilSvXK1r71iWTq9523RvA_8jj38jCs93yD1PEQgvb20YD29W9VHOfp9P70alB89xgVkOiZAqD2QqCs9b9GuvHkqhj1FBym9CpAXvVUUz73OQ_076PioPHqHID057IM9QkWYuRjSAb5Jg6s9liYlvHPY_TxJ9oQ55ccpvCz-pTznQMU9qWisPH3rgzwsq4s32jbSOzEtRb0kYLY79LCGPFuVlD3qDqi9MDCGvM8-kD1c-vw8Kh_CvDg8g72TuD295duxvIkzFb2Qq5c9hfL4O1OwhjyxJTW99kWhOwUjpT3WAju-SeWaOpXcPL088cG9Q-nmu9dcpLyV5ws9Tcg9vEOpHT4fatu9xJqpOT-d9Tm7e0C9ybDpOzCrU7nuzpq8bZOGuwgvC72rICu8uUHlOvPMhr3wet88OJ6RuzON5rwwoKc94KAcvLjSBj0IVtW9ProSum1YUz3V7Uc8MufXujVsuj0uYaM8e1LJOFqzWj09dpG96obYuipZKbybVFS9bx3SO9q65bzANbG9UlkOut65pj07aBu92hnHOVwtIb28Byg9J1yzOSpih73w65E8DsS9OLnSYT0u3pS9c0_dONgCjDyDaM29LiTCuOi-3D2uka48DxscOd_1_jz49jM9MTZpORL1Qr0iGOe9eBrqN-QjszwHE4W9CVETuattVDy3KHO9jqrVt3L3Pr3_Ju883kaMuMbgoT3BOBi9UulCuT4PRD3-D3A9u3bDtyOsjD30bAa-z3ClOXisI7yun349fQTTOFs9TLu7NLQ8y7WZuGAhM72-xX49N8PnuGdnbD0FTeu9XyY1OIxzCr0W6h89T_mKOCL7AL7GXyQ9F5hlOIF73jywxKg8ORQkt8cgIb027ui88D2CuGikrzy3G249F0UPOJJdGT7ZT1C9rMI_uTRTED2CVOq95RyOuGYStTxeoc-9gLqyN5tLW72SPKc9bXCBOB2XDD1JD0O-VDFNuSL_7D01KQU-835buCmeabx4zZA9oeaauOhVs70WJOw8zbghOMRA17yYBjS8q4C-NiAAOBNACUhtUAEqcxAAGmBC-gA5-BXLAgQU3PrL1P7Jz-Htzr4W__LcAAIS0_kYANW1CwD_B-3_7aoAAAAw6_gG_QDodcfEvxnzE_3hgb0mH38HBiu75QrV0dEdB_8GICncIh8A3QK-ICKtzSMBNQ8gAC14gyA7OBNACUhvUAIqrwYQDBqgBgAANEIAAHzCAAAsQgAAQMIAAABCAAAIQgAAdEIAAMBBAADowQAAwEEAAHBBAAA0wgAATMIAAADAAACIQQAAQMAAAKBAAAB0wgAAYEIAAFjCAACQwQAAEMEAAJDBAAAUQgAA0MEAABhCAADIwQAALMIAAIBBAABAQAAAEMIAAIBBAAAUwgAAYMIAAMbCAADIQQAAgL8AAJpCAAAYwgAAFEIAAIA_AACQQQAAXEIAAJDBAABwQQAArMIAAAAAAAAEQgAAgEIAAARCAADQwQAAQEEAAMBAAAAAwQAAoMAAADBBAACSwgAA0EEAAOBBAABYQgAABEIAAETCAAAowgAAhsIAAABBAACMwgAAdMIAAILCAACgQQAAisIAADxCAACEQgAA6MEAAGBBAAA0wgAALMIAAGjCAABAwQAAoEAAAIjBAADAwQAAXEIAAABAAABQQQAAoEEAAJBBAADoQQAAAEIAADhCAACUwgAAYMIAALxCAAAAwgAAiMEAAFBBAAAgwgAAiMEAAIC_AACcQgAATEIAAKTCAABAQgAAgEEAAFDBAABcwgAAUEEAAAAAAAAEQgAAcMEAAJpCAAA4QgAAiEEAAMjBAAAUQgAARMIAAGBBAAD4QQAAcMEAACjCAADwwQAAXMIAAOjCAAAowgAAqMEAANBBAAAcwgAAkMEAABBCAAAwwQAAEMEAAATCAADgQQAAwEAAAJhBAAD4wQAAmkIAAABAAACAvwAAoEEAAAjCAAAwwQAA2MEAANBBAADgwAAA2EEAANBBAAAkwgAAqEEAAKhBAADgwQAAkMEAAHBBAAAsQgAAgD8AAEBCAABEwgAAQMEAAIDCAABkwgAAcEEAAEDCAACIQQAAqMEAAIbCAAAwQQAAgEIAAJBBAABwQgAAEEIAAMDAAADoQQAAgL8AACDBAABEwgAAMMEAAODAAACgQAAAUMIAAHBCAAAAQgAAsMIAALDBAACwwQAABEIAAJZCAACowQAATMIAAIbCAADAwAAAEMEAABTCAABMwgAABEIAAMBAAACAQAAABEIAAMDBAACgQAAAiEEAADjCIAA4E0AJSHVQASqPAhAAGoACAACgvAAAuL0AANo-AAD4vQAAcL0AAEw-AACoPQAAD78AAJi9AACIPQAAgLsAANi9AACYPQAAiD0AALi9AAAMPgAA4DwAAKC8AAC6PgAAjj4AAH8_AAB0vgAA4LwAAII-AADmvgAAUD0AAOC8AADIvQAAmj4AACw-AADIPQAAkr4AAIi9AAA0vgAAqD0AAIK-AABkvgAAHL4AAJq-AACAuwAAlj4AABC9AAAsPgAALL4AAJK-AAAwPQAA7j4AADS-AACgPAAAir4AAKC8AAAQPQAAqj4AAIA7AACAuwAAuD0AACk_AAAkPgAAyL0AAFA9AAA0PgAABL4AAOC8AAAkviAAOBNACUh8UAEqjwIQARqAAgAAPL4AACS-AABQPQAAdb8AAKC8AACIvQAA-D0AALi9AADoPQAAiL0AALi9AAA8PgAAqD0AAPg9AAA0vgAAcD0AABS-AADqPgAAUL0AADw-AABQPQAA2L0AAKC8AAA8vgAAJL4AAPg9AAAcPgAAQDwAAFC9AACCPgAAyD0AAHw-AAD-vgAA-D0AAHy-AADIPQAAsj4AAEA8AACmvgAA8r4AABC9AABAPAAAML0AANY-AABUPgAAuL0AAH-_AAAsPgAAND4AAFQ-AACIPQAAbD4AANg9AAC2PgAArr4AAFQ-AAAwPQAAqL0AAK4-AAB8vgAAfD4AAJK-AAB8vgAAgr4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ZyWHTWJ2XpM","parent-reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5695404303857586516"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1638716246"}},"dups":{"2763524202448755904":{"videoId":"2763524202448755904","title":"Learn \u0007[Sin\u0007], Cos, and Tan in 5 minutes","cleanTitle":"Learn Sin, Cos, and Tan in 5 minutes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=gSGbYOzjynk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gSGbYOzjynk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeGhralJjMnpaNWFiUTlTMVU3OV9YZw==","name":"Fast Forward Physics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Fast+Forward+Physics","origUrl":"http://www.youtube.com/@FastFowardPhysics","a11yText":"Fast Forward Physics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":316,"text":"5:16","a11yText":"Süre 5 dakika 16 saniye","shortText":"5 dk."},"views":{"text":"116,5bin","a11yText":"116,5 bin izleme"},"date":"26 eki 2019","modifyTime":1572048000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gSGbYOzjynk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gSGbYOzjynk","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":316},"parentClipId":"2763524202448755904","href":"/preview/2763524202448755904?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/2763524202448755904?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10742302042762857256":{"videoId":"10742302042762857256","title":"05 - Sine and Cosine - Definition & Meaning - Part 1 - What is \u0007[Sin\u0007](x) & Cos(x) ?","cleanTitle":"05 - Sine and Cosine - Definition & Meaning - Part 1 - What is Sin(x) & Cos(x) ?","host":{"title":"YouTube","href":"http://www.youtube.com/live/vuoNyvMvDtA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vuoNyvMvDtA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWdMODFsYzdET0xOaG5lbDFfSjZWZw==","name":"Math and Science","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+and+Science","origUrl":"http://www.youtube.com/@MathAndScience","a11yText":"Math and Science. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2885,"text":"48:05","a11yText":"Süre 48 dakika 5 saniye","shortText":"48 dk."},"views":{"text":"1,9milyon","a11yText":"1,9 milyon izleme"},"date":"23 haz 2020","modifyTime":1592916349000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vuoNyvMvDtA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vuoNyvMvDtA","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":2885},"parentClipId":"10742302042762857256","href":"/preview/10742302042762857256?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/10742302042762857256?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16077895358980625456":{"videoId":"16077895358980625456","title":"Solving \u0007[sin\u0007](x)^\u0007[sin\u0007](x)=2","cleanTitle":"Solving sin(x)^sin(x)=2","host":{"title":"YouTube","href":"http://www.youtube.com/live/Tf0jetLbFX4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Tf0jetLbFX4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":645,"text":"10:45","a11yText":"Süre 10 dakika 45 saniye","shortText":"10 dk."},"views":{"text":"455,3bin","a11yText":"455,3 bin izleme"},"date":"6 ara 2021","modifyTime":1638788421000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Tf0jetLbFX4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Tf0jetLbFX4","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":645},"parentClipId":"16077895358980625456","href":"/preview/16077895358980625456?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/16077895358980625456?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7281527085044920091":{"videoId":"7281527085044920091","title":"how to solve \u0007[sin\u0007](x)=i?","cleanTitle":"how to solve sin(x)=i?","host":{"title":"YouTube","href":"http://www.youtube.com/live/IsadvaKb97Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IsadvaKb97Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":641,"text":"10:41","a11yText":"Süre 10 dakika 41 saniye","shortText":"10 dk."},"views":{"text":"214,9bin","a11yText":"214,9 bin izleme"},"date":"3 ara 2018","modifyTime":1543795200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IsadvaKb97Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IsadvaKb97Q","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":641},"parentClipId":"7281527085044920091","href":"/preview/7281527085044920091?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/7281527085044920091?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18140150045761845202":{"videoId":"18140150045761845202","title":"\u0007[Sin\u0007] Cos Tan","cleanTitle":"Sin Cos Tan","host":{"title":"YouTube","href":"http://www.youtube.com/watch/O74LFU4VmlE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/O74LFU4VmlE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNW1xNFl3ZDBsUFBRSm5LXzVncS15QQ==","name":"Math Meeting","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Meeting","origUrl":"http://www.youtube.com/@MathMeeting","a11yText":"Math Meeting. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":298,"text":"4:58","a11yText":"Süre 4 dakika 58 saniye","shortText":"4 dk."},"views":{"text":"1,3milyon","a11yText":"1,3 milyon izleme"},"date":"2 tem 2012","modifyTime":1341187200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/O74LFU4VmlE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=O74LFU4VmlE","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":298},"parentClipId":"18140150045761845202","href":"/preview/18140150045761845202?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/18140150045761845202?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9084531608497530095":{"videoId":"9084531608497530095","title":"Simple explanation of \u0007[sin\u0007], cos and tan functions in trigonometry...","cleanTitle":"Simple explanation of sin, cos and tan functions in trigonometry...","host":{"title":"YouTube","href":"http://www.youtube.com/live/i8PxyTmm3Gs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/i8PxyTmm3Gs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWHpVTENXdXZibmptN1EwRjZSQktzdw==","name":"Engineering Facts","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Engineering+Facts","origUrl":"http://www.youtube.com/@engineeringfacts","a11yText":"Engineering Facts. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":612,"text":"10:12","a11yText":"Süre 10 dakika 12 saniye","shortText":"10 dk."},"views":{"text":"2,3milyon","a11yText":"2,3 milyon izleme"},"date":"30 ara 2022","modifyTime":1672403418000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/i8PxyTmm3Gs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=i8PxyTmm3Gs","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":612},"parentClipId":"9084531608497530095","href":"/preview/9084531608497530095?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/9084531608497530095?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"788606877771961357":{"videoId":"788606877771961357","title":"\u0007[Sin\u0007] Cos Tan - Basic Trigonometry - Working out unknown sides","cleanTitle":"Sin Cos Tan - Basic Trigonometry - Working out unknown sides","host":{"title":"YouTube","href":"http://www.youtube.com/v/E9_d_ET9yjI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/E9_d_ET9yjI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYjd3NWFUbnQ3WWVYQmNWQ1kwbWdGdw==","name":"tecmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=tecmath","origUrl":"http://www.youtube.com/@tecmath","a11yText":"tecmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":859,"text":"14:19","a11yText":"Süre 14 dakika 19 saniye","shortText":"14 dk."},"views":{"text":"469,6bin","a11yText":"469,6 bin izleme"},"date":"28 mayıs 2013","modifyTime":1369699200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/E9_d_ET9yjI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=E9_d_ET9yjI","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":859},"parentClipId":"788606877771961357","href":"/preview/788606877771961357?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/788606877771961357?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5996164232881940214":{"videoId":"5996164232881940214","title":"\u0007[sin\u0007](3x) in terms of \u0007[sin\u0007](x)","cleanTitle":"sin(3x) in terms of sin(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=aSq9vwGHLTg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/aSq9vwGHLTg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":328,"text":"5:28","a11yText":"Süre 5 dakika 28 saniye","shortText":"5 dk."},"views":{"text":"162,6bin","a11yText":"162,6 bin izleme"},"date":"20 nis 2017","modifyTime":1492671869000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/aSq9vwGHLTg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=aSq9vwGHLTg","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":328},"parentClipId":"5996164232881940214","href":"/preview/5996164232881940214?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/5996164232881940214?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13119102848479071094":{"videoId":"13119102848479071094","title":"What is the definition of \u0007[sin\u0007]? | GotQuestions.org","cleanTitle":"What is the definition of sin? | GotQuestions.org","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vc4jJGUBOZg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vc4jJGUBOZg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDckhBRFU4SDBQMlFfNzlzQWhZamxHQQ==","name":"Got Questions Ministries","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Got+Questions+Ministries","origUrl":"http://www.youtube.com/@gotquestions","a11yText":"Got Questions Ministries. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":250,"text":"4:10","a11yText":"Süre 4 dakika 10 saniye","shortText":"4 dk."},"views":{"text":"19,8bin","a11yText":"19,8 bin izleme"},"date":"11 kas 2022","modifyTime":1668171814000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vc4jJGUBOZg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vc4jJGUBOZg","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":250},"parentClipId":"13119102848479071094","href":"/preview/13119102848479071094?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/13119102848479071094?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13331419191217578752":{"videoId":"13331419191217578752","title":"Unit Circle Trigonometry - \u0007[Sin\u0007] Cos Tan - Radians & Degrees","cleanTitle":"Unit Circle Trigonometry - Sin Cos Tan - Radians & Degrees","host":{"title":"YouTube","href":"http://www.youtube.com/v/V5ArB_GFGYQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/V5ArB_GFGYQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3565,"text":"59:25","a11yText":"Süre 59 dakika 25 saniye","shortText":"59 dk."},"views":{"text":"2,3milyon","a11yText":"2,3 milyon izleme"},"date":"29 tem 2016","modifyTime":1469750400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/V5ArB_GFGYQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=V5ArB_GFGYQ","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":3565},"parentClipId":"13331419191217578752","href":"/preview/13331419191217578752?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/13331419191217578752?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13678681481948372932":{"videoId":"13678681481948372932","title":"\u0007[Sin\u0007], Cos, Tan Explained (Sine, Cosine, and Tangent)","cleanTitle":"Sin, Cos, Tan Explained (Sine, Cosine, and Tangent)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=n9SgF-iWIaM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/n9SgF-iWIaM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUF9URnZnRUxqTm12YmYtYTE3REp3QQ==","name":"Mike Corsetti","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mike+Corsetti","origUrl":"http://www.youtube.com/@mikecorsetti6923","a11yText":"Mike Corsetti. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":214,"text":"3:34","a11yText":"Süre 3 dakika 34 saniye","shortText":"3 dk."},"views":{"text":"49bin","a11yText":"49 bin izleme"},"date":"28 ara 2020","modifyTime":1609113600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/n9SgF-iWIaM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=n9SgF-iWIaM","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":214},"parentClipId":"13678681481948372932","href":"/preview/13678681481948372932?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/13678681481948372932?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13973133148390888770":{"videoId":"13973133148390888770","title":"Calculators with \u0007[Sin\u0007], Cos and Tan - GCSE Physics","cleanTitle":"Calculators with Sin, Cos and Tan - GCSE Physics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=z925v3v9Va4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/z925v3v9Va4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWnphdHl4LXhDLURsX1ZWVVZIWURZdw==","name":"Physics Online","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Physics+Online","origUrl":"http://www.youtube.com/@PhysicsOnline","a11yText":"Physics Online. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":151,"text":"2:31","a11yText":"Süre 2 dakika 31 saniye","shortText":"2 dk."},"views":{"text":"220,1bin","a11yText":"220,1 bin izleme"},"date":"10 şub 2019","modifyTime":1549756800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/z925v3v9Va4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=z925v3v9Va4","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":151},"parentClipId":"13973133148390888770","href":"/preview/13973133148390888770?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/13973133148390888770?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1897638725340761787":{"videoId":"1897638725340761787","title":"Basic Trigonometry: \u0007[Sin\u0007] Cos Tan (NancyPi)","cleanTitle":"Basic Trigonometry: Sin Cos Tan (NancyPi)","host":{"title":"YouTube","href":"http://www.youtube.com/live/bSM7RNSbWhM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bSM7RNSbWhM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUkdYVjFRbHhaOGF1Y21FNDV0Ung4dw==","name":"NancyPi","isVerified":true,"subscribersCount":0,"url":"/video/search?text=NancyPi","origUrl":"http://www.youtube.com/@NancyPi","a11yText":"NancyPi. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":744,"text":"12:24","a11yText":"Süre 12 dakika 24 saniye","shortText":"12 dk."},"views":{"text":"1,3milyon","a11yText":"1,3 milyon izleme"},"date":"15 mayıs 2018","modifyTime":1526413326000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bSM7RNSbWhM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bSM7RNSbWhM","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":744},"parentClipId":"1897638725340761787","href":"/preview/1897638725340761787?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/1897638725340761787?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14687662431363470516":{"videoId":"14687662431363470516","title":"can we have \u0007[sin\u0007](i)?","cleanTitle":"can we have sin(i)?","host":{"title":"YouTube","href":"http://www.youtube.com/live/cm0GsGP1K1Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cm0GsGP1K1Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":262,"text":"4:22","a11yText":"Süre 4 dakika 22 saniye","shortText":"4 dk."},"views":{"text":"79,2bin","a11yText":"79,2 bin izleme"},"date":"18 kas 2018","modifyTime":1542572443000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cm0GsGP1K1Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cm0GsGP1K1Q","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":262},"parentClipId":"14687662431363470516","href":"/preview/14687662431363470516?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/14687662431363470516?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13373643506855282273":{"videoId":"13373643506855282273","title":"Integral \u0007[sin\u0007] \u0007[sin\u0007] x","cleanTitle":"Integral sin sin x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=C641y-z3aI0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/C641y-z3aI0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb09qVHh6LXU1elUwVzM4ek1rUUlGdw==","name":"Dr Peyam","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Dr+Peyam","origUrl":"http://www.youtube.com/@drpeyam","a11yText":"Dr Peyam. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1590,"text":"26:30","a11yText":"Süre 26 dakika 30 saniye","shortText":"26 dk."},"views":{"text":"25,6bin","a11yText":"25,6 bin izleme"},"date":"14 haz 2019","modifyTime":1560470400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/C641y-z3aI0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=C641y-z3aI0","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":1590},"parentClipId":"13373643506855282273","href":"/preview/13373643506855282273?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/13373643506855282273?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10698191944826446892":{"videoId":"10698191944826446892","title":"\u0007[sin\u0007](pi/12), using difference of angles formula","cleanTitle":"sin(pi/12), using difference of angles formula","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=13enJ0GMj6Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/13enJ0GMj6Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":305,"text":"5:05","a11yText":"Süre 5 dakika 5 saniye","shortText":"5 dk."},"views":{"text":"29,2bin","a11yText":"29,2 bin izleme"},"date":"21 nis 2017","modifyTime":1492732800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/13enJ0GMj6Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=13enJ0GMj6Y","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":305},"parentClipId":"10698191944826446892","href":"/preview/10698191944826446892?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/10698191944826446892?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5695404303857586516":{"videoId":"5695404303857586516","title":"How To Find The Derivative of \u0007[Sin\u0007]^2(x), \u0007[Sin\u0007](2x), \u0007[Sin\u0007]^2(2x), Tan3x, & Cos4x","cleanTitle":"How To Find The Derivative of Sin^2(x), Sin(2x), Sin^2(2x), Tan3x, & Cos4x","host":{"title":"YouTube","href":"http://www.youtube.com/live/ZyWHTWJ2XpM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ZyWHTWJ2XpM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":322,"text":"5:22","a11yText":"Süre 5 dakika 22 saniye","shortText":"5 dk."},"views":{"text":"359,5bin","a11yText":"359,5 bin izleme"},"date":"21 tem 2020","modifyTime":1595289600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ZyWHTWJ2XpM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ZyWHTWJ2XpM","reqid":"1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL","duration":322},"parentClipId":"5695404303857586516","href":"/preview/5695404303857586516?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","rawHref":"/video/preview/5695404303857586516?parent-reqid=1769551039866350-12912068624757788877-balancer-l7leveler-kubr-yp-sas-233-BAL&text=SIN","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9120686247577888777233","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"SIN","queryUriEscaped":"SIN","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}