{"pages":{"search":{"query":"jbstatistics","originalQuery":"jbstatistics","serpid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","parentReqid":"","serpItems":[{"id":"16030207459843026748-0-0","type":"videoSnippet","props":{"videoId":"16030207459843026748"},"curPage":0},{"id":"4121817742828943158-0-1","type":"videoSnippet","props":{"videoId":"4121817742828943158"},"curPage":0},{"id":"13456936732257505937-0-2","type":"videoSnippet","props":{"videoId":"13456936732257505937"},"curPage":0},{"id":"13766171144434148995-0-3","type":"videoSnippet","props":{"videoId":"13766171144434148995"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dGpic3RhdGlzdGljcwo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","ui":"desktop","yuid":"9935036751769311032"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"14911750688497889707-0-5","type":"videoSnippet","props":{"videoId":"14911750688497889707"},"curPage":0},{"id":"3813483826064284221-0-6","type":"videoSnippet","props":{"videoId":"3813483826064284221"},"curPage":0},{"id":"16470374100342589984-0-7","type":"videoSnippet","props":{"videoId":"16470374100342589984"},"curPage":0},{"id":"16791687109102819451-0-8","type":"videoSnippet","props":{"videoId":"16791687109102819451"},"curPage":0},{"id":"3805548858636482982-0-9","type":"videoSnippet","props":{"videoId":"3805548858636482982"},"curPage":0},{"id":"1154685848863284334-0-10","type":"videoSnippet","props":{"videoId":"1154685848863284334"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dGpic3RhdGlzdGljcwo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","ui":"desktop","yuid":"9935036751769311032"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"9244528070355632111-0-12","type":"videoSnippet","props":{"videoId":"9244528070355632111"},"curPage":0},{"id":"12072438615848583708-0-13","type":"videoSnippet","props":{"videoId":"12072438615848583708"},"curPage":0},{"id":"959313134886548354-0-14","type":"videoSnippet","props":{"videoId":"959313134886548354"},"curPage":0},{"id":"5031331938342937031-0-15","type":"videoSnippet","props":{"videoId":"5031331938342937031"},"curPage":0},{"id":"7370521484173341159-0-16","type":"videoSnippet","props":{"videoId":"7370521484173341159"},"curPage":0},{"id":"13433627166346955836-0-17","type":"videoSnippet","props":{"videoId":"13433627166346955836"},"curPage":0},{"id":"5982338972076148514-0-18","type":"videoSnippet","props":{"videoId":"5982338972076148514"},"curPage":0},{"id":"1955698311069342270-0-19","type":"videoSnippet","props":{"videoId":"1955698311069342270"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dGpic3RhdGlzdGljcwo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","ui":"desktop","yuid":"9935036751769311032"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Djbstatistics"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"0319013205470044967176","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1466868,0,2;1460339,0,65;1414494,0,43;1433082,0,14;66286,0,72;1460956,0,51;1460712,0,88;1464561,0,2;1459297,0,71;1152685,0,14;1456929,0,49;1472029,0,87;1471630,0,80;1461640,0,64;1460999,0,59;1339938,0,8;43961,0,30;1464523,0,34;1470250,0,78;1373787,0,12;1466296,0,43;1463529,0,83;1470857,0,57;1463530,0,57;1464404,0,3;1466619,0,84;1185074,0,94;260563,0,76;1465693,0,45;89018,0,75;1404022,0,46;1471184,0,10;1470316,0,16;1470415,0,55;972817,0,55;151171,0,25;1269693,0,73;1281084,0,64;287509,0,14;1447467,0,90;1468028,0,26"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Djbstatistics","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=jbstatistics","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=jbstatistics","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"jbstatistics: Yandex'te 548 video bulundu","description":"Результаты поиска по запросу \"jbstatistics\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"jbstatistics — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y8712b1a44a5924d194b48597f056e8e6","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1460339,1414494,1433082,66286,1460956,1460712,1464561,1459297,1152685,1456929,1472029,1471630,1461640,1460999,1339938,43961,1464523,1470250,1373787,1466296,1463529,1470857,1463530,1464404,1466619,1185074,260563,1465693,89018,1404022,1471184,1470316,1470415,972817,151171,1269693,1281084,287509,1447467,1468028","queryText":"jbstatistics","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9935036751769311032","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769311061","tz":"America/Louisville","to_iso":"2026-01-24T22:17:41-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1460339,1414494,1433082,66286,1460956,1460712,1464561,1459297,1152685,1456929,1472029,1471630,1461640,1460999,1339938,43961,1464523,1470250,1373787,1466296,1463529,1470857,1463530,1464404,1466619,1185074,260563,1465693,89018,1404022,1471184,1470316,1470415,972817,151171,1269693,1281084,287509,1447467,1468028","queryText":"jbstatistics","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9935036751769311032","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"0319013205470044967176","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":155,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"9935036751769311032","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"16030207459843026748":{"videoId":"16030207459843026748","docid":"34-10-16-ZBB417E944F8B30B9","description":"An introduction to continuous random variables and continuous probability distributions. I briefly discuss the probability density function (pdf), the properties that all pdfs share, and the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3099332/d93ee100eb3d101bc1f9003e3d892b50/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/KzRJswAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOWSOhpS00_s","linkTemplate":"/video/preview/16030207459843026748?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"An Introduction to Continuous Probability Distributions","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OWSOhpS00_s\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhYKFDE2MDMwMjA3NDU5ODQzMDI2NzQ4WhQxNjAzMDIwNzQ1OTg0MzAyNjc0OGqTFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxPfAoIEJAGABCsqiwEQARp4gfj-A-8F-gAD_wYBDwb-AhcF9wb0AQEA4QDwCgD9AgABBvj8_wEAAPsHBf_2AAAA9PsKDfP_AQAIG_0ABQAAABT9APf_AAAABwP1Af8BAAD49PMJBP8AACAFCAoAAAAA-wP_7AD_AAARDwsCAQAAABT-7AMBAAAAIAAtiCrCOzgTQAlITlACKoQCEAAa8AF16gwA2xkEAOL47v-vN-D_gQAC__0u1wDC6_QAzxTaABrk_wDe9_H_Gfn2AMAHAf8XBNn_A9slAEXlCQBEz_7_0wwpABfr9gEdESoC5OXu_tQrAv7i8w7_5OHT_wAk-f_3_fz95PX0ASD21gJD-icABuYFASPvAAEB5xz94gcg_-b33P0LLfUCAOr6_ucsIAIJGQEGEUAE_vIK7QQOBwwH5fAV_xQK5gPsDPUFIxAQ99Xv-Pjo-vX_EwcRBeEB_QXoAxQA4OUbA-flCfgO8QEG_TIG_AETAwcABwcC7dAA8vv9-AHVAAH83vgA_v7x_gEgAC2_TyQ7OBNACUhhUAIqzwcQABrAB4ds2L4kXoM949G6O1zX-bzve2-9tAUEvTlk472y0gs7iQMtvXYaCT5bAD89pA3RvJZdUL6Q7Nu8iSimPMuAMz7m0Yi9mGIzPHE9Wr7nFr89hUyovPWha76E0wc9dDXDu2RMUD1Gz608-6qeuohlcz2lapu9cAKZOtGEPD3VdnM9XwBLvfBVBj3NhHW95jXAvK1_4Tyzxb-8xE8tvC9R_T2xBWC6n6utvOtDDbz0KCa8tiJ7PL-aA72RlDk9deuQuh3owT2G_H656kmPPJuNWr3Dd6y8swhFPGwHg73NFto8ljCJvA97hj3suZE9OaErvX_CtDxadz29RyXtuzJ9qr33iYg9cXxlu-Rm-D1mTOE9GCPUOzqTNr4ElUw8X4iLvJrHCrtYk4K9rvWFvAYW2zypwvo89pMWvDxdtz3WJXk9ijUKOpAkELwQ36M9pmIDPTngqT31-5k94GgFvFOpvjzBq4a77EOHuyz5k71iYEI8Dy-jvKpzFj0Enio9fPTEOzlP67w_GRI675tSO0VcpTxzuPa95AQ3PFxNqLy5clG9b1azvHsNlj1kvm09y6vGum786T1M5K29K3Opu37zDL3Yeuu8KrIxPFZrPLxSr7C9YscYO3PZyL1iM3s9Ce3Ju79rp7s6w7k81jV_vBOmfzvDrcy8JtEnunstLb1HY7O98L6IOSocIDxY57g9X1C2u3P8iz1kXcc976iwt3rkqj0jX668b0iCucS5H7vs7LW8mVGDO2PELz2WNxE9642cu965pj07aBu92hnHOZm1OTyLfEm7POlVugq_T70mHtA9gCM5uazxiLycd6K9boVRORSdi72JeuG9xidwOQBHjL3yB0O9aYBVuUWNOD3BbAc9CtIeOSCix72Svv-8dZ0PubplarvX3by87gHKuPKVID3w6HW913f3t9bKXz0fgPQ9bZC0uAIDUj1anPG8Kbw1uQ224jzakSo-oWKNue1fXj2e9d88iahUuP1Ylz3ct_o9HVbENRt5tb3gsek8zLILOPZ_jjwALtI8v_PXuLBCkL1MAJm9IWVjuLw6y7u4XJg8vtCSNsrhA74Q1x48l_1ON1KpJ7vXHWY8Hs8XOKck6z3pdRi64lpFuBKrhT2fmwy9_MEGuYJVRT50yDc9ydyEuYXeTL1UqI696srDuCu0Pbzpmgm9nn1NtyL8i7yIH9K81G1IuL2vBT2lSQm-rZ6FuKlrjT2LC5E9EyciOHfGjb2rKQQ9n9OKuOcjn703wHE87WSXt84YBj166_I8h7gJOCAAOBNACUhtUAEqcxAAGmA2AwAW6R_g6R1U3QTs4RTt4iMDTb3__-_-AAkj5ezwBNSyDgIAHNkP7q8AAADy9eMbGQD1cuDi8iHm7vun0swrK38WFiut-vojrvwFHA7nHCIJMTIA6e-4L0vQzDoDCh4gAC3GFSY7OBNACUhvUAIqrwYQDBqgBgAAJEIAADjCAAAMQgAA6MEAAIjBAABQQgAA5kIAAFBBAAA0wgAACMIAADxCAAAMwgAAYMEAAADAAAAowgAAEEIAAEBBAABgQQAAgEEAAFBBAAAgwQAAIMIAAPDBAAA4QgAAAMIAAKDAAAAQQQAAAAAAADBBAADgQQAAeMIAAOBBAACCwgAAQEEAACjCAADAwAAAcEIAAGRCAAAowgAAwMAAAKBBAAA0wgAAAEIAAKDBAADoQQAALMIAAIjBAACIQQAAoEAAAKDBAAAAwgAAmMIAAJjBAACAwAAAuEEAABhCAACawgAAMMEAAADAAAA8QgAA0EEAAMDCAADIwQAAeMIAALjBAADMwgAAyMEAADjCAADgQAAArsIAAHBBAABgwQAAqsIAAExCAAD4wQAAAMEAAJBBAADQQQAAoMAAANhBAABAwgAAgkIAABDBAAAAwQAANEIAAMhBAADoQQAAoMAAAIC_AAAMQgAA0MEAACBCAACKwgAA4EEAAPBBAAA4wgAAoEAAABDBAADAQQAAgkIAANzCAABwwQAA4EAAAMBAAAAEwgAAiEEAALhBAAAAQgAADEIAAFBCAADYQgAAwEEAACTCAACAwAAAAEEAABhCAAAgQgAAwMAAALjBAACAvwAA-EEAANjBAACwwQAAGEIAACDCAADwQQAAcMEAAEDAAAAgwgAAaEIAAIC_AACgwgAA4MAAAIZCAACwQQAAwMAAAFBBAAAAQAAAeMIAAIrCAADYwQAAsEEAAGhCAABQQQAABEIAAMDAAABAQQAA8MEAAODAAABAwAAAuMEAAJhBAAAAQQAAAEIAAKhBAACAPwAAhsIAAOjBAAAQwgAAcMEAAKDBAAAkQgAAqMEAAODBAADAwQAACEIAAMDBAAAEQgAAgEEAAJjBAAB8wgAAgEEAAPBBAACewgAAvsIAAIxCAADAQAAAiEEAACTCAACeQgAAgMIAAOjBAACSwgAAEMIAAFBCAABAwQAAksIAAIjBAABQQQAAUMEAAFhCAACQQQAAmEEAAIA_AACwQQAAZEIAANhBAAAAQQAAFMIAAHDCIAA4E0AJSHVQASqPAhAAGoACAADovQAAuL0AAOC8AAB0PgAAfL4AAKA8AABsPgAABb8AABy-AACAOwAAuL0AAEw-AAA0PgAAiD0AAFS-AABQPQAAND4AADC9AAAQvQAANT8AAH8_AACAOwAAiD0AAJg9AABMvgAApj4AAHC9AADovQAAbL4AAOC8AAAsPgAAuL0AACy-AADgPAAAlj4AAPg9AADYPQAATL4AAFy-AACIvQAA6L0AANg9AABkPgAA-D0AAFA9AAAcPgAABD4AAO6-AABsvgAA3r4AAGy-AABQPQAAdD4AAHQ-AAAQvQAAoLwAABE_AAAMPgAAyL0AAAw-AACgvAAA-D0AAHC9AAAkviAAOBNACUh8UAEqjwIQARqAAgAAzr4AAOg9AAAUvgAAR78AAPg9AABQPQAAcD0AADS-AAAcvgAARD4AAMi9AABAvAAABL4AACS-AAD4PQAAED0AABA9AAAZPwAADD4AAKo-AABwPQAArj4AAAw-AABwvQAAVL4AAMg9AABEvgAA6D0AAKa-AABwvQAAND4AACQ-AAAsPgAAQLwAAOg9AAAEvgAAzj4AAEQ-AABcvgAAXL4AACQ-AAAMPgAAir4AAJg9AACYPQAAgDsAAH-_AACCvgAAqD0AAJ4-AADCPgAAgLsAAEQ-AADCPgAAoDwAAOg9AAAwvQAAPL4AAAw-AAAsvgAAHD4AAMI-AAAQvQAA-L0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=OWSOhpS00_s","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16030207459843026748"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"349156596"},"4121817742828943158":{"videoId":"4121817742828943158","docid":"34-1-4-Z0418926E8A20F538","description":"I work through an example of finding the median, areas under the curve, and the cumulative distribution function for a continuous probability distribution. I assume a basic knowledge of integral...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1780623/4cb2948b74b30e03aae229584564fe26/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/YtJPnAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEPm7FdajBvc","linkTemplate":"/video/preview/4121817742828943158?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding Probabilities and Percentiles for a Continuous Probability Distribution","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EPm7FdajBvc\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhUKEzQxMjE4MTc3NDI4Mjg5NDMxNThaEzQxMjE4MTc3NDI4Mjg5NDMxNThqkxcSATAYACJFGjEACipoaGV2YWNobnNtZnN0empjaGhVQ2lIaTZ4WEx6aTlGTXI5QjB6Z29IcUESAgASKhDCDw8aDz8TzgWCBCQBgAQrKosBEAEaeIEF9f34_wIAEAAQAAIH_wEBCP4I-P7-APIA-Q0FAv8ABQT7BQEBAAAG-wQM-wAAAPwCBAT2_gEA-hX-BQMAAAAM-gAAAQAAAAgH_wL-AQAAAfnyAwP_AAAWBf4GAAAAAO_9AvIA_wAADAYS_AAAAAAM-fcFAAAAACAALU-J2Ds4E0AJSE5QAiqEAhAAGvABdPokAeIPyQLdEOAAyQv6_4EiCv79MdUAzvf_AM0V2QAA4voAzw33_xH6B_-5J_n_PPbN__rSAgAm7BL_QOL6ANnzCQAY6vYBIzIk_v4C-P_eDAr-E-YN__3K4AAJKu8AEu4GAe7t6wEbFc4BIvwsAfkBJAU8-AoD37T9AdgJ9wINBOL9-CEFBAriDvjK_h0BDOn9CCIbEPz__dL8BuwP9uYLGfcHK9f-FvgHCAYG9QjL5_4FCOz7CScCEgHgAfwF8_ckAu4ICfrm-AcADegI_fYD_APw7vsKGPQNBPbaAPwE4fn60wAB_P4A6gfhCPXtIAAt_yEdOzgTQAlIYVACKs8HEAAawAdPPsW-ftjcPDHGsDtOY_u9N-kMvXfp8LzjoLm9HG2LPF4FI7wUdhE-3w7evCa-gzuELOu9JOYjPIwrrjwKL2E-F3GwvEHTxjlxPVq-5xa_PYVMqLwVHE6-rE3IPDWXHzs7PUo8QRguPBhjOzygNMQ9ptVQvRH_1jnomYM8JFT6PJspI728fMY8bg4fvCINeL0TXLS7McwOvS_6yDsYWh0-agdxu7SFEDy3V0s9VnTWu8anIL3WMTO9jVL4PDQ_yLx1Ziw9povDPP90qDx6L5O9hnaevT-z2jzfGJK92b_hPAGZxjtmFuE9QbUGPRPWhrxi9Iw9nn7Qvb52XbuoyCG-AnwcPejpbTz9z7s9eLmIPasmiLwJqfu9pedMPCVEFruzvje8tx0FvPq3iTtgIRM9G9yBPU6Izjs3TIk9jf02Pcsqz7qQJBC8EN-jPaZiAz0gS6o9qBb2vFx2iLyqXag9S3APPG41a7wqWYm9JXQ4u6a1zLrwt4O7g-S4PQiZPzwWGA08bnNfOymveDsFI6U91gI7vknlmjrHg229VxCOvZ23VrwpjJI8gGORO_VXvLtO8M09ZjPnvf9XADyGxji9hHsKPYfuIzwXmSO8Zyx1vYu4Sjx2J8m9GhzAvJAaizu_a6e7OsO5PNY1f7wSjjQ8Jso5PdBy6ruRoFO83yatvRbtnroUeRI9K1ovPST7FLs1bLo9LmGjPHtSyTiXI589-8Z8vQOsEjrtz2q91f-evOr5e7p-aDC9KSuhvZROuLihndM9UYGYvZedUTm0WCu7WWAZPc15UDkb6qG9sluVPSzZmThkbLI8XAPbveCkFLnLovC8W0IevjcF4zm3ss25a84FPM1ssLnls7w8O1llPTEflLpTHpK9ShvIveFzmzfqWfW8EXnmPAvs2zj-8pk9zNVqu6_VxDjy3y29SywfPZ-pzreg-_I85ypnvRmtZzh1Ae881vW1PT0Q8bjrpGM8ooyivb9SZDkXvnk9f1SuPTkx1TgGCkG9kO-3PBEHYzjclBw9TqKUPbrAhzev2Bk889qWvUlaH7elJeA8QbH6PEA707hlU869wuioPP4y6DeBe948sMSoPDkUJLcTuss716GauhpeN7ZPDjU9nCAgPcpSRziCVUU-dMg3PcnchLluHmK9sSuyvRO_v7h_iYO9Dtj1vQvRErhVMRO8TplbPQ2vyzeGECE9XHfTvd7zm7dVGKY9bQvFPYPH5zgD_JS9f6iPPYXkXrkjaMy9DQH6O28GBjc3sRe8K0cNPWEYrTYgADgTQAlIbVABKnMQABpgJAcAHgkj-vj9Tfb5APEEBPgf7yzZGv_w3wANKt3e_QTFwwMgAAnWF_G4AAAAHgLTHxcA_mP-5vb6-f_2qO_TLyh_Aw0jqgwU8sThDPwX_Rr_LDg_AOD6xB8w6aQ8_vMKIAAt6PM1OzgTQAlIb1ACKq8GEAwaoAYAAARCAACYwQAAQEIAAAAAAADQwQAAPEIAAOZCAAAAQAAAlsIAACDCAABAwAAAcMEAAHDBAADwwQAAdMIAAMBBAAAoQgAAwEEAAGBBAADQwQAAoEIAABzCAADIwQAAwEEAAHTCAABcQgAAFMIAABDBAAAAQAAAQEEAAOjBAADgQAAAjsIAAJBBAAA8wgAABMIAACRCAAAAQgAAmEEAAEDBAACgQQAASMIAAJhCAABwQgAAFEIAALjBAADAQQAAAMAAACBCAADgQAAAIEEAADjCAACAwQAA8MEAAETCAAAEQgAAaMIAADDCAAAQQgAAAEIAAIxCAABowgAAyMEAAITCAACgwQAAzsIAADBBAACIwQAAUEEAABDBAACGQgAAgL8AAOjCAADaQgAAQMEAALjBAAAAwAAAJEIAAHBCAADgQQAAmMEAAJZCAACCwgAAAMIAABBCAAAQwgAAIEEAAGDBAAD4QQAACEIAAMjBAADwQQAAlsIAAIjBAADgwAAAcMIAAFDBAAAgwgAAkEEAADhCAACgwQAAuMEAAEDBAAAQQgAAgsIAADhCAACIwQAAeEIAAAhCAACgQQAAQEIAAJhBAAAwwQAA4EAAAFBBAABAQAAAHEIAAEBAAABAQQAAUMEAABhCAAA0wgAAgL8AAIBBAACgwQAAAMEAALjBAABAQAAAcMIAAAxCAABAwAAAWMIAAKDBAADwQQAAAEIAAIDAAACwQQAAbMIAAIbCAABQwgAAUMEAAJhBAACKQgAAQMEAAMDBAACAQAAAoMAAANDBAAAgQQAAoEEAAEDBAACAwQAASEIAADTCAABgQQAAGEIAALDCAAC4wQAAFMIAAJBBAADQwQAAkEEAAODBAAC4wQAAgsIAABxCAAAgQQAAPEIAAEBCAADoQQAAgD8AAIDAAAAAwQAAcMIAADjCAACgQAAAqEEAAADBAABQwgAAokIAAODBAAD4wQAAfMIAAPDBAAAsQgAAQMAAAIDBAABAQAAAwEEAAEDBAACgQQAAIEEAACBBAAAAwAAAKEIAAPJCAAAwQgAAQMEAAGjCAACowSAAOBNACUh1UAEqjwIQABqAAgAAoDwAAFS-AADoPQAAEL0AAOi9AADIPQAAQDwAAB2_AAAQvQAAEL0AADw-AAD4PQAAjj4AAFA9AADavgAA-D0AAAQ-AAAQPQAAqD0AAAc_AAB_PwAA2D0AALg9AAAEPgAABL4AABw-AADYPQAAEL0AALa-AACAOwAAZD4AAKi9AACOvgAAML0AAK4-AAAQPQAAoLwAAOi9AACqvgAAqr4AAFS-AAAQPQAApj4AANi9AAA8vgAAyD0AAFQ-AACyvgAA4DwAAHy-AABQPQAAqD0AAAQ-AAAUPgAAdL4AAES-AAAXPwAALD4AAKC8AAD4PQAAcD0AADC9AABQvQAAHL4gADgTQAlIfFABKo8CEAEagAIAAKq-AACYvQAAMD0AAE2_AABQPQAAcD0AACw-AAD4vQAARL4AAKg9AADIvQAA-L0AAFC9AAAkvgAAuD0AAIA7AAAUPgAADT8AAJg9AACWPgAAED0AADQ-AAAwPQAAqL0AAJi9AADYPQAAPL4AABA9AAAsvgAAgLsAALg9AAAsPgAAmD0AAOi9AACYPQAAQDwAAHw-AAB8PgAAFL4AANi9AABMPgAAoDwAAHC9AABQPQAAUL0AAIA7AAB_vwAAuL0AAHC9AABcPgAAqj4AAKC8AACOPgAAij4AABy-AACIPQAAQLwAAHC9AAAwPQAATL4AAPg9AADIPQAAqL0AAJg9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=EPm7FdajBvc","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4121817742828943158"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2099950270"},"13456936732257505937":{"videoId":"13456936732257505937","docid":"34-7-11-Z24DE99B8914E0AB7","description":"I discuss linear transformations, in the context of descriptive statistics. I discuss what a linear transformation is, give an example, discuss the effect of the linear transformation on various...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4032051/709db8cf6af74b9358a17618cd8c3147/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/OXp7FAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D32dGPyIMgJ8","linkTemplate":"/video/preview/13456936732257505937?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Linear Transformations (in a Descriptive Statistics Setting)","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=32dGPyIMgJ8\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhYKFDEzNDU2OTM2NzMyMjU3NTA1OTM3WhQxMzQ1NjkzNjczMjI1NzUwNTkzN2qIFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxOqBYIEJAGABCsqiwEQARp4gfP_Awv9AwD4BwUIAAb9Ag39-QEJ_v8A6P0FAv_-AQAM_wf-AwAAAPn98gIAAAAA8wP-AfoAAAD3APYG9gAAABMABQT8AAAADRj7Av4BAAD9_gX0AgAAAAkKDQkAAAAA_gsIBPr_AAD5AAERAAAAAAz59wUAAAAAIAAtQrHbOzgTQAlITlACKoQCEAAa8AFx3BAAsATT_Qb13wDcKccBgQAC_xsj4wCwDicCsRLP_wDj-gDZ6OUB5vAHANMOIwAUFe8AHNAHASj98v8h8QcA3gL9ASvyJABB9AQAG_PlAdEZ8__o5gkBD_XtAPQK8wMH1xn-8_zl-wntwAgO_jgBDAcnAxMLIQPvAPwGzxIaAfbt8fwI8_sA8RUF-7P_GQc0-gP_AAP6-O0h_gQBDAn79u_5-hL24AArDNkCCwYB-uIGCvbx2ekCG_ogBQoO7f_xEQgGAAUH__ETCPEj0QD9-wH19ePsBwYQ7vMBAt358_kJ-v7mCfn22RcC_hsd-gYgAC2_TyQ7OBNACUhhUAIqzwcQABrAB-qw6r7a0jy7-JcTPahUybyY4BQ9J9xrvS6pn70DC7u8U_BvvDMyGD4QNHC9fD3EPPjBgb5_6Pi8RGlPPf29dD6SVEu9A7HsPHV0_L0vE5o9CwIQve_F970iKKg9KS-ovHkTLjtgGu27ffUnvatNoj1U3B29CXYSveiZgzwkVPo8mykjveFeGT138aO8kb4kvH0ANz37XA29dT-nOtNO7T11QA29nWkdvQEYTz2IDRs9-A8TPdsZFr6vfQE8wsc7vVKQqTy_dwA9IRutPC6Z2bx_-Hk8EcLguBBGpjvUnQc-N3fPO5YKar2ulIo9qX81vG9Tcj3--EY9XZIZPXf1Cr6gny49XPlRvCmuqjyWSq49-D_ZuyYMdL1dRrs9TCy6PIqVLLzln3Q8N-M0vADyhD2JKwI9-CsuPIKooLykcxs815PvvC0OH7xVVi49EEIbPa5G9j1S6Uw85dCivMSx8Dt4wCs9sZ7_O6ym0LyA4Yu8gemTu2lXzD2mEyQ9bSsLPDEJ1zxoJ548UPGJvN9mxj05tfO9hx8YPA_d4jx1dBy-GGL6ud3Bfj28uyQ9iHuRvAApHjyb1wK9hJ-0u45PUr1JII-9s3XTO2S2YLuoBI-9mjQZu2BBhb1Nef48-dRWvAcjNr28HJs7o8owvMuupT0ESAM9_leEu9BPJ713ooS9ofeEOlSFiz0Pm-g9XqRROqfTdT0BmSW7sDH5ulGX1jzl0W29oBpMu9kQEr1Jzei8WkKlOyOaJb3Qoae8potiOzy98j1KyFG9V8GOOUyzDLxAo_Q8xBXluf7rkb1nh1M9nEjxuInI1Tx9P4W9R1qFOas9kb0aUhW-MFEKOuYEbT1DhbS8QBUauoBVJL1Ct3K97i4POr25Cb0Yfiu9tFAGuag8VT0rrCo9FZmTuHvRSL2CVLq9zz5duXQhHDyUqY2988AnN9G6fL0ndTi8mDZVOX6__TzkH0w9B2soOcLDjzwRGda8hQSht-1EST1b7PY843xnOFrG_LypUFg9KtoEtaIIqT08UOc9xI32OPPa9rwI-cq9Wod7tpgrKD0opyy8DI-IOAq7aL1FMJk9R7zCOCemJj1p8p68ZDxVOIq1kzyWI4Q9bA2MOI2T57zk0-u7dFd1OC-mGT54O8w8_OYbue99sL1kikO9FC5BuCGNT73ugny9RhWOuMT1wTvuDiQ9h_nNt97oXj145YS9QVK0uELLXz1jGrc9bpCOOHxijb0hA9k9gTUwuSumnb1Y8sK88Kilt6GdWL307lk9U99YOCAAOBNACUhtUAEqcxAAGmAV_wAt5hTp4hpK6vH4vhvt-iLYGcUG_87V_-kgxegQDO7e8f__RNsS3LAAAAD-AO8qDAD_c9Db7yH0FQ3Dz88XMX8qECa18fb0qPQ2F9n-KhAmOVQAB9ym-j4g0jb_Dw4gAC1r2CQ7OBNACUhvUAIqrwYQDBqgBgAAUEIAAMhBAAAIQgAAVMIAANjBAADgwAAA3kIAAADAAABEwgAARMIAAEBCAACAvwAAYEEAAEDCAADgwQAApkIAAKxCAABAQAAA6EEAAIjBAAD4QQAAMMEAAPDBAAAgQgAAkMIAAHDBAAC4wQAABMIAAKhBAACgQQAAAAAAAADAAADgwQAAMEIAACDBAADgwQAAyEEAAIpCAAAkQgAAMMEAAPBBAABAQAAAxEIAAODAAAAIwgAAFMIAACxCAACAwQAAQEAAAARCAAC4wQAAaMIAAKjBAACAvwAA8EEAACBCAAAswgAAMMIAAAAAAAAQQgAAMEIAAJ7CAACIwQAABMIAAABBAADKwgAAEMEAADDCAAC4wQAA2MEAAIpCAADgQQAA0MEAAARCAADowQAAsEEAAKDAAABAQQAAhkIAAJBCAADgwQAAcEIAAOjBAADAwQAA6EEAAMBAAAAAQQAAsMEAAKBCAAB0QgAAwMEAANhBAACMwgAALMIAAKDAAACMwgAAwMAAAABAAABgQQAA4EAAAHjCAAAQwQAAhsIAAADAAABwQQAAgL8AAAzCAAAwQQAAwMAAADhCAACCQgAAIMEAAMBAAAD4QQAAAEEAAAhCAACAwQAA0MEAAARCAABgQQAAwEAAAKbCAADgwAAA4EAAAIzCAABIwgAAkMEAAKDAAACQwQAAmEEAAMjBAAB4wgAAQMAAACBBAAB8wgAADEIAAOBAAACIwQAAgEAAAODAAADIQQAAREIAANDBAAAAQAAANEIAAMxCAACgwAAAKEIAAKBBAAAkwgAALMIAAMBAAABAwAAA4MAAAJZCAADAQQAAiMIAAGDCAABswgAAJEIAAOBBAABwQQAAoEAAAJBBAAAUwgAAgL8AAGTCAACkQgAAQMAAAJhBAAD4wQAAwEEAAEBAAABgwQAAGMIAABRCAABUwgAAHMIAAIbCAAAMQgAAUMIAAIDAAAA4wgAAqMEAANhBAAAwwQAAAMIAAHBBAACiwgAAyEEAAHRCAAAswgAAFEIAAADBAADQwQAADEIAADxCAABwQQAAgEEAAKZCIAA4E0AJSHVQASqPAhAAGoACAACgPAAAbL4AAFA9AABwPQAA-L0AAEC8AACuPgAAEb8AACS-AABQvQAAlr4AADC9AAAQvQAAVD4AAIa-AACYvQAAmj4AALg9AACYPQAAFz8AAH8_AACYvQAAoDwAAKA8AADovQAANL4AAJY-AACgvAAAmr4AAJg9AABMPgAAUL0AABA9AAAcvgAAUL0AAKg9AAB0PgAA4DwAALK-AAAwvQAATL4AAFA9AAAkPgAAQDwAAHy-AACePgAAmj4AAFS-AABMvgAAyL0AAHA9AACIPQAAgj4AAKi9AAA8vgAAUL0AAFs_AAD4PQAAqD0AAJI-AADIPQAAyD0AAFC9AABEPiAAOBNACUh8UAEqjwIQARqAAgAA4DwAABC9AABsvgAAK78AAOi9AAAQPQAA2D0AAJi9AACYvQAAXD4AAKg9AABcvgAAVL4AAFS-AACoPQAAML0AABQ-AAAZPwAAyL0AAMo-AAAEPgAA4DwAAOA8AADIvQAA4DwAAHw-AAAMvgAAmD0AAPg9AAAEPgAAcD0AALg9AAAsvgAAor4AABC9AADYPQAAfD4AAAw-AABcvgAAFL4AAHw-AACIPQAAUL0AAIg9AACgPAAAfD4AAH-_AABEvgAA2L0AABQ-AAC4vQAAEL0AAJi9AACIPQAAyD0AAFA9AACAOwAAMD0AAKC8AACoPQAAHD4AABQ-AABMPgAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=32dGPyIMgJ8","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13456936732257505937"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3765506998"},"13766171144434148995":{"videoId":"13766171144434148995","docid":"34-10-7-Z21B873D7C1B017B0","description":"I develop the appropriate confidence interval for the ratio of population variances (when sampling from normally distributed populations), then work through an example. Note that these methods do...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3615731/bcaf20ab6024d2992b9b06d26336a295/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/b56PdAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D64hFiLSq3Fg","linkTemplate":"/video/preview/13766171144434148995?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Confidence Intervals for the Ratio of Population Variances","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=64hFiLSq3Fg\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhYKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1WhQxMzc2NjE3MTE0NDQzNDE0ODk5NWq2DxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxOGBIIEJAGABCsqiwEQARp4gQoR-wH_AgD4_v0B-QT_Af4L-PL3_v4A_AX5_QcE_gD6BQcE-QEAAPoI-hACAAAA7gcF_voBAAANAP0D-wAAABb4Dgn9AAAADgz8A_4BAAD2-gb5AgAAAAEB9QQAAAAA-hUI_P7_AAAEBPwHAAAAAAUB-wUAAAAAIAAtnnvXOzgTQAlITlACKoQCEAAa8AF_7gAA2ibWAPkZ5ADl-uYAkwkn_xZD-gDOAQ0AowL4_w_f7f_Z6OUB7u_9AdMfEQAzCt3_A9slAA3a9gAu5QcB6_QLADLPDwESCA0AIPjWAvH1EQAI3fz_FtrXAggK1f4H1xn-7-7sAe8DyAIO_jgBHO4iAgnnFf71-AP71SUK__3o4f4M6-n__vAUAMUeFgMc8uoD6CL2-f4R7QD8AgED-Ab1AQcp2f7__voDBRUK_uv89_sI7PsIJQIRAeUJBvv0-CICCg8B9PzV-PX25vcACgHc9-_ICAEQ7vMB3ND2-AUL8_zrGwEA3gMNCe4X9QEgAC0YICQ7OBNACUhhUAIqcxAAGmA0_wAzAiTt0dFJ0hMC7_sPCPfYD5rr_-m6_-wp4uff5eq_9gX_O88c76EAAAAuBs4vDQAIf9jaxAcBFOfSwd1MQmouGiu32AEMteryKQnuIgnX-HsAA_G3FUrHwzcKEScgAC3ZohY7OBNACUhvUAIqrwYQDBqgBgAAMEIAAKBAAABAQgAArsIAAHBBAABwQQAA2kIAADDBAAAowgAA2EEAABRCAADQwQAAMMEAAAAAAAAAQAAAAEIAACxCAACwwQAAEMEAAABAAADwwQAA-MEAAKDCAABQQgAARMIAACTCAAD4wQAAAMAAADDBAACAwAAAjMIAAABAAADMwgAATEIAAEDCAACAwAAAEEEAAJpCAAAAQQAANEIAAEBCAACAQAAAEEIAAMDBAACwQQAASMIAAJZCAAAsQgAAREIAALhBAABMwgAA4MAAALhBAADQQQAAoEEAAIhBAACQwgAA6EEAAMhBAACmQgAAFEIAAKDCAAAQwgAA2MEAAKBAAACqwgAAgD8AABBBAABgwQAABMIAAPhBAABUQgAAPMIAAI5CAACwwQAAIMIAAGzCAAAQwQAAQEIAAGxCAAAAwAAAdEIAAJjBAABMwgAAGMIAAPBBAACAPwAAAEAAAGBCAADYQQAA-MEAAEBCAAAcwgAAoMAAALBBAABAQAAAQEAAABBBAACoQQAAFEIAAFzCAADgQAAAwEAAALBBAADIwQAAQEEAAADCAADQQQAAMEEAAJBBAACQQgAAuEEAAEDBAAC4QQAAuMEAAKRCAAAAQgAAuMEAAABCAADIwQAAGMIAABzCAADIQQAAQEEAAPjBAADIwQAAyEEAABBBAADwwQAACEIAABjCAAAgwgAAUEIAAEhCAAAAwgAAUEEAAADCAACGQgAAoMEAACTCAABAwAAAPEIAAFhCAABgwgAAiEIAALRCAADYwQAAoEEAAABBAACIwQAAqsIAALBBAABwQQAAwMAAAMhBAACAQAAAfMIAAEDBAACcwgAA4MEAAADCAADYQQAAkEEAAABAAADwQQAAgD8AAGjCAACmQgAAMEEAAHBBAACgwAAAoMAAAOBBAABgwgAAUMIAAChCAAAQQgAADMIAACBBAABsQgAAmsIAADDBAACgQAAALMIAAFhCAAAowgAATMIAAHBBAADowQAAIEIAAGxCAACgwAAAQEEAAEDAAACgwAAAFEIAAPjBAACwQQAAoEEAABDBIAA4E0AJSHVQASqPAhAAGoACAABAPAAATL4AAKi9AAAMPgAAgLsAAHA9AABAvAAAMb8AAHy-AAA0PgAAgj4AABS-AADgvAAAuD0AABC9AAAsvgAAiD0AAKA8AABQvQAAXD4AAH8_AABUPgAAFD4AAKg9AADovQAABD4AADC9AAAwvQAAhr4AAAy-AACCPgAAuD0AAJq-AAAwvQAAcL0AAKg9AADoPQAAUL0AALK-AAA8vgAAlr4AAOC8AABUPgAAqD0AAES-AABQPQAA4DwAAJ6-AAA8vgAAwr4AADS-AACYPQAAZD4AAFA9AABkvgAA6L0AAAU_AAAEPgAA4DwAAMo-AACSPgAAcD0AALg9AAAEPiAAOBNACUh8UAEqjwIQARqAAgAABL4AAEw-AAAUvgAALb8AANi9AACIvQAAUL0AAOg9AACAuwAAmj4AALg9AAAsvgAAMD0AAKq-AADgvAAAgDsAAFw-AAAVPwAA6D0AAII-AACGPgAAPD4AANo-AABMvgAA4LwAALo-AABkvgAAZD4AAAS-AABwvQAAMD0AANg9AACgPAAAjr4AABy-AACYvQAAZD4AAK4-AACIvQAAmL0AANI-AACovQAAiL0AAHC9AABsPgAAqj4AAH-_AABMvgAAor4AAMY-AAAsPgAAiD0AABw-AABsPgAAoLwAADA9AADYvQAABL4AADC9AACSvgAAMD0AAKg9AAAQvQAAQLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=64hFiLSq3Fg","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13766171144434148995"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"527583997"},"14911750688497889707":{"videoId":"14911750688497889707","docid":"34-9-1-Z25EF2BAC91F6677D","description":"I discuss confidence intervals for a single population variance. The methods used here are based on the assumption of sampling from a normally distributed population (these methods involve the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2185593/cdd67ae90435710b2248fcc81bc422fe/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Et-WBwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqwqB5a7_W44","linkTemplate":"/video/preview/14911750688497889707?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Confidence Intervals for One Population Variance","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qwqB5a7_W44\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhYKFDE0OTExNzUwNjg4NDk3ODg5NzA3WhQxNDkxMTc1MDY4ODQ5Nzg4OTcwN2qTFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxPUBIIEJAGABCsqiwEQARp4gQkF-vwAAAD4_v0B-QT_Af4L-PL3_v4A9gf7_v8C_wD6BQgE-QEAAPQOAQoCAAAA7gcF_voBAAAS9fkIAgAAABb4Dgn9AAAAARAABP4BAAD09wcCAwAAAP749wb_AAAA-hUI_P7_AAD_BfYDAAAAAPwB-PsAAAAAIAAtGATVOzgTQAlITlACKoQCEAAa8AF19f8A2w3fANYq1ADMIPgAgSIK_v0x1QDO9_8AqxHo_xPu9ADY5-QBI-0F_9Ar_v8w2NP_A8sU_yjZDQAi8QcA5eMCADjb_QAlGBoAHfLkAcT2Bf8L5ugB_crgABkZ3wAN4w__8e3X_g7_1wMi_CwB-QEkBSjkDwH24BgF0yYK_-3f2_71C_P-_dcWAOL2LQcR4gn_HCHw_PEK7AQHCvn_AAAA_AMY5QXy9v8F6R8IAdcD_fsg4uYCJwISAeb6Bvnz9yQC7ggJ-vfZD_T-7f0G5AD4BfvWAwUq9gn77M4A8f_r7QDyC_z86BP8A-Qj-vIgAC3_IR07OBNACUhhUAIqzwcQABrAB1wfxr4AQXQ9pxKUPJqCm72ptRe8AwVeveCg_b0uDKY7BZEevBsQET7SVE-89IUVPZaTQL6izKs86NJkPBSUQj5GRRy9c-gAvHoXL74IPDA9KZ_UvPWha76E0wc9dDXDuys_Xz1-X3G7n80qvNaiLz1UPfS82qQquwGcxbt9_sG7oJJuvdxqGTr1EVi9E3xYvW4wuTzZBUi9aqHHOwRXCT7rrVw8L0RDurdXSz1WdNa7xqcgvXL-Ab30Eog89gJYvMkibT1FhNo7JTMoPOv7hb0-aEy9hzsRPN8Ykr3Zv-E8AZnGOw97hj3suZE9OaErvbu7qT2SJIi9cihZuvmgB770Gps9L4GAO-yG7T2M94M9cluRO1DD173Eknc9a4zOOohX47wPR5e8ZywYvCz-pTznQMU9qWisPDdMiT2N_TY9yyrPui0OH7xVVi49EEIbPVBTmz22ngS8hq5EvKpdqD1LcA88bjVrvFWPur2-OTc8F5klvGw_2Tw7rNA9GxjxO6c1E7k29ja8sNBiPAUjpT3WAju-SeWaOs7yBr2QOIq9nMtDvB-HILxQ-uc7CGaWu2786T1M5K29K3Opu6Y_kL184Lq7wJ4nO-J5hLxpqHG99Yy3u4ICz70m1863VGAWPNi_xrzE3lU8f_ExvMSSdjvfb6Q9XEDDOtBPJ713ooS9ofeEOvUrXT1zET89sJXpupgyAD4Wf0A9LT-1t_FoYz32bmK9wbcpupvc1LzzTSS9_lwXO91rF71KqgC9Hkw9uaGd0z1RgZi9l51ROXD3KD1UCrA8I04jORvqob2yW5U9LNmZOJkunztMf8C9hpRWOL7F4DusUxW-pozJOfvoFL0TlAc83QZbuh4IfzzmaUo967MEOhTn6L1zySK9It5DuTiWoDoC_t884MVIt5lSbT0WKd68E_ONuL6OEzue-CA9lTtNuAoGoTze30W83sv0ORyPjj1mvM09rWOFuEyoAD3H8J29_u4wOcRWNT15YcY9tuYuuLoXc730Mso8ktoStXLCZD3f_wI9bA0MOJ0ORzt3nwO-Q96MtyM28Ts7_zY911yWuMrhA74Q1x48l_1ON4m247ysj4e8FNr9OBO6yzvXoZq6Gl43ttdGYT3GVFU8PVamt8HjKz7cpWi8B4l0uagmp71UPcS9HLiDuG9FZ720Fpu9TnD4t1UxE7xOmVs9Da_LN72vBT2lSQm-rZ6FuCL_7D01KQU-835buPCyNb1czM89DEYKucPz0r2OigS9h7LJtpEJeDsEXZY8gpVwOCAAOBNACUhtUAEqcxAAGmBRBAAmDTbh59dD2Azu9Pb79PzVOLLp_-Tf__QgAOjjCe69F-7_Qc4a66QAAAAZAtc6-wD6f-fvviTwERzMldsoNnUiCyC_BBILuwALFArwI_X_DnIA3vyuNku_qT_jCCEgAC20ERc7OBNACUhvUAIqrwYQDBqgBgAAKEIAAADBAAA0QgAArsIAAKBAAACAwAAAmkIAAEBAAABUwgAAAEAAAMhBAACEwgAAkMEAANDBAACwQQAAqEEAAEBCAADgwAAA6EEAAFDCAAB0wgAABMIAAJrCAAAkQgAAgMIAAGjCAACYwQAAAMEAAPBBAAAgQQAAHMIAALhBAACYwgAAfEIAAJrCAADQwQAA6EEAALxCAAAAwQAAkkIAACBCAADYwQAAdEIAAEDBAACQQQAAOMIAABBCAAA0QgAATEIAAIA_AAAQwQAAEMIAABDBAACIQQAA2EEAAKhBAADKwgAAKEIAAEBAAAAoQgAABEIAALbCAABgwQAAOMIAAAjCAADIwgAAoEEAABzCAAAAQQAACMIAADhCAABkQgAAAEAAAFxCAADYwQAATMIAABDBAACQwQAA4EEAAEhCAAAAwQAAgkIAAABBAABAQAAA6MEAAFhCAACowQAAAEIAABxCAADgQAAA0EEAAIpCAACCwgAAOMIAAIDAAABAwAAAUMEAAIDAAAAAQQAACEIAAMjCAAAkQgAA8EEAACTCAAAAwQAAIMEAAAzCAABQQQAABMIAADRCAABoQgAAFEIAAEBBAABQwQAAwMAAAFBCAAAgwQAA8MEAANBBAADgwQAAIMEAAGTCAABAwAAAAEAAAKDAAACIQQAAeMIAAIhBAADQwQAAGEIAAAzCAABwwQAAiEEAANhBAADowQAAgEEAAOjBAABYQgAA4EAAADjCAAAgwQAAgkIAAABCAABUwgAAcEIAAGBCAACAwQAAMMEAALDBAACAPwAA4MAAALhBAAAMQgAAEMIAADBBAAAAQAAABMIAACzCAADCwgAAgEAAAOjBAACIQQAA4EAAAKhBAABwwQAALEIAAJDBAACwQgAAIEIAANBBAADgwQAAAAAAAGBBAADowQAAjsIAAChCAABAwAAAcEEAAKjBAACyQgAAjMIAAJDCAAAgwQAAgMAAALBBAAAIwgAAlMIAAKhBAAA4wgAAAEEAACxCAADAwAAAQEEAAADCAACIwQAAUEIAAMjBAAAAQQAAAMEAACzCIAA4E0AJSHVQASqPAhAAGoACAADgvAAANL4AADS-AAD4PQAAED0AAJg9AABUPgAAQ78AAJa-AAAsPgAA3j4AAPi9AAA8vgAAiD0AAKC8AACyvgAAPD4AAOA8AAAwPQAAqj4AAH8_AACOPgAAuD0AAOg9AABAvAAAqD0AAJi9AABAvAAAvr4AAAy-AACmPgAAML0AAKa-AAD4vQAADL4AAIA7AABsPgAAFL4AAB-_AACKvgAAjr4AAKC8AAAEPgAA6D0AAKC8AABEPgAA6D0AAKK-AADovQAAxr4AAKK-AAAQPQAAmD0AANg9AACevgAAUL0AAB8_AADoPQAAiD0AABc_AACuPgAA-D0AAKg9AACYPSAAOBNACUh8UAEqjwIQARqAAgAAhr4AAFw-AABQvQAAMb8AADA9AAAwvQAAoLwAAOC8AADYvQAAvj4AABQ-AAD4vQAAFD4AAK6-AACgvAAA4LwAABA9AABfPwAAJD4AADQ-AAB8PgAAQDwAAAM_AAAUvgAAcL0AAGw-AAAsvgAAnj4AAIC7AAAUvgAAyD0AAOC8AAAwPQAARL4AAMg9AAA8vgAATD4AAHw-AAAkvgAA2L0AAN4-AACYvQAA4LwAADy-AADoPQAAgj4AAH-_AACCvgAAhr4AAJI-AAA0PgAAyD0AAII-AABEPgAAUD0AAEC8AADovQAAcD0AAKC8AACavgAAuD0AAEw-AACAOwAABL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=qwqB5a7_W44","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14911750688497889707"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3176537794"},"3813483826064284221":{"videoId":"3813483826064284221","docid":"34-1-3-Z65AD66DA2C95182C","description":"I begin with some motivating plots, then move on to a statement of the law, then work through two examples.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/923292/42b3c48064dc2481c478da8e77cf63d7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UPnxtgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7t9jyikrG7w","linkTemplate":"/video/preview/3813483826064284221?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Law of Total Probability","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7t9jyikrG7w\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhUKEzM4MTM0ODM4MjYwNjQyODQyMjFaEzM4MTM0ODM4MjYwNjQyODQyMjFqkxcSATAYACJFGjEACipoaGV2YWNobnNtZnN0empjaGhVQ2lIaTZ4WEx6aTlGTXI5QjB6Z29IcUESAgASKhDCDw8aDz8T7QSCBCQBgAQrKosBEAEaeIH09Pn-_QMA_AX8BgEG_QLtA_YA-v__AO0J_wYIAAAA8wAAB_4AAAAJBwYPAQAAAP79Cv70_gEA_gb8_wQAAAAGBP4H_QAAAAD_Bgv-AQAACfMCBgP_AAALBPkFAAAAAPkF_vj-AAAA_QwA-gAAAAAM-vn7AAAAACAALeeY3Ds4E0AJSE5QAiqEAhAAGvABYvwPAcf9AP4I-vr_3gDgAIEFC_8mLOn_tOYNAs4C6QAD9fQA2uIAAPj38QDV-SX_FQDTAAH-GAAu-g7_JPfoAAAKCgAc3_cBNfYEAAgI9v_zFxYA_9kNAAPw5AAM9eT_EAAg_vsR-QII8MsHC_8uAQ0WEwAO8_0D-fkX_-0PDAID9Pr89hD8BQIBBPzxECsBBgTy_gkfBfvwG_4DBjDt_AAAAP0g6-D-AhLnBRf8-PrP8A_-E-f59RAYGv_qJPb-7QIQAO7eCQLzAgv7EeQLBxL3_Pzc-vf-9woA__HYAPT_IAMF7x0H9OsUCwYA-fb-IAAtbidIOzgTQAlIYVACKs8HEAAawAdtyN--c_fUPP4BoDzJd4S61TXkPPvxzbzZ38O9fjq7O4C-iDzUgQw-Ur2AvQLSwLs4aYq-0Qw9PO2ufTz9vXQ-klRLvQOx7DzZQ0u-Q5J2Oyl_gr20rBu-K7CGPWL4A71Aijo9LBNZPC54DL1a9M49wvJsPT844bqygl-99AikvHl8lrzcmwQ81JPevPztAb1dL6I9SKXYvEdJmbzhlwo-caiUvbqrbLvfktI8xI0APXRIRbsYfSW-SaGsvAovQbx1Ziw9povDPP90qDxEIL29tGA9vVvVRzlPZjK9CkJ-PbOXrTwRFlu7V1x8PeMkI721NQI9TNQcPdx7JLljtB6-NhZ7u39gWDx0reI8KoztPe0Q_7wmDHS9XUa7PUwsujykA6s7xnkOPelHQ7wA8oQ9iSsCPfgrLjyTuQO9FV4dvaPElbhutiO9-VhwPQkSwDyfTag9_G8lPbnUkrzxSJs60a5CPImSNbxxr8e9SLKNvSubXrxPXG49kbc8PWF8B7stuBo9LZm-ujIcQDrFNUM9-FENvglvLLvBa3w9UrfzvWsViDmg86Q8Xx4XPTCz-LpZh8M9Cs9VvfSCUzuFHna90LMZvchpPrzzJ2C8P8bcvSnKxrvZ9bG9SEcpuiMwGbrLhUq8WKCnvBNyb7skHEQ9GpgJulvk7TnzcW28lM6wuyk7ojveuzw875SJPZmL7LuLEJg9EZ_FPP5M8rnQ88I8w-21vK20Nbs8fKO8guepvdZ_X7g_-iu9QmI2Pd3CuDnKNPo9E3vNvFmGYTgNFrM8CHyJPdyp-DhWxUq9zoTsu410gDkTI5A9j7OfvQp-uDclMh29lRCMvdIjqTjeGOe8IikTvUvyibmv0wO9CBRau21ZHTmJgF69uFOfPLaWTLm4B5E9hD_NvJpGAbn5n1s7_585vQ6GyjdDmik7oV66O_m1eTj9xhI9GZrhvNmVeriCv4Q9PohOPQ5rRzjAlYm6RGN3vV7cFbj9fes8LTOVO3EQXDjnHzg9D--5PbRouTgacRw9NuodO5syW7g03Ns85l0lvgac57ioF507IhXrPAerfragUM-9Fe-GPcLSAjiaSjo9gVZDu99OkTjtQpi8fccVPRCtQ7aXLQO9L2r3vFop3DfB4ys-3KVovAeJdLlcSQG9yt7SvRciBLnYyUq9DFBEvVrAqrjmMCk8N3AHva5jJTgdlww9SQ9DvlQxTbnK9HA9IuErPvHLijgHC6e8vfzuPYO0HrmGVYy99FuKvSxR4LbF3UW9_6vQuqaDPDggADgTQAlIbVABKnMQABpgRAIARvoZCwLzMuIQ3tXw_PAZFibmAAAM8wDzGyTX_ubhtiQZAAX_O_ezAAAAHs_Y9SoA5WsL0N8O8NXd4OzbBh9_FAc12_sWNNzrAyP0xukd4k5eAO_3tRc9A5sMKQgQIAAtVV8rOzgTQAlIb1ACKq8GEAwaoAYAABxCAABAQQAAREIAAJDBAABsQgAA-EEAAN5CAAAwwQAAUMIAAJBBAACYQQAATMIAAIjBAAC4wQAACEIAAARCAABsQgAAuMEAABDBAADYwQAAMMEAANDBAACywgAAAEEAAKTCAAAUwgAAFMIAABTCAACAQgAAgEAAABDCAAAgQgAA0MIAAJ5CAABIwgAAoMEAAPBBAABwQgAAYEEAADxCAABAQgAA4MEAAERCAADAwQAAmEEAAKrCAABAQgAACEIAAARCAAAAwQAAUMIAAATCAAC4QQAAYEEAABBCAABsQgAA-sIAAPBBAABgQQAATEIAAMBBAACkwgAAYMEAAEjCAAAIQgAAqMIAAGBBAABwwQAAoMEAADTCAAAMQgAAlEIAAEDCAABUQgAAFMIAAMDBAAA8wgAAgD8AAKhBAACAQQAAQMAAAKxCAACAwQAAAMAAAMDBAABAwAAAkMEAALhBAACGQgAAmEEAAOhBAACOQgAAZMIAAMDBAAAQQgAAwEAAAMDAAAD4wQAAAAAAALjBAAA8wgAADEIAADxCAAD4QQAAFMIAAJBBAACEwgAAiEEAABDCAAAAAAAAkEIAADBBAABQQQAAwMEAAMDBAACWQgAAMEEAALjBAACgwAAAwMEAAAjCAAAYwgAAgD8AAABAAACAwAAAqEEAALBBAAAAQQAAYMEAAOBBAAAIwgAAGMIAAFBBAABwQgAA-EEAAGBCAACIQQAA0EEAAKhBAABMwgAAEMEAANBBAAAoQgAAjMIAAAxCAACGQgAAZMIAAMBBAACgQAAAEMEAACjCAACgQQAAgEEAAPDBAADIQQAAwEAAADjCAAAAQAAAjsIAABDCAAAowgAAAMAAAGDBAADAQAAAiEEAAEBAAABUwgAADEIAAMhBAABwQQAAEMEAAIC_AAA0QgAAsMEAAGTCAAAEQgAAKEIAABjCAABAwAAAIEIAAHzCAABwwgAAUMEAACzCAAAwQgAAuMEAAIDCAAAAAAAAMEEAAChCAABIQgAAAMEAAJhBAACAwAAAwMAAAIxCAAAUwgAAAAAAAAAAAACAwCAAOBNACUh1UAEqjwIQABqAAgAAQDwAALi9AAAkPgAALD4AAKi9AACgvAAAED0AAK6-AAAsvgAAMD0AAIC7AACIPQAAyD0AADw-AACYvQAA4LwAACw-AABQPQAA-D0AABw-AAB_PwAA4LwAAAQ-AADoPQAAmr4AAHC9AACAOwAAVL4AAKA8AAA0PgAA4DwAAIA7AABsvgAABD4AAIg9AABQPQAAJD4AAIq-AACCvgAAFL4AADS-AACAOwAAUL0AAHA9AACovQAAQDwAAJg9AABQvQAA2L0AAIK-AACAuwAAND4AANg9AAC4PQAAmL0AAOC8AAAXPwAAiL0AAAQ-AAAsPgAAyL0AALi9AACAuwAAmr4gADgTQAlIfFABKo8CEAEagAIAAEC8AADYvQAA6D0AAEu_AAAsPgAAoLwAAMi9AACAOwAA6L0AALg9AAAMvgAARL4AABC9AACavgAAML0AAOC8AABUPgAAIz8AABC9AAAsPgAA-L0AAKI-AACgPAAAmD0AAJi9AAD4PQAA4LwAABA9AAB8PgAAcD0AADA9AABEPgAA-L0AAHy-AACuvgAAND4AAMo-AADoPQAAir4AAIa-AAAEvgAAMD0AAJK-AADoPQAAgDsAACQ-AAB_vwAAgLsAAOC8AACmPgAAgLsAANi9AAAUPgAAFD4AADy-AADgPAAAmD0AABC9AADgPAAA4LwAAPg9AABwvQAAmD0AAKi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=7t9jyikrG7w","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3813483826064284221"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3058746250"},"16470374100342589984":{"videoId":"16470374100342589984","docid":"34-2-4-Z02F3D11744F2DE0E","description":"A look at the relationship between the binomial and Poisson distributions (roughly, that the Poisson distribution approximates the binomial for large n and small p). I work through some...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/939778/328756ffd78c344f86d9031219d4982f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ixBcsAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeexQyHj6hEA","linkTemplate":"/video/preview/16470374100342589984?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Relationship Between the Binomial and Poisson Distributions","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eexQyHj6hEA\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhYKFDE2NDcwMzc0MTAwMzQyNTg5OTg0WhQxNjQ3MDM3NDEwMDM0MjU4OTk4NGq6DRIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxPEAoIEJAGABCsqiwEQARp4gfUBAv4F-gARABIAAwj_AvQV8vz3_fwA8fwB9PQBAADr-wP5A_8AAAcDBAT1AAAABP_yAP39AQAOB_QDBAAAACEBCv_5AAAAFwb_AP4BAAD-__gADvsAAAL9EBEAAAAAAAQE9fv_AAAEBRQHAAAAAAz0Bg4AAAAAIAAtt8nCOzgTQAlITlACKnMQABpgKxQADf8A1_gETOPq6ePyDyUk7f-xAf8D7AAmFO_bGQjaqSrw_0nKEgmvAAAA_vbZDUAA2WrO8dFPD-U02_DdGhx_DvD5APPpANQUQQALQiMcDDokAMrt-_4n2eJI5EclIAAtx-4pOzgTQAlIb1ACKq8GEAwaoAYAADxCAAAAAAAAMEIAAHDCAACQQQAAUEEAAK5CAACAwAAAmMEAANhBAADAQAAAUMIAAKDBAACAPwAA2EEAACBBAABgQgAAcMEAAJBBAACgwQAAbMIAAHzCAADIwgAAJEIAAGjCAAAYwgAAqMEAAIDBAACAvwAAAEIAAETCAACgQAAAvMIAAAxCAACMwgAAgMAAAMhBAAC2QgAAgMAAAKhCAABIQgAAsMEAABhCAAAEwgAAsEEAAKjCAABAQAAAiEIAAARCAAAQQQAA-MEAAEDBAAAAwAAAsEEAAABCAACQQQAAAMMAALhBAAAQQQAAXEIAAJBBAACqwgAAFMIAAETCAACAvwAAusIAAODAAAAIwgAAcMEAAFzCAAAMQgAAYEIAAHzCAAB8QgAAgMAAAGDCAAA8wgAAmMEAADBBAADAQQAAmMEAAKBCAAAQwQAAYMEAALjBAAAoQgAAsMEAAADAAADgQQAAsEEAAMhBAAB0QgAAXMIAALjBAAAAQQAA4EAAAEDBAACIwQAAUEEAAEBAAACWwgAAgEEAAPBBAAAYwgAAcMEAAIhBAABgwQAAgEAAAPDBAAAgQgAAgEIAAOBBAABAwAAAiMEAACDCAAC4QgAAgD8AALjBAABwwQAALMIAANDBAAD4wQAAiMEAAJDBAADgQAAAoEEAAKDAAAAwwQAA8MEAABBCAACwwQAABMIAAIBAAACEQgAAEEEAAOBBAAAIwgAAWEIAAIDAAACKwgAA4EAAAKBBAAAQQgAATMIAAAxCAAA4QgAAkMEAAKBAAACAwQAAgMAAAATCAAAsQgAAikIAAKDBAAAgwQAAQMEAAAjCAAAEwgAAoMIAAODAAABkwgAAuEEAAMDAAADgQQAAEEIAAOhBAABAwQAArEIAADBCAAAAwQAAAEAAAAAAAADAQQAAcMEAAFTCAAAYQgAAgMAAAPDBAADgwAAApEIAAITCAACQwgAAQEAAAAjCAAA0QgAABMIAAETCAABwwQAAmMEAAABBAAAQQgAAyMEAAEBBAAAQwQAAoEAAAExCAAB0wgAAyEEAAFDBAADYwSAAOBNACUh1UAEqjwIQABqAAgAARL4AAOg9AAAcPgAA6D0AACy-AABMPgAAqD0AANq-AABcvgAA-D0AAFC9AAD4PQAAUD0AABQ-AACgPAAA-L0AAAQ-AACovQAAoDwAALI-AAB_PwAALL4AACQ-AAC4PQAAoLwAAEQ-AAAMvgAAoDwAAEA8AACCPgAAgDsAADQ-AABMvgAAMD0AANg9AABQvQAAuD0AAEy-AAAkvgAALL4AAJ6-AAAUvgAAZD4AAIA7AABwPQAARL4AAFA9AAAMvgAAbL4AACy-AACAOwAAyL0AAAw-AAAkPgAA6L0AADA9AADmPgAAUD0AAKg9AAAcPgAAQDwAABC9AABMPgAAQDwgADgTQAlIfFABKo8CEAEagAIAAAS-AABwPQAAND4AADG_AACgPAAAUD0AAOg9AABQPQAA-L0AAJY-AAD4vQAANL4AALY-AABsvgAAUL0AAOA8AAAUPgAAST8AAIY-AACaPgAA6D0AAAQ-AACGPgAAXL4AAKC8AABwPQAAED0AAAw-AAA8vgAAcL0AAEA8AACoPQAAFD4AAHy-AACovQAAFL4AAPg9AADOPgAAyL0AAKi9AADCPgAAQLwAAOA8AABMvgAA6D0AAIg9AAB_vwAAVL4AAEy-AACCPgAAvj4AAPg9AACqPgAA2D0AAKC8AAAQPQAAuL0AAOC8AACYvQAAkr4AAPg9AACIPQAAgr4AACS-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=eexQyHj6hEA","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16470374100342589984"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1947366"},"16791687109102819451":{"videoId":"16791687109102819451","docid":"34-3-5-Z3204EF7C3C0DAA5A","description":"I work through an example of deriving the mean and variance of a continuous probability distribution. I assume a basic knowledge of integral calculus.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/908902/d76f908e8dee919092633331161fbeb7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EfE_sgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRo7dayHU5DQ","linkTemplate":"/video/preview/16791687109102819451?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Deriving the Mean and Variance of a Continuous Probability Distribution","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ro7dayHU5DQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhYKFDE2NzkxNjg3MTA5MTAyODE5NDUxWhQxNjc5MTY4NzEwOTEwMjgxOTQ1MWqTFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxO5A4IEJAGABCsqiwEQARp4gQb4BfAD_AARABEAAgj_AvMPAwz5_f0A8PryBPgB_wD7DfwG-QEAAAYE_gv-AAAA9v77CPP_AQD9EQD5-AAAABT4Av72AAAAFwgC9P4BAAD49fQJBP8AABEECBEAAAAA_AUO7gAAAAALC_wNAAAAABP-7QMBAAAAIAAtWh7IOzgTQAlITlACKoQCEAAa8AFo7hP_3ve1Ac8C6gHJC_r_gSIK_v0x1QDN4hEBzRXZAPXs9P_WGAIAD-r9AdAr_v889s3_A8sU_zHvAP9A4voA2fMJABjq9gE4Eir_Fff4AN0OGv8T5g3__crgAA0X8_4S7gYB8e3X_grsvQgO_jsB-QEkBTLxFwHftP0B4QIKAQ0E4v30FPsGA9f_-toEIAIM6f0ILiYH_e0S3v3w9gUH7QAG9wcr1_4iDPgFDAcB-cf7AwEI7PsJEhIFAeAB_AXSCx0B8iX79e3xEvIG4vj8Bg_0Bvzj9Aka7v_39toA_ATh-fraE_779u7sCtb4A-4gAC3_IR07OBNACUhhUAIqzwcQABrAB1pov748XhI90owFPQoHzL1XDxS8NIUOveCg_b0uDKY7BZEevDMyGD4QNHC9fD3EPCXav72ANzM9VPQTPP29dD6SVEu9A7HsPHE9Wr7nFr89hUyovOf-Kr5dy_88SHQqPCs_Xz1-X3G7n80qvH55fD0ZxbK8Fp48POiZgzwkVPo8mykjvbx8xjxuDh-8Ig14vRvJVLyf8TO8uXAePBhaHT5qB3G7tIUQPO3IAj0rEjg8kTYjvKYQg70fACc9Mxv_vFKQqTy_dwA9IRutPJxYNr0tnjW9kOPiPOtrIr3-g6M8FvtLOyZAqD2QqCs9b9GuvLybIj3AA6i9wz-yO7HhSb4ukvY8TwidPOyG7T2M94M9cluRO2Q7xL0VdYE8pAt7vIhX47wPR5e8ZywYvLTJYTwVp489_xYuPEIDVj3E3c88eWirOi0OH7xVVi49EEIbPSBLqj2oFva8XHaIvCpxfT2nvj281X5GvFXJhr0CicG8vEYmvKVDTDwgGpc9hRzjO88Tz7u0GUw8ZsR9OwUjpT3WAju-SeWaOmMqfbyjRcy9hypGvNCg_DxQidA8inEAvG786T1M5K29K3Opu0gIxbzaFxY8aRiEu8o-_ryK84a9Eo6TO3Ynyb0aHMC8kBqLO_xlQbyF7Nm7h0I6vJSmfzt22v88d4i9O5GgU7zfJq29Fu2euhR5Ej0rWi89JPsUu5gyAD4Wf0A9LT-1t9rHKj0hSzW9gLa4u9Lxsr0nqDy8t-qdOoimR71XYIO9dP9nOO6vDj6fEpG9ftCUOf63kjwGXAE92x0sOCZstL1kQNY9XCYQOEGYQD2Kk_u9TGt2OOkPTTyoOD6-cp9dOScyc7yr2Ry8fIMKux1gnLy8O5I9iDGwt8wgw73UDQS-CFOFOSyoXrwfzo27N9cEuj6-kz2RdZ28ME3zNzPuGbx8V049HnUIOXaZKzwtiFK9VulcuBcDFT2_fHc9PQcHOYwYMT0XGIi9M5UcOae9Fz1oTmg9hmA6OTViIb05pl08hNDCt-ZVYj1TklU9AC4qOFJIz7s-PKu9T7LkOJRfR7oNZwY8HjFlN6BQz70V74Y9wtICOGbeBT3oWgk8Ey1uN-1CmLx9xxU9EK1DtheJhD1HfUg8zDUBuIJVRT50yDc9ydyEuflK4L0Mj929YzNEuG4bsb0sLs69PvFeuJvSj7vi5I49YN5HN97oXj145YS9QVK0uFUYpj1tC8U9g8fnOAP8lL1_qI89heReua1t6r0UO788b9LjN2nsAb0MTeM8P2mTOCAAOBNACUhtUAEqcxAAGmAwBQAh-SXQ-vc05dzh5fLx_grqFbj8_-7FAPA3BOMI5cW98gX_JNEq8KsAAAAgBMcTFgAIddjsAynwDvSl99QmO38XAzin7Bnw0eQIGiYCIw0xOGMA5A3RKDHHz1bWIBwgAC09lyA7OBNACUhvUAIqrwYQDBqgBgAADEIAAJDBAACgQgAApMIAAEDBAAAAwAAAxkIAAIA_AADQwQAAwEAAAAhCAAAswgAAgD8AANhBAADYwQAAIEEAAKRCAAAAQQAAoEEAAIBBAAC4wQAALMIAAIbCAAAwQgAAsMIAAIjBAABAwQAAOEIAAABAAAB0QgAAbMIAACDBAABkwgAAZEIAAJjCAABwwQAAgMAAAKxCAADIQQAAMEIAAPhBAACAvwAAEEIAAODAAAAAQQAAUMIAAExCAABcQgAAQEIAACxCAAAMwgAAPMIAAADBAADIQQAAkEEAAIBBAACgwgAAsEEAAERCAABkQgAAKEIAACDCAAAgwgAALMIAALDBAADuwgAA2MEAABTCAABwwQAA0MEAAMBAAABUQgAAYMIAAGBCAAAEwgAACMIAAKrCAAAQwQAA6EEAAChCAAAQwQAApkIAAADBAAAAwgAAcMEAAFRCAAAAQAAAwMEAACBCAAAwQgAAAAAAALBBAABQwgAAgMAAAKhBAAAgwQAAAMIAAEBAAABQQQAAkEIAACjCAAAAwQAAgD8AAMDAAAAowgAA-EEAAKBAAAAQQgAAQMEAAFhCAACqQgAAYEIAAFDBAACYwQAAAMEAAHhCAABgQQAASMIAABBCAADgwQAAuMEAAITCAADYQQAA4MAAAKDBAADAwQAAUMIAAADBAABMwgAAOEIAAADBAACIwQAAcEEAAHhCAADgwAAAYEEAABzCAABcQgAAqMEAACjCAACAwAAAIEIAAOhBAACAwgAAWEIAAFBCAACQwQAAAMAAAEDAAABQwQAA4MEAAIA_AACgQQAAEEEAACBBAAAwwQAApsIAAADCAACKwgAAgMEAAFTCAACoQQAA4EEAAADAAACoQQAAyEEAADBBAACSQgAAREIAAADBAAAgwQAAiEEAAIBBAACwwQAAVMIAAJpCAAAQwQAAiEEAAHDBAACWQgAAqMIAAMDBAADAwQAAmMEAAJBBAAAcwgAAsMEAAFBBAABwwgAA4EAAACxCAACgwQAA4MAAAIjBAAAMwgAAKEIAAODAAADgwAAAYMEAAODBIAA4E0AJSHVQASqPAhAAGoACAADoPQAALL4AAIo-AADYPQAAPL4AAKg9AAAcvgAA0r4AAAS-AAAUPgAABD4AALg9AABUPgAAyD0AAJK-AAA0vgAAcD0AAOA8AABAPAAAkj4AAH8_AAA0PgAA6L0AAIo-AABAvAAA-L0AANg9AACovQAA-L0AAIA7AABQvQAAiD0AAGS-AABQvQAAFD4AAKC8AAAEPgAATL4AADy-AAA0vgAAlr4AAAy-AABcPgAAED0AABy-AABkvgAAEL0AAIC7AACIvQAA6L0AAOg9AACoPQAA2D0AAPg9AACSvgAABL4AAAc_AACoPQAAEL0AAMi9AAAQPQAAuL0AAMg9AACgvCAAOBNACUh8UAEqjwIQARqAAgAANL4AAFy-AABQPQAAS78AAOA8AAD4PQAAqL0AAEA8AABcvgAAnj4AACS-AACIPQAALD4AADA9AACoPQAAiL0AAJg9AAA9PwAAEL0AALY-AABEvgAAQDwAAEw-AADYvQAAoLwAADA9AACIPQAAMD0AAMg9AADoPQAAML0AAMg9AACAOwAAjr4AAEC8AAD4PQAAqD0AAKI-AADgPAAADL4AABQ-AACovQAAXL4AAEA8AACIvQAAqL0AAH-_AABQvQAAmL0AAKY-AAAEPgAAcL0AAHw-AAC2PgAAir4AABA9AABAPAAA4DwAAIA7AAB8vgAAgj4AAEQ-AADIPQAAXL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Ro7dayHU5DQ","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16791687109102819451"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1960219145"},"3805548858636482982":{"videoId":"3805548858636482982","docid":"34-5-12-Z23C6F5D599E39968","description":"I have an updated and improved (and less nutty) version of this video available at • Deriving the Mean and Variance of the Samp... . I derive the mean and variance of the sampling distribution of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/962783/d048441fb935c2509a3742fdc6649dd6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/51KKAQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJLmD0sJId1M","linkTemplate":"/video/preview/3805548858636482982?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sampling Distributions: Deriving the Mean and Variance of the Sample Mean","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JLmD0sJId1M\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhUKEzM4MDU1NDg4NTg2MzY0ODI5ODJaEzM4MDU1NDg4NTg2MzY0ODI5ODJqkxcSATAYACJFGjEACipoaGV2YWNobnNtZnN0empjaGhVQ2lIaTZ4WEx6aTlGTXI5QjB6Z29IcUESAgASKhDCDw8aDz8TnQKCBCQBgAQrKosBEAEaeIEBAAIG_wIABAAFBwEI_AL1FP4B-P39AP_1Bvn4BP4A-wD3__wAAAD_DQAJ-gAAAPQD_vsEAAAACwEA_-wA_wAC-ggD-AAAABMBCf3-AQAA8fv8AwMAAAACBQURAAAAAPcDC_wBAAAABQrvCQAAAAAI8_kCAAAAACAALV612Ds4E0AJSE5QAiqEAhAAGvABfwMUA98M4gDUAuwA0R35AI4eCf_9LNkA2fvrAcjt5AASDegB0Prz__0NDwDUJ_7_NvfS_wDg9wAy4v0AOuX6AOAB_QEb9OYALyIVAAT38gDhDRj_A-QLAP7P4wAM_-cACfQQ-vT85vv9-dr9P_skAN_mJggt8hUB-Mf2A9wI-AH96uP-6RvuA_Li__rl9ygGGtL-_hIQB_vpBPQBDQcLB-8ABvgHJ9v-GeEDAQMJCQXY8Pj5HtHuAwgXDgTLA_j79fggAuEPCPvo7vjyG_IE-PcD_AIF8uUDHAYO-PfeAP0O7_QAAAD1A_cM-QvvFfUBIAAt310uOzgTQAlIYVACKs8HEAAawAdcH8a-AEF0PacSlDxMGA2-p5q0PFQ9F7zZ38O9fjq7O4C-iDz90qc9CbIUvUv9oTyBCAG-Nz5JPa5tgLwKL2E-F3GwvEHTxjmHNCq-nmmoPbZyZbxXsTi-R6V9PKXUCj0rS3S8s773vMckSDs7lQI9n0Q6PCe0EzsgqOi6HXURPDPcAL2xnM68l5xJvLbtYL2rR_U86kd5veHs1rxpGRk-vV87vWUX7zuvx6k9KCYQu6zQFr1dHka8EAaePGGZLb0JeZM9DdbJPPyOYTyqgea9AisHvtJiXzwGYn69HaVcvATmvjomQKg9kKgrPW_Rrrxi9Iw9nn7Qvb52Xbux4Um-LpL2PE8InTxmMGY9C8qZPfOBk7xQw9e9xJJ3PWuMzjpmZR48CQKeu1YWgbvnOig9FzY5PR-Cy7vIbWq7zJGZO64iijtutiO9-VhwPQkSwDxblZQ96g6ovTAwhrygm4c9CPh_PGu-iLsqWYm9JXQ4u6a1zLpFILi9p5wlPWrCtjxEIM08EziGuqIVDjwFI6U91gI7vknlmjrHg229VxCOvZ23VrzRx987M92rPJdDAbxbPpc9-KTDvajUOruXi928bOsHPVggdrvKPv68ivOGvRKOkzv4Jqy9-edzvd5tgzvYv8a8xN5VPH_xMbzcNiK9UahCPd3q2jvFZQY9-gwIvlUhA7oMAxY9fQgqvPrUUrveHuQ9T8THPIhXIzlRl9Y85dFtvaAaTLvMDJu888CsvMkpzzu0IqW9bS09vWq4hDnudJw9rOLNvSr_vTn-t5I8BlwBPdsdLDjvfiu9ShxpOo61czi50mE9Lt6UvXNP3TjYAow8g2jNvS4kwri4Tq08MZVePZxGjjhvOAK92e6uPdTLMDhjdGq94BlovVlv_be6ZWq71928vO4Byriw87A9E999OxMsn7e81EO9QVgVu7lI5rcCA1I9WpzxvCm8NbkAK3Y8CLBDPZeTTzjnItk8A8z8vVJJyDl9gMk7a2ZtPZp44Tjljkg8CY4mPOlbhLj2RzM9pjRxPQrtsbjJy3o9-rYQvt1TpLgA68y4fio4vEcuNzhodTK-ZKQoPRfKTLcuQQE9Q_YLPUi9DTgycoa9hItLvUsbC7gW89g8Sr-zPGWFlbfB4ys-3KVovAeJdLmoJqe9VD3EvRy4g7h_iYO9Dtj1vQvRErj7eS48g_-IPZjJoDVhBnk98zoSvkvnqbjK9HA9IuErPvHLijiSqBy9R1UzPeavfLinWgu-zJoYvQqXdLg6Cgy78N7RPEjXhDggADgTQAlIbVABKnMQABpgOPUAFeUazvb-JNjM78Tw6RoG4gG7-f_0uP_hNvseG_LCtO_m_0-6_-ajAAAALOwHCjIA8H_f2xg4_fM2ueLxLjN6E_4PnQQWBLkfFgMGG1IrIwtUABH4yRgoo_lhyC0sIAAtIUwVOzgTQAlIb1ACKq8GEAwaoAYAACRCAABgwQAAPEIAAHDCAAAUwgAAAEAAAJRCAADIQQAAeMIAAPBBAABAQgAACMIAAIC_AADIQQAAUMEAAABBAACqQgAAsMEAAHBBAADAQQAAMMEAANjBAADiwgAAMEIAAKjCAACYwQAAcMEAANBBAAAQwQAAIEIAAAzCAACYwQAAhsIAAHRCAACiwgAAgMAAAKhBAACEQgAAyMEAAKBCAAAMQgAAuMEAAMBBAADwwQAAgEAAACTCAABkQgAAvEIAABRCAACoQQAAoMAAADDCAADgQAAAMEIAABDBAAAIQgAArMIAAOBAAAAoQgAANEIAAADBAABIwgAA4MEAANjBAABgwQAAqMIAAIBBAACgwAAAoMEAAJDBAACAQAAAikIAAKjBAABIQgAAsMEAAAzCAACOwgAA4MAAAABBAADwQQAAgD8AAMRCAADAwQAADMIAAGDBAABUQgAAoMEAADDCAAA0QgAA2EEAAJhBAAAAQgAANMIAAODAAADQQQAAQMAAACDBAAAQQQAAiMEAAJpCAADAwQAA0EEAANBBAAAUQgAAgsIAALhBAACgQAAADEIAAIjBAAAIQgAAkkIAAIZCAABAQAAAmMEAAIC_AACYQgAAgEAAABjCAABgQQAA4MEAABDCAADYwQAAwEAAAEDCAAAAwQAAgEAAADDCAAAgwQAAEMIAAGBCAACwwQAABMIAAKhBAACMQgAAEMEAABRCAACAwQAAWEIAAADAAACewgAAiMEAAABCAACoQQAASMIAACxCAACIQgAA4MAAAABBAACYwQAAMEEAACjCAAAIQgAANEIAABDBAADAwAAAuMEAAIbCAAC4wQAAaMIAACTCAAAowgAAyEEAAGBBAAAcQgAAHEIAAOBBAACgQAAAaEIAAERCAAAAwQAA0MEAAIA_AAAQQQAAEMIAABjCAABgQgAAQMAAAGDBAACowQAAtkIAANjCAABIwgAAQMEAALjBAAA0QgAAIMIAAOjBAACQQQAAqMEAAHDBAAAwQgAAwEAAAKjBAAAQwQAAgMAAAHhCAADwwQAAEMEAAMDAAAD4wSAAOBNACUh1UAEqjwIQABqAAgAAcD0AANi9AABsPgAAoLwAAPi9AADIPQAAJL4AAAu_AAAkvgAA-D0AAHC9AACIvQAAoDwAAAw-AACavgAAVL4AAEC8AACgvAAA-D0AALo-AAB_PwAAED0AAKg9AABwvQAAQLwAAFS-AAD4PQAA2D0AAKa-AAAwPQAAMD0AABw-AADYvQAAmL0AABA9AAAMvgAAXD4AACS-AACCvgAAoLwAAJa-AAAUvgAAVD4AAIA7AACovQAAJD4AAIg9AABAvAAATL4AAAy-AABwPQAAiD0AAOg9AABQvQAAmr4AANi9AAArPwAABD4AAKg9AACovQAAgDsAAIA7AABwvQAAcD0gADgTQAlIfFABKo8CEAEagAIAAMi9AABQvQAA2D0AAE2_AACYvQAAXD4AAIC7AACYPQAAiL0AAJ4-AAD4vQAAED0AACQ-AAAUvgAAmL0AAFA9AAAcPgAAWz8AALg9AADCPgAAQDwAAGy-AACqPgAADL4AAEy-AACKPgAAEL0AALg9AADgvAAAND4AAKC8AACIPQAAyL0AALq-AADIvQAAgj4AAPg9AADoPQAA6L0AAOi9AABwPQAALL4AABA9AADgPAAARD4AAMI-AAB_vwAAhr4AAJ6-AACCPgAAZD4AAKA8AACSPgAAXD4AAHS-AAAQPQAAQLwAANi9AABEPgAAHL4AAKI-AABQPQAAyL0AANi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=JLmD0sJId1M","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3805548858636482982"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3876174054"},"1154685848863284334":{"videoId":"1154685848863284334","docid":"34-6-10-ZC76C567F72D346B9","description":"An introduction to the expected value and variance of discrete random variables. The formulas are introduced, explained, and an example is worked through.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3070367/0b30c395d1575499cf8c3cfdd781d9d8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qRLiZwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVyk8HQOckIE","linkTemplate":"/video/preview/1154685848863284334?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Expected Value and Variance of Discrete Random Variables","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Vyk8HQOckIE\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhUKEzExNTQ2ODU4NDg4NjMyODQzMzRaEzExNTQ2ODU4NDg4NjMyODQzMzRqkxcSATAYACJFGjEACipoaGV2YWNobnNtZnN0empjaGhVQ2lIaTZ4WEx6aTlGTXI5QjB6Z29IcUESAgASKhDCDw8aDz8TpwWCBCQBgAQrKosBEAEaeIECAPT9Av4A9AP9AgAE_gH2CwYC-f39APwFAwACBf4A9gEUAQEAAAAFDvQKBQAAAAH2AQX1_QEAC_UAAfoAAAAaCAj5AQD_ABT-APwL_wEBAA_9AAP_AAD8DQINAAAAAPkWCPz-_wAABAkEBAAAAAAH-_4KAAAAACAALc6zzjs4E0AJSE5QAiqEAhAAGvABf_sTAdD70f_5G-IAz9znApL6Dv8cJeIAx-kpALf09gD96uUA4ur0ALYQ5gDN-BEAAOLu_y7qIwAn7PH_HufvAPsg-AEZ6vYBOwD9APAC8____jr_3eAg_yTo9AD73tH-_uUnAPr3CAUK67wIDv47AfT3EwEW9SAC_-AK-tP6CQMV5PYAAhDtChH-DATK_h4BMvTh_xEX-_0ELv4DCwME_ufz_PoHLNf-OQ7-CwEWAPK21gz_8PXo-Pz5Fwr1Jez_7QEG-vkPEPkAHhMBGuHu9Qn4AfTv7vsK9QTt_vTn9O8E7v_1xzYK-P4TAe4IIvoBIAAtXDAbOzgTQAlIYVACKs8HEAAawAciqOK-8R7xPA-TNT1CpPC8cUQtPQnmw7zjoLm9HG2LPF4FI7zb3SM9lKXxvFYp_bzScpC-_a5-PVwRDbr9vXQ-klRLvQOx7Dx6Fy--CDwwPSmf1Ly0rBu-K7CGPWL4A71Aijo9LBNZPC54DL1yH5Q9mAeKPfRx6Tuzrna96z3wvCCAL70PWEO9PxljvGyJ5ryTGY892h49Ozu9d7wg6wk-xW3ZvKqZNbyHr-U894Q2vN2grLxrEbG9x8jIPB8R07w7BEk9YRHovI_dB7zr-4W9PmhMvYc7ETzJGko6CjGnPdM7jTs9KAi947sePWfLILzviO88uWeSPb8AjDyoyCG-AnwcPejpbTzl79489SvdPA2u87v866677h5lPYgDsjxmZR48CQKeu1YWgbs_5sM806TUPW2mZ7w3mSK9U4iRPIZrmrwtDh-8VVYuPRBCGz0HKdg9_1nzvKCJsLwE8AU9JWv9u0ETPDw4PIO9k7g9veXbsbwb7V09bxS0PFVMQTotuBo9LZm-ujIcQDpwCus8Re-5vfZH5bkP3eI8dXQcvhhi-rnQoPw8UInQPIpxALxBlIk9bSUvvTtI_DozA_C8KdwBvZZQi7wCyIo9OIyNvRTHZLsZgUK9I7EOvTFSGLwPpwK9AfFEvQUGILwEplg94XAwPfIgg7tWpUi9xBoZvGCg1jt4H4w9IrFzPYByCLuVtS0-Ph6fPEkn2LjeHNM89FPcvYPhljo8fKO8guepvdZ_X7jGpD-85AS3vDz--bjeuaY9O2gbvdoZxzlmYVQ9t_GHPUrcsTmzvyK9-pDBPOOtHzkGdiY96tuIvQLNZjhq9iO7752nvWJI3LhEdQm9ZazRvF2EI7kc20G99L_cPLocbjol1ji9GMxEvR8fzDl12Yk9ehwGPQr4V7meZ4W7U2JyvUeHrbfcVLS6o8CMvNCRbTn9xhI9GZrhvNmVerihpUY9ZTs6PfB_vzhMqAA9x_Cdvf7uMDkZ0IM7mGDAO_m6wLhlRR49MoExPTRclbb2RzM9pjRxPQrtsbidDkc7d58DvkPejLeoF507IhXrPAerfragUM-9Fe-GPcLSAjht83A9i6bzPKWZTThvlne98-8JPQZ817hCKEq825N2vEmcFDiCVUU-dMg3PcnchLm5YPq8s8ZqvA1Avzd_iYO9Dtj1vQvRErigz_Y8HgdUPTBWvre9rwU9pUkJvq2ehbgi_-w9NSkFPvN-W7i6E6y8cty5PXQwGLle0XK9-ym0vTRNHDgHyae8Aj5JPTAB2LYgADgTQAlIbVABKnMQABpgHQkASRIW2-wZT_C_49UEIv_f8gzO4__eiv_UGvQZ-gDwpwP7_0n9MOKgAAAAFNv7F90AK33f0M4a8QcStdvEPRV_GxgKhOw6E7vwGhXyDwcUJgVqAADspDEqys4h0hYOIAAtpcYSOzgTQAlIb1ACKq8GEAwaoAYAACBCAADIwQAAbEIAADjCAADgQAAA8EEAALpCAACgQAAApsIAAIhBAADQQQAASMIAAKjBAAAkwgAAQEEAAKhBAAAsQgAAIMEAAADAAABAwQAAEMEAAIDBAACuwgAAiEEAAJTCAADwwQAATMIAAOhBAABcQgAAuEEAADDCAAAAwAAA1sIAAFRCAABkwgAAQEEAABBCAACmQgAAwMAAACxCAAAQQgAAQMAAAFxCAAAUwgAAyEEAAHDBAABAQgAAEEIAAGhCAABAQAAAkMEAABDBAAC4QQAAgEAAAHBBAABwQQAAuMIAACBCAAAQQgAAZEIAAIC_AAC0wgAAIMEAAFDCAADwwQAAusIAAARCAABQwQAAEMEAAKjBAAAMQgAAgkIAAATCAABIQgAAuMEAAGDCAABkwgAAAEEAAOhBAAAMQgAAgEAAAIxCAABgwQAAiMEAACDCAADwQQAAAAAAAAxCAADgQQAAwEEAADBBAAAYQgAALMIAAIrCAAAgQgAAAEAAAIC_AABAQAAAgMAAALhBAACewgAAREIAABxCAADoQQAAGMIAAADBAABQwgAAVEIAAIjBAAAwQQAAXEIAAMhBAABQQQAAwEAAAIjBAABYQgAAgEEAAAjCAAAAQgAA0MEAANDBAAAAwgAAAEAAAADBAAAAQAAAiMEAAAzCAADAQQAAKMIAAPhBAAAwwQAAAMAAAIhBAACUQgAA4EAAANhBAABAwAAAcEEAACBBAABUwgAAjsIAAK5CAABcQgAAXMIAAEBCAACEQgAA4MEAAKBBAAAgwQAAEMEAAMjBAACAvwAA-EEAAEzCAACoQQAAgEEAAPjBAAAgwQAAusIAAAjCAAAQwgAAgL8AAJjBAADQQQAAQEAAAKBBAABgwQAAMEIAAGRCAACoQQAA0MEAABDBAABAQQAAGMIAAFDCAACAQQAAUEEAAADCAACwwQAAeEIAAMrCAAAwwgAAwMAAAATCAABEQgAAWMIAAETCAABYQgAAqMEAAARCAAB4QgAAgMEAAMBAAADIwQAAHMIAALRCAACwwQAAQEAAADDBAADAwSAAOBNACUh1UAEqjwIQABqAAgAAED0AAFy-AADYPQAAHD4AAES-AADOPgAAJL4AABG_AAB8vgAAiD0AABC9AACIvQAAuD0AAOA8AAB0vgAAqD0AAFQ-AABAvAAAuD0AAJo-AAB_PwAABL4AAFw-AAAMvgAAcL0AAAw-AADovQAAhj4AAHC9AABQPQAAij4AAEC8AABQvQAAXD4AAMg9AABsPgAAiD0AAIi9AACevgAAkr4AADC9AADIPQAAkj4AADy-AAA0vgAAoDwAAOg9AAAEvgAAmL0AAKq-AADYPQAAcL0AAHw-AABAvAAAyL0AAHC9AAAHPwAAiD0AALg9AAAMPgAAqD0AAEy-AAAUPgAABD4gADgTQAlIfFABKo8CEAEagAIAAKg9AABQPQAAPL4AACW_AABsvgAAkj4AADQ-AACqPgAARL4AAIY-AABAPAAA-L0AAGw-AABUvgAAND4AAKC8AAAsPgAA4j4AAGy-AACaPgAAmD0AAKY-AAAwPQAA-L0AAKA8AACYPQAAqL0AALg9AADqvgAAEL0AAMg9AACAuwAA4LwAAKC8AABQvQAAqL0AADQ-AADWPgAAir4AAFC9AABwPQAALL4AADA9AAAMPgAAPD4AAEA8AAB_vwAAHD4AAL6-AABwPQAAyD0AACQ-AACyPgAAJD4AAEy-AADIPQAAML0AAEC8AABsPgAAXL4AAMg9AACePgAAgLsAAOC8IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Vyk8HQOckIE","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1154685848863284334"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4138226387"},"9244528070355632111":{"videoId":"9244528070355632111","docid":"34-9-5-Z3CEFD2E97E3C57F0","description":"I work through a few probability examples based on some common discrete probability distributions (binomial, Poisson, hypergeometric, geometric -- but not necessarily in this order). I assume...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1599979/bee249b4c2f1d9813b44d6e2f92ca326/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/5GUqnQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJm_Ch-iESBg","linkTemplate":"/video/preview/9244528070355632111?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Discrete Probability Distributions: Example Problems (Binomial, Poisson, Hypergeometric, Geometric)","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Jm_Ch-iESBg\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhUKEzkyNDQ1MjgwNzAzNTU2MzIxMTFaEzkyNDQ1MjgwNzAzNTU2MzIxMTFqkxcSATAYACJFGjEACipoaGV2YWNobnNtZnN0empjaGhVQ2lIaTZ4WEx6aTlGTXI5QjB6Z29IcUESAgASKhDCDw8aDz8T-gaCBCQBgAQrKosBEAEaeIHy7gT8_wEA9Q4FAvkE_wENBv8C9gAAAPUA9fQDAv8A9fcD__cAAAAG-wQM-wAAAPb9_v78_wAAAw4FBvgAAAASBQb5-AAAABQBCf3-AQAA7v70-QIAAAAW_gYDAAAAAPME9wP6__8B_hQQAQAAAAAU__cOAAAAACAALcnW1Ds4E0AJSE5QAiqEAhAAGvABf_fyAsgX6P8LB-EA7hb7AYcU8P8oLuf_3wX5AbwP1v8AC-cA59nx_-X3GQDZGg8AKN_b_wnu_wAo8gD_LPYQAe8YFAAd3vYBNQIS___12v_jDBb_7-f-__7T5gAGCdv-_uwR_-j39gEMAN4CDP8wAQHvH_0AAxcDAfIO_-wQDAIK2-D-APcSAurtCwHhFRkBCu39Bu__B_r1Bf0DBv_3_AbzEvgGJN_-Cff8Cvb-AwHb8fn5CeruAREGDwXtAfMG_PgMAQAEBv_oBgwBJNsNAfIBA_j83gIEIfz6AfDWAPTwAvT2Axr4_uwQ_QPnBvfxIAAtp7o-OzgTQAlIYVACKs8HEAAawAfpYtO-ivAFPZB4wzyagpu9qbUXvAMFXr3MpZe9car1PD08lTwQgG492VVtvDl7iLoU6DO---_cPFnThrzFVYU-VDBvvZt_Krx6Fy--CDwwPSmf1Lzgu22-XoqWPRa5TLyjiiy8fV-3uzlBwDtHzp092L-GPHQjLLxviwi9Q0cHuiPYGL2-UrG84YsCvH1By7xdL6I9SKXYvEdJmbwg6wk-xW3ZvKqZNbxlscM8qP-sPGnk87xdHka8EAaePGGZLb0fZxo9hmboO7M8k7r0YQe9ww2IvS6dhTx1vY69zk9RPYWQmDyNf587oY59Pf8JLrzwbmA9W1U7vVbYZ7yx4Um-LpL2PE8InTwaQo899vDAPGcxqToilK28dEuhPc7BszwAEyK9nS-2vAlat7yh2wY9C-iqPeeRfbtWWpA8VXH-PCqTFrzkO8Y7jPcDPr8syDxQU5s9tp4EvIauRLxF1Ok8qNHavJxgrLuNm5q9c5U4Pez7i7wb7V09bxS0PFVMQTohjS88qkeaPLzPcTzFNUM9-FENvglvLLuV3Dy9PPHBvUPp5rspjJI8gGORO_VXvLtz8209LZOBva9QNTz50A-9196nun5a3jsDwS097LxyvZe4Qbi3RO69wJ7EuwV6l7v8ZUG8hezZu4dCOrxFgJM8TzAtPW3tsztmhFe9NpIEvSwQ-zuccoA9ajxHPG06ArwlSLs9nqAjPWBPK7las1o9PXaRveqG2LppzD-90GM0vciPnboHyPy808wpvYOlW7qhndM9UYGYvZedUTkop4w9w4x_PXdugTkqRWG9alyOPYdkK7gTI5A9j7OfvQp-uDfYAow8g2jNvS4kwrid9jS9dK2DuuqIf7kdYJy8vDuSPYgxsLc1GV-9BfsPvXqeibqNP_Y88YF9PUIe07gmQGM9Myr8OyjNgzicRE69KuGJPIf6xjg9_ZQ7HB0BvS-lorj1Vei8j4lZPdYxQTgkRs88blyFvUlcnzjBGmc88vyzPNLXhDk_yXg8ngG_PXtAh7br0D89s90zPcuPk7idDkc7d58DvkPejLfJqo09I57sOtDjtjjK4QO-ENcePJf9Tjdu1FQ8tESdvDPnADg6PMS8YaiDPCXd-rc47IS6Ee7EvCsHXjfB4ys-3KVovAeJdLnvfbC9ZIpDvRQuQbh5MxS9aiyWvUjoMLe7iKU8zsg7PUUchbe9rwU9pUkJvq2ehbjK9HA9IuErPvHLijgHC6e8vfzuPYO0HrmsOuu9-dqDvRn-BLj0PG68JryePe-QhTggADgTQAlIbVABKnMQABpgKAEAF94GrPAoOeDf1wogBMwz-yXN1__yAv8OK77tGg_dpflLACGx-gylAAAAI-bdFSgAG3_dxwQYArn6ocnBLiF7FSHPq_QG960EET0LBggbFz0uAPUCpAtm6KlJFgb5IAAtLnQROzgTQAlIb1ACKq8GEAwaoAYAAERCAADIQQAAWEIAABDCAABQQgAAcEEAANRCAAAEwgAAgsIAAFBBAAAcQgAAIMIAAFDBAACIwQAAQEIAANBBAACgQgAAEMIAAPBBAAAQwgAASMIAAKDAAAB8wgAACEIAAHzCAABowgAAJMIAANjBAABUQgAAgL8AAOjBAAA4QgAAysIAAHxCAAAMwgAAqMEAAChCAACqQgAAgEEAAHxCAAA4QgAAIMEAAGhCAAAQwgAAgMAAAJTCAACAQgAAoEEAADxCAADgQAAA4MEAADDBAACgQAAAoMAAADhCAAAkQgAA2sIAACRCAAAQQQAAeEIAAGBBAACYwgAAiMEAAJDBAAAQQgAAtsIAAODAAAAwwQAAoMAAABjCAAAMQgAAkEIAAPDBAABsQgAALMIAAFDBAADowQAAAMAAADBCAABAQgAA4MAAAIRCAABgwQAAAMAAAIjBAADAQAAADMIAAOBBAACmQgAA0EEAACBBAACcQgAAKMIAAIDBAAAYQgAAqMEAAIDBAAAAAAAAQEAAAIC_AACGwgAAMEIAAABAAADgwAAAoMEAAKhBAAA0wgAAgMAAAODBAAAgwQAAcEIAAKBBAABAQAAAUMEAANjBAACSQgAAUEEAAMjBAACoQQAAsMEAAFDCAAAgwgAAgD8AABBBAACowQAAgEEAAJBBAAAYQgAAmMEAACBBAAAwwgAAMMIAAEDAAABQQgAAuMEAAFBCAAAQwQAAwEEAAPhBAAAEwgAAAMEAAJhBAAAUQgAAPMIAAJBCAACoQgAAUMIAAOhBAABAQAAAUEEAADzCAAAIQgAAUEEAAGDBAAAIQgAAiEEAAHjCAABAwQAAkMIAAADCAADAwQAAYEEAAIBAAABAQAAAAAAAAHBBAACkwgAAQEIAAMBBAAAwQQAAgMEAANDBAABgQQAAJMIAAFDCAABIQgAANEIAAEDBAABgwQAA0EEAALTCAABAwgAAgD8AAAjCAAAgQgAA4MAAAGjCAACgwQAA4MEAAGhCAADoQQAAAMEAAAhCAABgwQAAQEAAABhCAABQwQAAmEEAAMjBAABgwSAAOBNACUh1UAEqjwIQABqAAgAAJL4AABw-AAC4PQAAjj4AAKC8AAD4PQAAcD0AAC-_AAAcvgAAmL0AAOg9AABkPgAABD4AAGQ-AAA8vgAAiL0AABw-AACgvAAAQLwAABs_AAB_PwAAFL4AAEQ-AADgPAAAXD4AAEw-AABwPQAAuL0AANi9AAAcPgAAVD4AAPg9AABEvgAAPD4AALI-AAAUPgAAED0AAEy-AACevgAAor4AAJK-AACovQAATD4AAIg9AAC4vQAAFL4AAI4-AADevgAAir4AACS-AABAvAAAiL0AAJg9AABAPAAA-L0AAKi9AAAJPwAARD4AADA9AACAuwAAqD0AAHA9AABQPQAAQDwgADgTQAlIfFABKo8CEAEagAIAAJi9AAAwPQAABL4AADu_AAAkvgAAEL0AALg9AADYvQAAfL4AAEQ-AAAMvgAAJL4AAEA8AABEvgAA-D0AAKi9AAAEvgAAKz8AADA9AACqPgAA6D0AACy-AACgPAAAmL0AADC9AACYvQAADL4AADA9AAAsvgAAQLwAADA9AACYPQAAcD0AAKC8AABAvAAAuL0AAPg9AACqPgAANL4AAAS-AAB8PgAA2D0AAOA8AACYvQAA2D0AAIA7AAB_vwAA6L0AAHA9AABwvQAAbD4AAHC9AABUPgAALD4AADS-AACIPQAA4LwAADw-AADgvAAA4LwAACQ-AACOPgAA6L0AABy-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Jm_Ch-iESBg","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9244528070355632111"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3813615351"},"12072438615848583708":{"videoId":"12072438615848583708","docid":"34-2-0-Z2A3F2E1F5FAA9BED","description":"I have a slightly slower and more refined version of this video available at • The Sampling Distribution of the Sample Mean . I discuss the sampling distribution of the sample mean, and work...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/404360/7dbe890f2f488406e323310d051275a4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/F5cbQQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0zqNGDVNKgA","linkTemplate":"/video/preview/12072438615848583708?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Sampling Distribution of the Sample Mean (fast version)","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0zqNGDVNKgA\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhYKFDEyMDcyNDM4NjE1ODQ4NTgzNzA4WhQxMjA3MjQzODYxNTg0ODU4MzcwOGqTFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxO8A4IEJAGABCsqiwEQARp4gQH6Cgb-AwD5BwsG-Ab9AgEI_gj4_v4A8_0B9fYBAADzAP7-_wAAAPUPCAD7AAAA7Ab8_AIBAAAXAQP_-gAAAAj4AAf9AAAAFP4DBf4BAADxBPv9AwAAAAH9DxAAAAAA9wML_AEAAAALBPcEAAAAAAPwAAUAAQAAIAAtaa3aOzgTQAlITlACKoQCEAAa8AFo8gAAyxbp_xcI6wDfHeoAgQUL_xI3-wDaDAL_vg7t_yr77QHP5fD_9fkd_-MX_AA1-ekAAu4RACbzAP8x6BMA8gocABzf9wEVCQD_9APjAAIJ_f8b_QH_8Nn1AQoS9v78_Q4A0gEJ_fEQ-wEm3x0B-usMAw4MC_8B7Bf-3xACAfHm4_4O7_0G9fQF-db_FwET9wb_6wMMBOf29P36Cen-GAQO_gYi4P4J-PwJAAb3_Pz9-_gGCPb7FhwH_Oj6BQgX-Ar_BQn9_wEU_f0T9gsGBf8N_u7hAAEZAu0E6MgO9Pv_BPb6CfP6-_0F-v0V9fwgAC1uJ0g7OBNACUhhUAIqzwcQABrAB8xdw75k0vi6S_D-OwoHzL1XDxS8NIUOvYLUvL3k3JY9_IsgPczSTj3o6Cc8k-V_vJxNl77qPVy5ZI8WvC0LVj6wily9QS0mvXoXL74IPDA9KZ_UvE94kb5nFUw9qeaLuis_Xz1-X3G7n80qvNaiLz1UPfS82qQqu10Xvr1dlqW8ks1VvSIXob07nIq8BStTvUYAkT1hzLG9BTYHvSDrCT7Fbdm8qpk1vPRn5DxOLIu8xMEvvfciGj3l8wQ8dYDWvOKSAz6Ho5A8OA9MPHovk72Gdp69P7PaPN8Ykr3Zv-E8AZnGOxEWW7tXXHw94yQjvfBuYD1bVTu9VthnvPmgB770Gps9L4GAOxsqmz1YnUY930wvuyYMdL1dRrs9TCy6PBV1BbyfxIy8MZQ4vA-_hj3vnKw9w1WUPDMtNj0gKk09pSseO5AkELwQ36M9pmIDPa5G9j1S6Uw85dCivKjsqjyhXhU9_R3AuxsUaL3mrM881lyJvPKdUrvMyTA95L1qvPTpZ7z6nDY9Pr8cPMU1Qz34UQ2-CW8suyaUeb2xCVq9kYJ9OTzjljwnvpo8mMqyOlmHwz0Kz1W99IJTO-JPnrwObZu8in1dPAO9Jj00v_W8lFC4O1MRjb33ZFW7EJSZOhpVAb2LgR89dSwlvOnsyTxMGM09X-iauebSkzw3hgW9Dx9gO2LfqTzTrng8tXdbu087_D3NCMo6c-oEt7giUT0UW-G9Wy3JunmnpzuAilm9pglWtt1rF71KqgC9Hkw9uWa2UD2J7tm9IZW9ObepSz0tWgU9ueJiOZG6eL0onB09xwEJuInI1Tx9P4W9R1qFOVxUC72cFfG93J51OS7wa73dAP080WuGuHtPwDwGx9s8U6nAuj5Cnb3oqlS9lodOuby0vDveBD898KylObinFDwP5wo87lyfuI1bMb36iRg85KGMuTJPeDy09PK8Z6-ZuEEjHT1JL-o95ELtuKvMCjrLqym9CVXCt86vwTxJk8w930SHuK_hU73aAdc9y00_N1pPKD0z1HI8AWBMt4sWgD1EKsG9fSojOHBwEz0RXEA86t2AOcrhA74Q1x48l_1ONzW2lzzntF08wUDnOOfXvbvfjHW8COFDuFfCA7wACI48jOKaOIJVRT50yDc9ydyEuewjYb2_J5i7XcPlt0iWQr0sEcO9wcyPuO2Rl7xB9oU9foWftr2vBT2lSQm-rZ6FuLnBdTwt7Ak-hifnOPCyNb1czM89DEYKuYZVjL30W4q9LFHgtublED3kq3M9Rs1DNyAAOBNACUhtUAEqcxAAGmAlDgAJziXkzxZD2tr0zgj5PRPvC-H6_yLR__oG9zgFFs66Ct7_PKrfxKYAAAAS5_fyTADof9rn5yfw2By5_wYeNHcOC_mwDejmoSk5EeAcRxMVEBQAANyvF0ucEDHpKDggAC1g2Rg7OBNACUhvUAIqrwYQDBqgBgAAOEIAAAAAAAA0QgAAoMIAAEBCAADgQQAAvkIAAIC_AAAswgAA4EAAAABAAABIwgAAyMEAABDCAAA4QgAAYEEAABhCAACgwQAAQMEAAMDBAABwwQAAQMIAANTCAAAUQgAAVMIAAETCAADgwQAACMIAAFBCAAAIQgAAgMEAAMBAAACuwgAAVEIAAHTCAAAAwAAACEIAAP5CAADYwQAAbEIAAEBCAAAAQQAAXEIAAMDBAABUQgAAtMIAAFBBAABAQgAAGEIAAIA_AABgwQAAgMEAAIA_AABAwAAAwEAAAIBBAAAAwwAA4EEAAIDAAAD4QQAAsEEAAK7CAADgwQAAgMIAAAzCAADKwgAAiMEAABDCAACgwQAAIMIAAAxCAAB0QgAAuMEAAHxCAACowQAAPMIAABTCAAAMwgAADEIAAPhBAADAwQAAkEIAAGBBAAAMQgAA8MEAAOhBAACYwQAAqEEAACxCAAAIQgAAGEIAAAhCAABQwgAAGMIAAIBAAAAAQAAA2MEAAMDAAADIQQAAgL8AAJzCAABgQgAAMEIAAIDBAACIwQAA6MEAAPjBAABsQgAA2MEAAFBBAAD4QQAATEIAAIC_AACIwQAAyMEAAIBCAACYwQAAFMIAAIC_AADowQAAqMEAABzCAAD4wQAAAEAAAIC_AACQQQAAUMIAAKDAAACgwQAA0EEAAIC_AACQwQAAAEAAAHhCAACgwQAAwEAAAADAAAD4QQAA6MEAADTCAAAQwgAAREIAAFhCAAAkwgAAQEIAADxCAADAwQAAkMEAAADAAAAAwgAAAMIAACBCAABQQgAA8MEAAGBBAAAwwQAAEMIAAODBAADawgAAAMEAANjBAAAgQQAAgL8AAHBBAACoQQAAUEEAAFBBAAAkQgAATEIAAFBBAACIwQAAoEEAAHDBAABAwQAAYMIAAOBAAACAPwAAsMEAAIDAAAAwQgAAOMIAAJjCAACAvwAAoMEAAIBCAAAAwgAASMIAAKBBAACgwAAAoEEAAAxCAACwwQAA4MAAABzCAABQwQAAREIAABDCAAD4QQAAQMEAAOjBIAA4E0AJSHVQASqPAhAAGoACAAC4PQAAiD0AAKY-AABMPgAA-D0AAOC8AAAcvgAA9r4AAOi9AACIPQAAmD0AAJi9AAAwPQAAjj4AAHS-AAC4vQAA6D0AABA9AAAwvQAA2j4AAH8_AADIvQAAED0AAIC7AADIvQAAbL4AADw-AADYPQAA2r4AADw-AADoPQAAFD4AANi9AACYPQAALD4AAOi9AAAsPgAAur4AAK6-AAAQvQAALL4AAEy-AACCPgAAmL0AABC9AAAkPgAALD4AAJi9AAB0vgAAir4AAIg9AACIPQAAUD0AAAw-AACOvgAA6L0AACc_AAC4PQAAcD0AAMg9AAAQvQAAiD0AAKi9AABAPCAAOBNACUh8UAEqjwIQARqAAgAADL4AAFS-AABAPAAAU78AAKA8AACIPQAAED0AAHA9AADgPAAA4DwAAGy-AABAvAAAmD0AADy-AACgPAAAED0AABw-AAA3PwAAmL0AAMI-AACgvAAALL4AAFw-AADIvQAA-L0AAJI-AACgvAAAEL0AAMg9AABEPgAAQDwAAKg9AACAuwAA8r4AALi9AAC6PgAAiD0AAEC8AAAQvQAABD4AACQ-AABUvgAAmD0AANg9AACAuwAALD4AAH-_AACSvgAA2r4AAII-AAC4PQAAqL0AAGQ-AAC4PQAAyL0AAOA8AAAwvQAAuL0AAKC8AAAMvgAARD4AAIA7AACovQAAQLwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=0zqNGDVNKgA","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12072438615848583708"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2616850224"},"959313134886548354":{"videoId":"959313134886548354","docid":"34-9-8-ZC35014606A797AF9","description":"Just getting warmed up.Here I prove that if events A and B are independent, so are Ac and Bc. I make use of De Morgan's Laws, without offering a formal proo...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4032463/f957f540f81c1e8b463a36f0d7151dc9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UXvW0gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbnDpZNlVZ3k","linkTemplate":"/video/preview/959313134886548354?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof that if two events are independent, so are their complements.","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bnDpZNlVZ3k\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhQKEjk1OTMxMzEzNDg4NjU0ODM1NFoSOTU5MzEzMTM0ODg2NTQ4MzU0arYPEgEwGAAiRRoxAAoqaGhldmFjaG5zbWZzdHpqY2hoVUNpSGk2eFhMemk5Rk1yOUIwemdvSHFBEgIAEioQwg8PGg8_E5wCggQkAYAEKyqLARABGniBAPcF_vwEAPUCCwACBP4B6_0LA_wAAADnAwT-CP0BAPYGBgEBAAAA-hAD_gYAAADzA_j6_AAAAAQE-AcEAAAAE_oJ_QEAAAAGAf3-_wEAAP37_fcCAAAADfUG9_8AAADuBAz2AAAAAP0MAPoAAAAA__AHAQAAAAAgAC3Obd47OBNACUhOUAIqhAIQABrwAXX5DAK52AH9H_7yANz09AKBBQv_Fh3oANIbCgDP8OgA8hLnAOb2AwH49_EA2wsdABvx4v8j6fgAK-b9AB359wAR9wAADuDzARsKCQD47_gADP4N_w7mFQAD8OQACenr__0NCP74COkB8gLSAQwhFQPx_wcECvcLBv_nB_zOKA0BGt39AfcJ9f8CAQT80OQcAQvw6QEQDgb76w_9BPkIAPsCEhf9EAjrAwcIAgvo9Qz74-YDAQT48_wfAQ4B-CcRAvgMFwLt8wr9Eg__Ag_TBgUA5Qn3BubvAfX4-wvj2Pj5ESUH_fIAAfkABQkBAPn2_iAALW4nSDs4E0AJSGFQAipzEAAaYFMBAE_jN87a6jzm6Ovr5_fiAQUR6Mb_-v7_ACHb-uEu2LP7HP8zvBHZowAAAA8CCjv9APR_EeDmPOpL9NXgvvYdbEX-EJL0OSDH3CsV--YUJtEbSgDhA6AcEd_BPCLSEyAALSZIGTs4E0AJSG9QAiqvBhAMGqAGAAAMQgAAEEEAAAxCAAAQwQAAKEIAADhCAAC6QgAAIMEAADTCAAAwQQAAHEIAAMDAAAAgwQAALMIAAHBBAAAcQgAAeEIAAODBAABAQAAAYMEAAFBBAACgwQAAsMIAAKBBAABEwgAAAMIAAODBAADwwQAA6EEAAFBBAACgwAAAwEAAAKTCAACUQgAAkMEAAIjBAACQQQAAFEIAAEBCAABcQgAAUEIAABTCAAAEQgAA2MEAAODAAACwwQAAeEIAAARCAACgQQAAkMEAABTCAAAQwgAAAEEAAEBAAACQQQAAHEIAAJjCAABAwQAA-EEAAMRCAAAgwQAAZMIAABDBAAAYwgAAPEIAANjCAABEQgAAiEEAAAjCAAAIwgAAuEEAABxCAABYwgAASEIAAHDBAABEwgAALMIAAFhCAAAQQQAAiEEAADBCAAC2QgAAGMIAADTCAABgwQAAoEAAAJjBAAAEQgAAiEIAAMhBAABAQAAAoEIAADjCAAAgwgAAyEEAAMDAAAAIwgAAgMAAAFDBAACwwQAAYMEAAGBBAACAQAAAcEIAAKDBAACCQgAAOMIAAOBAAACQwQAAMMEAAKxCAABAQAAAUEEAAIjBAADwwQAAlkIAAFhCAACgwQAA-EEAAJjBAAAwwgAAgMEAAAhCAADgwAAAQMEAAIDAAABoQgAA8EEAAJDBAAAIQgAADMIAAOjBAADQQQAAkkIAACxCAACWQgAAoMAAAPBBAAAQQQAAQMIAAABBAAAAQQAANEIAAHjCAAAgQgAAukIAAADCAAAQQgAAQEAAANhBAABcwgAAoEAAAEDAAAA0wgAAYEEAAOBAAABowgAAoEAAAJjCAAB8wgAAOMIAAADBAAAQwgAA8EEAAPhBAACAvwAAqMIAAMhBAADYQQAAAMEAAIA_AAAowgAAJEIAAKDBAAAAwgAADEIAAFRCAAAcwgAAsEEAAGBBAADQwgAAkMEAAMBBAABQwgAAQEIAAODBAABQwgAAQEAAAEBBAAAUQgAAJEIAAEDAAACYQQAAmEEAAIBAAACsQgAAoMEAAIBAAABAwAAAgEEgADgTQAlIdVABKo8CEAAagAIAAPg9AAAwPQAAVD4AAEA8AAAkvgAAML0AAAS-AAAPvwAAQLwAAHC9AABQPQAAmr4AAIi9AADWPgAARL4AAIi9AAB0PgAAgDsAAEQ-AADmPgAAfz8AAKq-AABAvAAAUD0AAFA9AABAvAAAJL4AAES-AADIPQAAfD4AAKA8AADIPQAAoDwAABA9AAC4PQAAuD0AACw-AACOvgAAlr4AAOi9AAAQvQAAfL4AAMi9AAAwPQAA-L0AANg9AABcPgAA6L0AAFy-AAB8vgAAQLwAAKA8AACuPgAA-D0AAJ6-AACoPQAAEz8AAEC8AAAcPgAAlj4AACy-AACIvQAAML0AAHQ-IAA4E0AJSHxQASqPAhABGoACAAAkvgAAcD0AAOi9AABBvwAAuL0AAKA8AAC2PgAA-L0AANi9AACiPgAARD4AACS-AACAOwAA-L0AAMg9AABQvQAAFL4AABs_AAD4vQAALD4AAHA9AABAvAAAUL0AAOC8AABQPQAAgj4AAFC9AAAUPgAAqL0AAFC9AABQPQAAgLsAAJi9AAAEvgAAiL0AAJi9AAA0PgAALD4AADy-AAAsvgAAmj4AAOC8AACoPQAAUD0AAIA7AADovQAAf78AABA9AACYPQAAoDwAAIg9AAAQvQAA-D0AAFC9AAAQPQAAmD0AAFC9AADoPQAA4DwAAMi9AAA0PgAAgLsAANi9AACYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=bnDpZNlVZ3k","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["959313134886548354"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1593593812"},"5031331938342937031":{"videoId":"5031331938342937031","docid":"34-1-5-Z75A75A5B354A6E0E","description":"I have an updated and improved video on calculating power and beta available at: • Calculating Power and the Probability of a... I work through an example of calculating the probability of a Type...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1000846/4482e30017c19b5ad24e242c4f4d2f95/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6LEisgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFUVL7ppjYuA","linkTemplate":"/video/preview/5031331938342937031?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculating Power and P(Type II error) (A One-Tailed Z Test Example)","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FUVL7ppjYuA\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhUKEzUwMzEzMzE5MzgzNDI5MzcwMzFaEzUwMzEzMzE5MzgzNDI5MzcwMzFqkxcSATAYACJFGjEACipoaGV2YWNobnNtZnN0empjaGhVQ2lIaTZ4WEx6aTlGTXI5QjB6Z29IcUESAgASKhDCDw8aDz8ThwSCBCQBgAQrKosBEAEaeIEG_gYAAAEA9PgIAQIE_gEiCAkADQIDAO74EAUHAQAA7AkOA_4AAADwFf7_BAAAAPD38Af7AAAA-QbvAAIAAAAH-v3_-QAAAAkQ-w7-AAAA9f4DBQMAAAAH-wcM_wAAAAcN_wD5_wABBAT8BwAAAAD9BgUN_wAAACAALRJA1Ts4E0AJSE5QAiqEAhAAGvABdvTp_rwc4v_ZBMwA1wAWAoEiCv4wOOL_zw8D_6sR6P8U__IA0d7N_wDa-gC9KRsBGwHHAAPLFP8x7wD_OgEWAe8MJAAT3QQBKPzrAeTz1gACC_3_F_gPAPfc1P_79N79CvoeAfL85Pr0FNsBIvwsAfkBJAUM9A8I6vYW_tMmCv_t39v-IwP-BOvr_gLDHxcDDQ0P_eIA-v7U9fUC9Q3y-ywBBgQHK9f--e72Dhfu-QL7AA31G_fo-AkZEATWCA4IEPgbCQkG6_XxFAjwKewHBeYKAQDfxPIGKQn4-eznAP3_B_bwAgEMAe8LBfTq_u0EIAAt_yEdOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTqqC529y4G_O8D-kLzZ38O9fjq7O4C-iDwQgG492VVtvDl7iLrScpC-_a5-PVwRDbr9vXQ-klRLvQOx7Dx6Fy--CDwwPSmf1LwUB1C-k3Z-PIqaHr3c9RI9kQvOvKAHELt2CT09jmNavItSH7xviwi9Q0cHuiPYGL0iF6G9O5yKvAUrU71H1ZU9M9FWvbuWtbx3Me09jwApvXaWETz0Z-Q8TiyLvMTBL7231aw758wxPdk-BL27L7I9Fjz7PKUFGruAStW87mq4vaYNybvfGJK92b_hPAGZxjv3JuE8XYaUPfC18bx5KoY9RQcpvQqQF72oyCG-AnwcPejpbTw-6r896LT4PHYKj7cYPmK9drd8PRbfKzxShw88UBOivKBsirwfPGQ9PuNHPdAB0TvIbWq7zJGZO64iijuQJBC8EN-jPaZiAz0WhNI9RXaPvSdnKLzngVk9MhUoO7sd67xVj7q9vjk3PBeZJbxtrIQ8HRA3PbNbcDxFTvy7knUYPZ0m2DxFXKU8c7j2veQENzzHg229VxCOvZ23VrxEsUs9eV0cvP_WCLuLy5w9pBd6vV94SrznFh-9jUepvPkDs7rnooY8T2WHvDYCEDzZ9bG9SEcpuiMwGboHIza9vBybO6PKMLxCPSI8LXFpPVnppDspxKs7J-uhvWwGejtHuZo9Y1Y5vF4GjDuHgG09kZSZvDzWGTqIJIQ9pRm2vdyZLrvZEBK9Sc3ovFpCpTsfTVC9BlkAvTiLEzrHZxI-rqDpvZAJtLkop4w9w4x_PXdugTlKIuC8jIdSPEiNhTmImWI9lyrHveEG17etL7c6_RLxvbwjiTl0lpm8dRbHPMYn8LjQ4Ss9X2InPSbsvLkl1ji9GMxEvR8fzDntpSQ9a8YYPULW47ZfIdg8M7UZvKE3ZzhwvHa9YxkNPG6g6rYtcz89APhxvZyDm7gFpH08moSBPbC1qTjsua-7xcGavROAdjl9gMk7a2ZtPZp44TijC0W8dk-TPfYtRzjo2AE9EhNUPaqcgrbTzwg8ZjHRvT5LlzbaTuU8ZCyJPHyamLgi-wC-xl8kPReYZThu1FQ8tESdvDPnADiU3Yy8eIfKvC4naDiH9vO6YDuAuXmGezjB4ys-3KVovAeJdLm6lhy8SepOvVhMfbm77YK8l-ahvfo4_7eb0o-74uSOPWDeRzdhBnk98zoSvkvnqbjK9HA9IuErPvHLijgYJzm9lEOlPWWUx7jD89K9jooEvYeyybaCgGs8TF2oPLW4GzggADgTQAlIbVABKnMQABpgJv0APAtP7f4JOeYYANsGCNMQ_wTu3v8Y6_8T6PXz2TaylRsq_0jVHsSiAAAAGPnqH_EABH_6_d3t1dH35tjhGxB4CAz_uMQq8M8FOCjwGDPl5jcOAMUQnjhzrZMzMhsJIAAtLy8UOzgTQAlIb1ACKq8GEAwaoAYAACxCAACAwAAADEIAAETCAABAwAAAgEEAAKRCAAAAQQAAwMEAAAhCAACYQQAAaMIAAKjBAADgQAAAyEEAAAAAAAAQQgAAAMIAAIhBAAAAwQAAQMIAAFTCAACywgAAGEIAAGDCAAAUwgAAwMAAACDBAACAvwAAQEIAAIrCAABAwAAAwMIAABBCAACowgAAYMEAAIBBAABcQgAAAMEAAKJCAABMQgAA2MEAAOBBAAAYwgAAyEEAAIrCAAAgQQAAikIAACRCAAAgQgAAsMEAABjCAACgwAAAJEIAAPBBAACYQQAA6MIAABBBAACgwAAAMEIAAARCAAB4wgAARMIAAETCAABQwQAAvsIAADDBAACAwgAA4MAAAGzCAAAcQgAASEIAAEjCAADoQQAAUMEAAGDCAABowgAAgMAAAJhBAADAQQAAmMEAAKRCAABAwAAAmMEAAADBAABQQgAAkMEAAIBAAAAYQgAAMEEAALBBAABcQgAAaMIAAODAAAAQwQAAQMAAAIDBAAAAwgAA4EEAAPBBAABgwgAAUEEAAPBBAABgwQAADMIAACBBAAC4wQAAQEAAAPjBAABoQgAAfEIAAKhBAABAwQAAcEEAAIjBAAC4QgAAwEAAAJDBAABwwQAAQMIAANjBAAAQwgAAIMEAAMDBAACAPwAAmEEAAIDBAACAPwAAKMIAAFRCAADQwQAAwMEAABBCAACCQgAAgMAAAPBBAADowQAAYEIAAKDAAACUwgAAoEAAAKBBAAAkQgAAWMIAADhCAAAcQgAAmMEAAIBAAADgwQAAYMEAAODBAADQQQAAYEIAALjBAAAwwQAA-MEAADjCAABAQAAAeMIAAFDBAACSwgAA8EEAAABBAACwQQAAWEIAAFBBAACYwQAAkEIAAIBCAADYwQAAQEAAANhBAACYQQAAFMIAAEjCAAAgQgAAIEEAALDBAACAwAAAtkIAALLCAACOwgAAqMEAAODAAABEQgAA6MEAAETCAACgQAAAoMEAABBBAAAsQgAAIMEAAABBAABgwQAAqMEAAFRCAABMwgAAmEEAAIBAAAAYwiAAOBNACUh1UAEqjwIQABqAAgAAmD0AAEQ-AACoPQAAhj4AAKK-AAD4PQAAyL0AACG_AADKvgAAEL0AAJ6-AAC6vgAAEL0AAKI-AAD4vQAAC78AAFw-AACAOwAALD4AAC8_AAB_PwAA4LwAAAQ-AACYPQAAuD0AAAQ-AABkPgAAUD0AADA9AACIPQAARD4AAJa-AACOPgAABD4AAKI-AACgvAAAoDwAANi9AAD6vgAAzr4AAKg9AACOPgAA3j4AAJK-AACovQAAcD0AAK4-AACuvgAAPL4AAKa-AAAsvgAABD4AAK4-AAA0PgAAED0AAOC8AABBPwAAgj4AAKg9AACgvAAAcL0AAEw-AAA8PgAAXL4gADgTQAlIfFABKo8CEAEagAIAAAu_AADYPQAAcL0AAEO_AAA8PgAAHL4AAIo-AAA8vgAA4LwAAJi9AADYPQAAcL0AAOC8AACmvgAAoDwAAEA8AACgPAAAVT8AACw-AABcPgAAML0AADy-AACSPgAA2L0AAAy-AABwvQAAUL0AAOA8AABMPgAA-L0AAHA9AAAUPgAA3r4AAAS-AAAsPgAAHL4AABQ-AADIvQAAtr4AAOC8AABwvQAAyL0AAEA8AADYPQAAUD0AAL4-AAB_vwAA4r4AACS-AAAcPgAAhj4AAFA9AAAcPgAAqD0AABA9AABAvAAAQDwAAKg9AADIPQAA2L0AADw-AABQvQAAoLwAAJK-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=FUVL7ppjYuA","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5031331938342937031"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2655061327"},"7370521484173341159":{"videoId":"7370521484173341159","docid":"34-6-3-Z7F4C363C6A471B2B","description":"A discussion of the assumptions of the t test on one mean. (The assumptions are the same as those of the t confidence intervals for one mean.) The assumptions are discussed, and the effect of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4272400/caa0d4f8960ae223fd1fbb20e8e79cb0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/FugKTgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DU1O4ZFKKD1k","linkTemplate":"/video/preview/7370521484173341159?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"t Tests for One Mean: Investigating the Normality Assumption","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=U1O4ZFKKD1k\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhUKEzczNzA1MjE0ODQxNzMzNDExNTlaEzczNzA1MjE0ODQxNzMzNDExNTlqiBcSATAYACJFGjEACipoaGV2YWNobnNtZnN0empjaGhVQ2lIaTZ4WEx6aTlGTXI5QjB6Z29IcUESAgASKhDCDw8aDz8T2QOCBCQBgAQrKosBEAEaeIH2-gL-AQAA_AMFAvoG_gL1Ff4B-P39AOgB-Pv4_gEABQH6AfYBAAANBfsDAgAAAOzz_QL2AQAA_QH58_QAAAAJ9gEG8gEAAAkO_u_-AQAA-An2AgP_AAAQBAcQAAAAAPkWCPz-_wAA-_sCAwAAAAAR6Pv-AQAAACAALa0-0Ts4E0AJSE5QAiqEAhAAGvABbPYUAaj--fs3_f8A5CHTAYHw-_8UD_UAxA4OAdkQ4gAT-ur_0ObxAAH4CADa-g0ADOfcACPwGwAgAw4AHfgTAAcZFgAn7w4AG_ENAPHf9QDxJgv-GQISAAntCQHg8_7-FvUO_fPx8AEABOkDEAIWAAz5DQMe6wsBAAEL_fIhBv8L_fUDCfoEAuIH9QHWCQwCJAzz-g8NBvvz8AL9EQ_yAuwACgEUCPT7FgzvA_b5Cfnr-QH6_QXu9SMPCgESF-kBAugJAO39AwD9C_0BEvcKBvv2F_b3Ag__BhD-BPHaAPX0EAf_7xUBAPYcAPr-9P4AIAAtkPpOOzgTQAlIYVACKs8HEAAawAeSB_K-pkALPeCDl7zJd4S61TXkPPvxzbxJXie941VWPaa_zbwJstS8BZJGPXY7Nr38jLu-WlMPvMbqxbsUlEI-RkUcvXPoALxaLlu-6o-VPG5ikrz1oYO-PHfxOy7Flzugnw49z_mZPS4G6jwnwHA99M4ZvE-x6rwBnMW7ff7Bu6CSbr3L-zO9QBDmOwyDpjuVrMQ9sUmjvKoD6rwg6wk-xW3ZvKqZNbw0PMc8cAOTvfVdNryaOlS9TFOlu7gA-roBhTo-G_90vPjt1rtwRBK9BBt8vJ1IED1zdvy8M7i3PA8Odrw9KAi947sePWfLILxxpJ09JAbmPEBJBbyllQw9n8izPU8fojv9z7s9eLmIPasmiLx6tl29aUA4PY-axLsVdQW8n8SMvDGUOLxTvlY8sFMxPd6gNjoauM28ZylZPb3VBL1utiO9-VhwPQkSwDx3EQY-9N5YPYgeZ7ua8hw9L-XXvA-x5jws-ZO9YmBCPA8vo7yGuok9BqTYO9fVC7yIVyg9pY2ZPHxnzbpwAS29r2SSvTiQIrvrPIU8D8-HvVjBtTs9FUY96munPHoGQ7wplbA8CjWnOOk_0rvxbpu9ycuavV5tAbykfb09c8mHvS_ILztTEY2992RVuxCUmToONhA9AKiCvSIzPLwOT688gzXpPAP4-jvM7rm90va5vK2vhTtlbv49CUKYPfgEojqLEJg9EZ_FPP5M8rnaxyo9IUs1vYC2uLtlDlM9PU5HvXA3Uju5vMO8eFCPPU3PorkCpkI8n6kcvdiyhLqQwtA8ybtZPZ42HjlG7y-8e7SjOjZ7LzkC7yk9zRm2vJ0lFTgPCsq8Eg03vQx7nziqmmC9DVGmuypqRrmd-8Y8deENPGQSmLlpLn26-sy-vFGlwbnMzZw9OVBWPTfsXbjCouI8BrigvB6xJLiARPg8Oq4mPX8eN7mC8og841VxPc9n07juwIq8pSG0PIn7qTe16f68ZYScPNcmgLh9gMk7a2ZtPZp44Th7QAq91ULJPBOm5zbMGQA8EE7VvBwwrLidDkc7d58DvkPejLfP1ua8RHk1vRO4azhtxf69otQ-vRov9Lhm3gU96FoJPBMtbjftQpi8fccVPRCtQ7Z0Ka48TlB5va7RqDWCVUU-dMg3PcnchLn2VFi9f8FuvFSyU7dz-Wo8VfijveMQOzc1wLs8XBuPvCp-JbPsA707fNQPvhf63LhVGKY9bQvFPYPH5zjnIEO9C3RyPQV1lbh8ToW9Y4RLvMLI6LbohqY8GpdgPFZAfDggADgTQAlIbVABKnMQABpgOgUAPO819OL7V-TW-9UU4__5BgGk6v8K2ADRC9Xd-R_3pRse_3L7E-KgAAAADA0QMAEA0H_vt_Io0Q73ycP1Dwd-EPoS3fEUyZLz7Tjf6VYbBDI8AODGmidG1eI8AgwUIAAt7hMTOzgTQAlIb1ACKq8GEAwaoAYAADDBAACoQQAAgMEAAAAAAAAIQgAAjkIAAP5CAADAwAAAaMIAAOBAAAAsQgAAXMIAAODBAACAPwAAgMAAAKDBAAAAQQAA8MEAACjCAAAwwQAAgEEAAKDAAAC4wQAAyEEAALjBAACgwAAAkMEAAHDCAABwQQAAwEAAADDBAADgQQAA6MIAAGBCAACIwQAAcMEAABhCAABAQgAA2EEAAIBCAABUQgAAoMAAAKJCAABAwQAA-EEAANDCAAAAwAAAQEIAALDBAABQwQAAJMIAAEDAAAC4wQAAgMEAAABAAACaQgAAAMMAAKDBAACAwgAAgkIAAIhCAACEwgAAcEEAABTCAACgQAAAQMIAAMhBAAAYwgAAiEEAAFDCAAAgQgAAgL8AAJrCAABUQgAAgL8AALjBAAAEwgAAiEEAAKBAAADoQQAASMIAABRCAACgwQAAcEEAAABCAACAPwAAUMEAAAhCAAAsQgAAREIAAADAAACqQgAAHMIAAOhBAAAgQQAAKMIAALBBAACewgAAuEIAAKjBAAA8wgAAgEIAADBBAABAQgAAAMIAAIBBAABAwQAAIEEAABDBAADQQQAAgD8AAPDBAACAvwAAAEEAACBBAAAoQgAAkEEAADBBAAAgwQAAgEEAANBBAAAgwgAAoMEAALjBAADYwQAAQEIAACBCAACgQQAAEEEAAEBAAAA4wgAAmMEAADRCAADgQQAAGEIAAKBBAABAQQAA4MAAAJjCAADgwQAAgEAAAIA_AABEQgAAoEAAAIBBAABwwQAAIMEAADDBAABIQgAAkEEAAOjBAADAwAAAgEAAACDCAABwQgAABMIAAEDBAAD4wQAAnMIAAIBAAADQQQAAAEIAACBBAADAwQAADMIAALjBAAAgQQAAQEIAADBBAAC4QQAAgEEAAKhCAADowQAAAMIAABTCAABQQQAAZEIAAODBAACAPwAAZEIAAIjCAACAQAAAmMIAAJDBAACUQgAAQMAAAGjCAACgQQAAmkIAAHBBAACoQQAAqEEAAEDBAABAwQAAcMEAABRCAACAwQAAUEIAAEDCAADgwCAAOBNACUh1UAEqjwIQABqAAgAAmL0AADC9AABcPgAAQLwAADy-AAAMvgAAUD0AAMa-AABEvgAA6D0AAIi9AACgPAAA-D0AABC9AAAcvgAAqL0AAIg9AAAQPQAAFD4AAOI-AAB_PwAA6D0AABA9AADIPQAA-L0AADy-AACAOwAAND4AAIi9AADIPQAAMD0AAKq-AADIvQAADL4AABw-AAAEvgAAZD4AAIK-AACmvgAAJL4AABS-AAAkvgAAij4AADC9AACovQAAlj4AAEw-AACYvQAAiD0AAHS-AACAuwAAED0AAMg9AACaPgAAmr4AAEC8AABbPwAAuD0AAOA8AADYvQAAiD0AAAS-AACAuwAA6r4gADgTQAlIfFABKo8CEAEagAIAABy-AACYvQAAgLsAAHW_AAAQPQAAEL0AAJi9AABQvQAAdL4AAIo-AACOPgAAHL4AAIC7AACuvgAAoDwAAOC8AACYPQAAXT8AAGQ-AADIPQAAQDwAADC9AAD2PgAA6L0AACS-AACGPgAAZL4AAPg9AACKPgAAEL0AAMg9AACgvAAALL4AAKa-AADIPQAAUD0AAIg9AABAPAAARL4AACS-AAAUPgAA-D0AAGy-AADgPAAAmL0AANI-AAB_vwAAZL4AAFA9AAA0PgAAcD0AABS-AAAkPgAAgj4AAOC8AADgvAAAoDwAADA9AACAOwAA3r4AAOg9AAAEPgAAuD0AAES-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=U1O4ZFKKD1k","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7370521484173341159"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1667765568"},"13433627166346955836":{"videoId":"13433627166346955836","docid":"34-1-10-ZE783D0BC26A0B298","description":"A look at what factors influence the power of a hypothesis test. This discussion is in the setting of a one-sample Z test on the population mean, but the concepts hold for many other types of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/919333/65f098421f7d5138f2d98573459b3d59/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EZCBAgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DK6tado8Xcug","linkTemplate":"/video/preview/13433627166346955836?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What Factors Affect the Power of a Z Test?","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=K6tado8Xcug\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhYKFDEzNDMzNjI3MTY2MzQ2OTU1ODM2WhQxMzQzMzYyNzE2NjM0Njk1NTgzNmqTFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxPoBYIEJAGABCsqiwEQARp4gfUEAPj8BQD6CA38-wT_Af8GCP_5_v4A7gcGAAH_AAD0_QoI_AAAAAUS9gD-AAAA7gIA8f8BAAAG_vj1BAAAAAAB___7AAAADgD7Bv4BAAADAgcBA_8AABL1AgEAAAAA8QP7-v7_AAD8A_72AQAAAPz9A_wAAAAAIAAtK-TeOzgTQAlITlACKoQCEAAa8AF27h8B2ibWAOgK7gDYDOoBgQAC_xsj4wDA8goAsRLP_xLu9QDU_AAAEfsH_8AnGQELHuD_9usiATboFwA4ARUA8AwiAC74BAAhDQsAEebJ_8QX__8R4BoA9d67AAIV6gMM5A__2_fmAAntwAgW6CgCBPkZAhvvEAL96_8A3xwTAOb33P0KAPYJ8efx-8UeFgMUHRT6_DLt_un-4gT8AgEDAwkP_AYC4_oKGOz9AAf1-9Xv-Pjx9ur4G_ogBdn1-wT3BBTz_v77-uf4BwD-8wL4BSUDA-kBAv8N_v787dAA8uELAfPmCfn20Q8R-_Tt_wggAC2_TyQ7OBNACUhhUAIqzwcQABrAB_Et5L4zxTc99UccvKn3FLxEJcO7dy7MvDyLOb1yGwg9x4EeOiurhD1piG89Dwlfu5sdob5GoZu8yGeoPBSUQj5GRRy9c-gAvHE9Wr7nFr89hUyovE94kb5nFUw9qeaLuvzvgj3xb8Y8haDZPEHeIzsZOZu9bCpmvFvZdD363AE8BcfAvCuIwbzDFxy9SVvmvMQdtTskJV29NT-jvNNO7T11QA29nWkdvcUA6Dvf5qi8398ePPwLlDvWBsC7r_8AvGn-KD6LXdM7RwsrPHZNbby9B8O8jZG2u_p9P70alB89xgVkOkELCT2-7Eg9EUqpvHkqhj1FBym9CpAXvT9vKr1RTnQ9EUgyu6j8Cz6lg5U9JI6GvBK97L2F9gA99EOZOytlvrxJWOW8FkWXO-c6KD0XNjk9H4LLu5bFDj2BmZo9_8dPu262I735WHA9CRLAPBP_xj30XFU9RrzMOzPrezz9gAu7hFOVPI2bmr1zlTg97PuLvJhbED25edk86fEAOhYYDTxuc187Ka94OyRenrti-Oi9UxhnO9zNursg9Ge9SbJUuwsSdj3doXY7W4ltu1s-lz34pMO9qNQ6u2qgXr3ib0C9Bw8uPG2kkTxeyHm9H6w1Owp5vr2YABc9gy4GPP4s1rxhXKC88747vOPgUjxvvmw88xP3O97gUL1gIfO92gh-ungfjD0isXM9gHIIuzVsuj0uYaM8e1LJOFT6nj2a6Di9eFpPOKaW0jyTx_S73pZAO_Iilzo-7RA9WFFmux-i0T1Y-B-9edGKOKUFmjtZNWM80TriOdYNar0Cv2E98yh7uO5z47vSoYi9wyM8OVxUC72cFfG93J51OfYjhbzaSCi9J7mOOfacbz29tcI8pq5qOH4zNr2kUJa9LoOjt9VFpbxQP4M8rYKcuUDj3Ty1npu9Fq-4tj1AHD0IzqQ9BiVjOaD78jznKme9Ga1nOHh9Zjw7VPM9UxwoOCEurTuYcQ08q_IBuRQEDz0QXQA-jcNxuBHBjb26VoE9SeLlN4O41zwZfxM8C0WUOOXiubxxaJu95a0INiK1_7zOx5A7pYl4t1RT0r3odM-8L_jFNwJDGLx-hAg8g4uwN30geT2wIgI8z7etN1i0hD1UHp28G_RFuIJVRT50yDc9ydyEuU7BkL0_vk69U05lN3I0CTtwjrS9ONKNtqweQ7oKw1s8iM_Tt0MiyDylTdW9UAd3uELLXz1jGrc9bpCOOMW_mb1zOEk9XU7juFyJZb1kM9E8p72gN3rxTz3AlEE9OtiYNyAAOBNACUhtUAEqcxAAGmAQBQA2-hPv4R0x8Ca71RIS9BoMD_MH_wHkAAMG99YAIdO9JQ3_S9oVvLAAAAD84vf-5AD3berl1gT9JgjFssYbCX8IGizq9Cn25-sDL97l6yvgTBYAySaVOU-21A9LFwkgAC3ltCQ7OBNACUhvUAIqrwYQDBqgBgAAoEEAANDBAABAQQAAKMIAAHDBAACKQgAAvEIAAGRCAAAYwgAAkMEAAJBBAABwwQAASMIAACDBAABEwgAAOEIAAHBBAADYwQAAMMIAAIBAAAAAQgAAmMEAAFDCAACwwQAAMMIAAGBCAABgwQAAuMEAABBBAAAgwQAAXMIAALBBAABIwgAAmEIAAGDCAABAwQAAaEIAAGxCAAAIQgAAgEAAAARCAADYwQAAZEIAAMjBAAA8QgAA4MEAAIC_AAAUwgAAgD8AAAhCAABwwgAAUMEAAIC_AABwQQAAUMEAAIBBAADGwgAAQMEAAFDBAACWQgAAIEIAAJjCAAAEwgAAyMEAAKhBAADgwgAAgD8AAGDBAAAAQQAATMIAADxCAAAAwQAAxsIAAExCAAC4wQAAoEAAAKBAAABwQgAAEEIAAGhCAADIwQAAeEIAAPDBAAC4wQAAQEEAAGDBAACAPwAA8MEAAIBBAAAUQgAAusIAABhCAAAwwgAA4EEAAJhBAABIwgAA2MEAAJDBAAAAQgAA0EEAAFzCAABAQAAAAAAAAHRCAADgwQAAaEIAADjCAACYQQAAEEIAAGhCAACEQgAAgEAAAATCAADAQQAAQEAAABBCAABwQQAAkEEAAIC_AABAwAAALEIAAHzCAABQQQAAoMAAAJbCAACIwQAAMEEAAABCAADYwQAACEIAAKjBAABAwgAAIEIAAFRCAACAQAAA2EEAAIA_AAAAAAAAqMIAAJhBAAAQwQAAEEEAAARCAAAgQQAA8EEAAAhCAAAAQAAAAMIAAOhBAAAoQgAAhsIAAKhBAAAwQQAAqMEAANBBAADAQQAAUMIAAGjCAADwwQAACEIAAAAAAAAYQgAA-EEAAAjCAADAwAAAIEIAAHTCAABsQgAAoMAAAMBAAADowQAACEIAACBBAACOwgAAlMIAAAAAAAA0QgAAFMIAAEDAAAB4QgAAKMIAAOBAAAAMwgAAcMIAAChCAAA0QgAAOMIAAODAAAAYQgAAoMEAAIRCAAD4QQAAHEIAAIhBAABAQAAAnEIAAABBAABQQQAAQMAAADDBIAA4E0AJSHVQASqPAhAAGoACAACKvgAAQDwAAHQ-AADKPgAAZL4AAHw-AAAkvgAA8r4AAKa-AACmvgAAgr4AAMq-AACYPQAA9j4AAIg9AABUvgAADD4AAMi9AADgPAAANT8AAH8_AABMPgAA9j4AAOA8AACOvgAAPL4AAEQ-AACAOwAAqD0AAFA9AACmPgAA-L0AAMi9AADCPgAAfD4AAKq-AAC6PgAALL4AAAm_AADovQAA2L0AAOi9AACSPgAA-L0AAMi9AACqPgAAXD4AABO_AAAsPgAArr4AAKa-AADIvQAA2L0AAKY-AABkPgAAED0AAH8_AABQPQAAoLwAADU_AACivgAAuj4AAIg9AACGviAAOBNACUh8UAEqjwIQARqAAgAA7r4AABA9AACCvgAAL78AAFw-AACuvgAAtj4AANq-AAD4PQAAED0AABA9AAA8vgAAcD0AAM6-AAA8vgAAuL0AAJK-AAAVPwAAyL0AAAQ-AAC6PgAAhr4AAFw-AACYPQAAiD0AADS-AACYvQAABD4AAIY-AACKvgAAJD4AAOg9AADOvgAAyD0AAEC8AACevgAACT8AAIC7AADSvgAAQDwAAI4-AACgvAAApj4AANi9AABUPgAAgj4AAH-_AACAuwAAHL4AAIg9AABwvQAAED0AAMo-AADgPAAAfL4AADA9AAC4vQAAXD4AADC9AACYvQAAHL4AABS-AABkvgAAoDwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=K6tado8Xcug","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13433627166346955836"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2958952221"},"5982338972076148514":{"videoId":"5982338972076148514","docid":"34-8-2-ZE709361A3275368F","description":"An introduction to the rejection region approach to reaching a conclusion in a Z test. This video discusses the rejection region in the context of a Z test for one mean, but the same logic holds...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4012730/d21813e111e6682e79cd6a835e4af430/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/z3ramwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D60x86lYtWI4","linkTemplate":"/video/preview/5982338972076148514?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Z Tests for One Mean: The Rejection Region Approach","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=60x86lYtWI4\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhUKEzU5ODIzMzg5NzIwNzYxNDg1MTRaEzU5ODIzMzg5NzIwNzYxNDg1MTRqiBcSATAYACJFGjEACipoaGV2YWNobnNtZnN0empjaGhVQ2lIaTZ4WEx6aTlGTXI5QjB6Z29IcUESAgASKhDCDw8aDz8T7gSCBCQBgAQrKosBEAEaeIH28PwCA_wA8QERBPkE_wECDQD_9___AOn1Afz5_wEA9v3pAAAAAAAI_vEJAgAAAOXw9fr7AgAA-QX4BwQAAAAH-Qf49AAAAAoR-g_-AQAA-Pb2_QP_AAAAAPgM_wAAAAQIAAIH-gL__Qr_AwAAAAD_9v4H_PX-ACAALVxFyjs4E0AJSE5QAiqEAhAAGvABf_koAd8RwwLYCgkA1v_1AYj6EP_8NdEAo-f-_6MT5v8R2-r_3Aj7AB349QCrBSgBJg7j__XoJwEuBBQATPIH_-jyDAA55xQAIhQwAiIA5P7KHfH-FeQP__3F3QAIDe3-Bur6AtoE7P8L6rYJCtNBA_P2FQIs4RAB7-cNAekHF_385d39BRj9Bvny-vu9IhoDE_4RCAZNGwDrE9v9APkQ_P787_f49dYCGxLZ-RIU8PbP7ff36OLw-RYIFAbO_e4E-BQH-fHy_vzj4Qr3HN3-Af0j8AriCRDyBPb9A-rJAPDnAvYB3vj8-er7E_r0A_YAIAAt51gPOzgTQAlIYVACKs8HEAAawAfxLeS-M8U3PfVHHLxTYBy9JELjvG-RBb1qTXO9qQjBPLZyBb0-0Oo9mc7zPJ2HUbtZwFS-BIyMOSrP1zwKL2E-F3GwvEHTxjmeYoW-kbp9PSxzhLwVHE6-rE3IPDWXHzsrP189fl9xu5_NKrxvwAI9ONFTvQoJorzkw8c8w_IguoOa67wriMG8wxccvUlb5rzEHbU7JCVdvTU_o7wvUf09sQVgup-rrbwv67Q8CQApvdtdFr2aOlS9TFOlu7gA-rpTeQs-u0c2PMocJrzu0DC9WHqIvIsqz7v6fT-9GpQfPcYFZDomQKg9kKgrPW_RrrzYwgc9RMeZvfI7srw5Qra9pGaUPU-wvzzkZvg9ZkzhPRgj1Dt8mtO9saImPX1esbyc2VM80LHovMdVkjkFW5s8TrZhPUlY5TwzLTY9ICpNPaUrHjvDo2i9_k4JPWuU_zwo7p09OtUQPK3yyjsqcX09p749vNV-RrwqWYm9JXQ4u6a1zLp7fdI8Vyx5PV0uBzvZLga8zKH7PNoz8DoFI6U91gI7vknlmjpzWsG8Vb1BvfoOersLEnY93aF2O1uJbbtbPpc9-KTDvajUOrtBPFy9whrCvFNPDzyyEci8vUpIve32k7oKeb69mAAXPYMuBjzjtUG9CtYYvahW37ugzPU8cMrBPG-4j7t7LS29R2OzvfC-iDmB0gs9A2mFPZMbEbr7m2s99gtWPQ4rJ7pru4Q9-7N6vDe5Z7t8SFM8FcwTPVMYKrp4JjQ8PKpQPAOvN7s8vfI9SshRvVfBjjkH9WM7ghaWOt6aDTupKJi9_fEDPctFfTjuc-O70qGIvcMjPDmtL7c6_RLxvbwjiTlniu88Wh41vee21bieP5I9oQPcPDtusblff729Hxg7vQjVN7nMNVa91ovjO0ZKALlA4908tZ6bvRavuLYsTWU9N0y5PWPGVLgwJkI96TIrvSdMALl4fWY8O1TzPVMcKDjce0C7Pizpuwh6FLj9WJc93Lf6PR1WxDUqU-y98KEpPb3AWjlaTyg9M9RyPAFgTLfUuki9aqWQvQ61NriQmTC8reYPPccmFjjCS7W9jU0CPA26TzYj0bC8clPDvOMQO7iwBE09LHoMvVbi-DfA0J49dgURPTKzEriCVUU-dMg3PcnchLmoJqe9VD3EvRy4g7jOcjS8XQ_Lvahwm7eBJmK9TagbPXYHdTj2dHo94A_fvT-Zm7dVGKY9bQvFPYPH5zgD_JS9f6iPPYXkXrnoVbO9FiTsPM24ITjOGAY9euvyPIe4CTggADgTQAlIbVABKnMQABpgMAgAIws54vHfHu7v_-Uc3uELDvfW9QD9-AD4EvELGA_9rgvuAC3kL9W4AAAAEwDuJusA61_Y9cc6_x0a-NPjFxF_EBsd6uMd89brKC0M9RJG9BclAPf1rCRW1NYoCyNBIAAtD804OzgTQAlIb1ACKq8GEAwaoAYAAODAAADgwAAAIEIAAHjCAAAAQAAAKEIAAP5CAAAgQQAA-MEAADDCAAAkQgAAYEEAAMDBAAAAwAAA0MEAAMBBAABsQgAAsEEAALBBAADgQAAAVEIAAMDBAACYwQAAAEAAAATCAADAQAAAQMAAACBBAACAPwAAcEEAADDCAAAwQQAAYMIAAEhCAACKwgAAXMIAAGxCAAA8QgAAAMIAAABCAADoQQAAgL8AAI5CAAAwQQAAGEIAAJjCAADAQAAACEIAAJBBAAAUwgAAcMEAABTCAAAkwgAAAMEAAMDAAAB8QgAAssIAAFDCAAAAwQAAMEIAABxCAACawgAA-MEAAFDCAACAwQAAiMIAABDBAAD4wQAAiEEAAIDCAAAwQgAAAEAAALzCAADaQgAAJMIAAJjBAADgwQAAQEAAABBCAABMQgAAnsIAAJBCAAB4wgAAAEAAAMBBAABAwQAAgMAAAODAAACAQQAAkEEAACDCAAB8QgAAsMEAACxCAABQQgAAJMIAAOBAAACkwgAA-EEAALhBAACIwQAAMMEAAJhBAABAQQAAfMIAAPhBAAAcQgAACEIAACxCAACgQAAAjkIAADBBAABwQQAAqEEAABDBAAAYQgAAYEIAABDBAADIwQAAgL8AAADAAACAwQAAsEEAAAAAAABAwQAAgEEAADDBAAAwQQAALMIAADhCAAAwQQAAcMIAAGBBAABoQgAA4EEAAADBAACAQAAAuMEAAEjCAACcwgAA-MEAAMhBAAAgQQAAgD8AAFDBAADgwAAA2EEAAPDBAABAQQAA4EAAAABAAAAAAAAAyEEAAEDBAAAQQgAA-EEAAFzCAAAIwgAAiMIAAABAAABwwgAAIEIAAIDAAABAwgAAMMIAAPBBAACgQQAAgEIAAAxCAAAAQgAAgMEAAMhBAACAPwAAgL8AAK7CAADgQQAAAEAAAEDAAADwwQAAWEIAALbCAADgwQAADMIAAGDBAADAQQAAAMIAAADCAACgwAAAAEAAALhBAADwQQAAmEEAAKBAAAAwQQAAAEEAAMJCAAAoQgAA-EEAAK7CAABMwiAAOBNACUh1UAEqjwIQABqAAgAAQLwAAFA9AAAkPgAAND4AADy-AACIvQAA4DwAAK6-AACKvgAAJL4AAIi9AAAcvgAAcD0AAMg9AAAwvQAAQDwAAMi9AACYPQAAqD0AAJI-AAB_PwAAoLwAAJ4-AAD4vQAAQLwAAOg9AACgPAAAfD4AABy-AAA0vgAAXD4AAFA9AABAvAAAyL0AAHA9AACAuwAAXD4AAPq-AAAbvwAAir4AACS-AAAsvgAA6D0AACS-AACoPQAAQLwAAAQ-AABQvQAAJD4AAPi9AAD4vQAAuD0AADS-AAA8PgAAqL0AAIg9AAARPwAAiD0AANI-AAB8PgAAQDwAACy-AAAEPgAAqL0gADgTQAlIfFABKo8CEAEagAIAAAO_AABMvgAAQLwAAEW_AADSPgAAQDwAAOA8AACCvgAAoLwAACw-AACiPgAABD4AAOg9AACSvgAAmD0AAAw-AAAkPgAAdz8AAII-AACoPQAAqD0AABQ-AAAHPwAA4DwAALi9AAD6PgAAML0AAJI-AADgvAAADL4AAAQ-AADYPQAAdL4AAFC9AABcPgAAML0AAEQ-AACgvAAAlr4AANK-AACaPgAAoLwAANi9AADgvAAABD4AAPg9AAB_vwAA2r4AADC9AACoPQAAgDsAAIg9AACAuwAAbD4AABC9AACYPQAAEL0AAKC8AABEPgAAhr4AACQ-AAA0vgAANL4AAOi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=60x86lYtWI4","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5982338972076148514"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3905334776"},"1955698311069342270":{"videoId":"1955698311069342270","docid":"34-3-0-Z99702E944298A5A7","description":"I have a slightly slower and more refined version of this video available at • Standardizing Normally Distributed Random ... . I discuss standardizing normally distributed random variables...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3581144/82540aab49069cf68dabe7e53d3742ad/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/52eTtAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DBN-2XOMnoCs","linkTemplate":"/video/preview/1955698311069342270?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Standardizing Normally Distributed Random Variables (fast version)","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=BN-2XOMnoCs\",\"src\":\"serp\",\"rvb\":\"Eq0DChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoTMzgxMzQ4MzgyNjA2NDI4NDIyMQoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChQxMzQzMzYyNzE2NjM0Njk1NTgzNgoTNTk4MjMzODk3MjA3NjE0ODUxNAoTMTk1NTY5ODMxMTA2OTM0MjI3MAoUMTU4ODE5MDQ4OTAxNjA2MDYwMDQKFDEzNzQwODg5MTExNjIxNzAyMzMzGhUKEzE5NTU2OTgzMTEwNjkzNDIyNzBaEzE5NTU2OTgzMTEwNjkzNDIyNzBqkxcSATAYACJFGjEACipoaGV2YWNobnNtZnN0empjaGhVQ2lIaTZ4WEx6aTlGTXI5QjB6Z29IcUESAgASKhDCDw8aDz8TjQOCBCQBgAQrKosBEAEaeIEK9A71CPYA8wIEBgkF_QHzF_4B9_38AOsL7gAFAAAA8fwMCfsAAAD1EwjxAAAAAOwA9v7uAAEADwP3EgMAAAAY9xH49gAAABX5CPP_AQAA_vv1_vgCAAD1DA4N_wAAAPkYCfz-_wAA6f4GDgAAAAAC5vQDAQAAACAALf0duzs4E0AJSE5QAiqEAhAAGvABf_TzAsEa5P_wBdsA6gsGAYofCv8VQfoA0g4D_7EQ6v8SDecB2unmAQXzGQDUHhEAOPfQ_wLrFAAnAQL_NgEUAPALIQAp6AIAIQwLAPHl3__dCfkAFvgOAP7O4gAXC_r_EwAm_egL-QPvA8oCFeknAvX4EQEa8BAC7PYV_-AbEwDu4d7--QD0BPQEDv7uEzMBDgED_PIZDPnX9vYC-Qrl_RP3BgIZGOX-DuLuCxMD__0C8AD3Gffp-QgXDwTiAf0FD_kZCP7_-_oBBwT1FeYa-_8KA_3d2QMMLBv09-TgCPj59Pfy_Q0ECfUQBgLpFuP0IAAteAApOzgTQAlIYVACKs8HEAAawAdPPsW-ftjcPDHGsDtOY_u9N-kMvXfp8LwyANS9YSYgPUKl2zxRu689ns46vAiiOLyz8HW-x9CWvEVkQDktC1Y-sIpcvUEtJr16Fy--CDwwPSmf1LxPeJG-ZxVMPanmi7o7RV09mborvF3fhzwdZp4885cRvbNqhjzKLn29SeeuO-CXH72YrWu9F-VDvbxJAr3bmVM9kguZvbzr7Ltsz8w9QjofvHeBVDsgUoC6ZtaUO-yE17wqOIw93Rk3PJMiDb0d6ME9hvx-uepJjzwoQm-9QtGnvaF_p7vfGJK92b_hPAGZxjsPe4Y97LmRPTmhK727u6k9kiSIvXIoWbr5oAe-9BqbPS-BgDvshu09jPeDPXJbkTsmDHS9XUa7PUwsujwjbHS7EN-yOlA6kbzPfKM9uDJSPafQVDw3TIk9jf02Pcsqz7qQJBC8EN-jPaZiAz3PpK09YGQ4PObilLxd_yk9DLXBPD90nLzDCpy9STXHPCQpirut5zo9vxASPdi2TbxGn6q8N8xpO0GwjzzFNUM9-FENvglvLLvEBUC9bqPBvOS_vLvRx987M92rPJdDAbxZh8M9Cs9VvfSCUzs30kO9VcJyuwK6TLuGYI85OzkDvd5LKzwKeb69mAAXPYMuBjy_a6e7OsO5PNY1f7zEknY732-kPVxAwzopxKs7J-uhvWwGejtNuu08RBzeOY31Kjs1bLo9LmGjPHtSyTgJjcA9p9uovd-s2rkqWSm8m1RUvW8d0jsfTVC9BlkAvTiLEzrudJw9rOLNvSr_vTmBCkI9D9UQPGHNM7gqRWG9alyOPYdkK7h5q1M8k3FsvaqGAzlcVAu9nBXxvdyedTlAuCe9432mPNyBIjpK8bw9BEkpPZHu57lff729Hxg7vQjVN7k7TEE7cwIHPGnLIrmFzUU9YZuevHLf0jdOFu286AgqPEVbYjfctL48XEKZvJc8y7h4fWY8O1TzPVMcKDhrmMY88zz4vKJ8TrjEVjU9eWHGPbbmLriv4VO92gHXPctNPzdgiSw9MFcQPRIMKjeaBxA93jjJvQg0-zYjNvE7O_82PddclrjK4QO-ENcePJf9TjdISEm82QxLvOiJJbjC89q7Yk3lvBwFxLcW89g8Sr-zPGWFlbeCVUU-dMg3PcnchLlmgpG9epULvVTUhLd5MxS9aiyWvUjoMLeUtKy8bK00PQQY87W9rwU9pUkJvq2ehbjK9HA9IuErPvHLijh8Yo29IQPZPYE1MLkrpp29WPLCvPCopbfohqY8GpdgPFZAfDggADgTQAlIbVABKnMQABpgJvsAF-Ul890R-fDP5s4BDfkEBDjW8__4uwDNCrofBOTGxAj0AFvVFtaqAAAAL_b4_Q0A9XIC9OYw0eoFn_EBCD9_HRkQoPDqBt7gHS3eHyH8AV82APDuxRZdw-wJ9PMZIAAtjXMiOzgTQAlIb1ACKq8GEAwaoAYAACBCAADAwQAAAEIAAK7CAABwQQAAqEEAAOhCAADQQQAAXMIAADTCAADoQQAAHMIAAPDBAAAQQQAAIMIAAIBAAAC4QgAAyMEAAKDAAADgwAAAFEIAAADCAABYwgAAFEIAAIzCAACgQAAAgsIAAOjBAABwwQAAAEIAAETCAABQQQAAuMIAAAhCAACIwgAAYMEAAAAAAACkQgAAwMAAAPhBAAC4QQAAuMEAAGxCAACAPwAAsEEAAIjCAAAAQgAA0EEAAGRCAACAQQAAoMAAAOjBAAAgQQAAuEEAANjBAABgwQAAtMIAABRCAACQwQAAAEEAACBBAABkwgAAJMIAAATCAADgQAAArMIAAHDBAAAwwgAAUMEAAODBAABsQgAA4EEAAHDCAACaQgAAEEEAACjCAABIwgAAAAAAABBCAACoQQAAAMAAANRCAACwwQAAgMAAABDBAABwQgAA4EAAAKjBAABIQgAACEIAAMBAAADIQQAAdMIAAJDBAACwwQAAfMIAACTCAAAgwQAAwEEAAAxCAABkwgAAMEEAAFBBAACAQAAAOMIAAABBAADIwQAAQEIAADBBAADAQQAAbEIAAHBCAAAYwgAAHMIAALDBAACSQgAA8EEAAKjBAACAwAAA6MEAALjBAAAIwgAAsMEAACDBAACAwAAAwEAAAJjCAADYwQAACMIAADhCAABAQAAAUMIAAADAAACQQgAA4MAAACDBAADgwAAAUMEAAKDCAACUwgAAKMIAADBCAAAsQgAAIMEAAEBAAAAQQQAA0MEAACzCAABgwQAAuEEAALDBAADAQQAAjEIAACzCAABQQQAAoMAAAKTCAADAwQAAbMIAAKBAAAAMwgAAwEAAAChCAADAQQAAkMEAAIJCAACwQQAAIEIAACBCAADAQAAAAEAAACBBAADIwQAAYMEAACTCAAAAQgAAcMEAABTCAADgwQAA6kIAACjCAACWwgAAAMAAAIjBAAD4QQAA0MEAACDBAACAvwAAmEEAAPDBAADAQQAAAMIAAMhBAACAwAAA-EEAAERCAACAPwAAEEEAACTCAAAEwiAAOBNACUh1UAEqjwIQABqAAgAA4DwAABS-AAD4PQAAij4AAIC7AAAwPQAAoLwAAPa-AAC-vgAAgj4AAJ4-AADoPQAALD4AAOg9AAAEvgAA4DwAAI4-AACIPQAA2D0AAPI-AAB_PwAAgLsAAIA7AACAuwAAED0AAAy-AAAsvgAAML0AAHA9AAAMPgAAFD4AAII-AAA0vgAAND4AAAU_AAAEPgAAPD4AAAy-AACWvgAAir4AAMi9AABQPQAAuD0AALi9AABQPQAAED0AAIi9AABkvgAA4LwAAJa-AAC4PQAALL4AAGw-AAB0PgAAqr4AAFC9AADaPgAAgLsAAEC8AACoPQAAoDwAALg9AACIPQAAEL0gADgTQAlIfFABKo8CEAEagAIAAIA7AABAPAAAED0AABe_AAAMPgAAmL0AABC9AABMPgAAdL4AAGw-AADgPAAAmL0AAKC8AACOvgAA6D0AAHC9AABQPQAANT8AAFC9AACuPgAAMD0AAIY-AABwvQAALL4AAEA8AACovQAAQLwAAEC8AACoPQAAHD4AAKA8AABAPAAAUD0AAIa-AAAQPQAAED0AAKC8AAAMPgAAZL4AAEQ-AABwPQAAHL4AANi9AACgPAAAFL4AAHA9AAB_vwAAcL0AADS-AADgvAAAyL0AAKA8AAAsPgAAmL0AAFQ-AACgvAAAgLsAAPi9AABQvQAAML0AABy-AADoPQAAPD4AABC9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=BN-2XOMnoCs","parent-reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1955698311069342270"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"189265051"}},"dups":{"16030207459843026748":{"videoId":"16030207459843026748","title":"An Introduction to Continuous Probability Distributions","cleanTitle":"An Introduction to Continuous Probability Distributions","host":{"title":"YouTube","href":"http://www.youtube.com/v/OWSOhpS00_s","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OWSOhpS00_s?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":351,"text":"5:51","a11yText":"Süre 5 dakika 51 saniye","shortText":"5 dk."},"views":{"text":"662,5bin","a11yText":"662,5 bin izleme"},"date":"23 ara 2012","modifyTime":1356220800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OWSOhpS00_s?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OWSOhpS00_s","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":351},"parentClipId":"16030207459843026748","href":"/preview/16030207459843026748?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/16030207459843026748?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4121817742828943158":{"videoId":"4121817742828943158","title":"Finding Probabilities and Percentiles for a Continuous Probability Distribution","cleanTitle":"Finding Probabilities and Percentiles for a Continuous Probability Distribution","host":{"title":"YouTube","href":"http://www.youtube.com/live/EPm7FdajBvc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EPm7FdajBvc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":718,"text":"11:58","a11yText":"Süre 11 dakika 58 saniye","shortText":"11 dk."},"views":{"text":"660,9bin","a11yText":"660,9 bin izleme"},"date":"27 ara 2012","modifyTime":1356566400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EPm7FdajBvc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EPm7FdajBvc","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":718},"parentClipId":"4121817742828943158","href":"/preview/4121817742828943158?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/4121817742828943158?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13456936732257505937":{"videoId":"13456936732257505937","title":"Linear Transformations (in a Descriptive Statistics Setting)","cleanTitle":"Linear Transformations (in a Descriptive Statistics Setting)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=32dGPyIMgJ8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/32dGPyIMgJ8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"https://www.youtube.com/channel/UCiHi6xXLzi9FMr9B0zgoHqA","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":682,"text":"11:22","a11yText":"Süre 11 dakika 22 saniye","shortText":"11 dk."},"views":{"text":"17bin","a11yText":"17 bin izleme"},"date":"31 oca 2021","modifyTime":1612051200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/32dGPyIMgJ8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=32dGPyIMgJ8","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":682},"parentClipId":"13456936732257505937","href":"/preview/13456936732257505937?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/13456936732257505937?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13766171144434148995":{"videoId":"13766171144434148995","title":"Confidence Intervals for the Ratio of Population Variances","cleanTitle":"Confidence Intervals for the Ratio of Population Variances","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=64hFiLSq3Fg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/64hFiLSq3Fg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":518,"text":"8:38","a11yText":"Süre 8 dakika 38 saniye","shortText":"8 dk."},"views":{"text":"35,1bin","a11yText":"35,1 bin izleme"},"date":"4 kas 2012","modifyTime":1351987200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/64hFiLSq3Fg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=64hFiLSq3Fg","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":518},"parentClipId":"13766171144434148995","href":"/preview/13766171144434148995?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/13766171144434148995?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14911750688497889707":{"videoId":"14911750688497889707","title":"Confidence Intervals for One Population Variance","cleanTitle":"Confidence Intervals for One Population Variance","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qwqB5a7_W44","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qwqB5a7_W44?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":596,"text":"9:56","a11yText":"Süre 9 dakika 56 saniye","shortText":"9 dk."},"views":{"text":"152,4bin","a11yText":"152,4 bin izleme"},"date":"21 eki 2012","modifyTime":1350777600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qwqB5a7_W44?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qwqB5a7_W44","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":596},"parentClipId":"14911750688497889707","href":"/preview/14911750688497889707?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/14911750688497889707?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3813483826064284221":{"videoId":"3813483826064284221","title":"The Law of Total Probability","cleanTitle":"The Law of Total Probability","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7t9jyikrG7w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7t9jyikrG7w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"https://www.youtube.com/channel/UCiHi6xXLzi9FMr9B0zgoHqA","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":621,"text":"10:21","a11yText":"Süre 10 dakika 21 saniye","shortText":"10 dk."},"views":{"text":"192bin","a11yText":"192 bin izleme"},"date":"29 mar 2019","modifyTime":1553817600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7t9jyikrG7w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7t9jyikrG7w","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":621},"parentClipId":"3813483826064284221","href":"/preview/3813483826064284221?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/3813483826064284221?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16470374100342589984":{"videoId":"16470374100342589984","title":"The Relationship Between the Binomial and Poisson Distributions","cleanTitle":"The Relationship Between the Binomial and Poisson Distributions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eexQyHj6hEA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eexQyHj6hEA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":324,"text":"5:24","a11yText":"Süre 5 dakika 24 saniye","shortText":"5 dk."},"views":{"text":"190,5bin","a11yText":"190,5 bin izleme"},"date":"16 kas 2012","modifyTime":1353024000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eexQyHj6hEA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eexQyHj6hEA","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":324},"parentClipId":"16470374100342589984","href":"/preview/16470374100342589984?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/16470374100342589984?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16791687109102819451":{"videoId":"16791687109102819451","title":"Deriving the Mean and Variance of a Continuous Probability Distribution","cleanTitle":"Deriving the Mean and Variance of a Continuous Probability Distribution","host":{"title":"YouTube","href":"http://www.youtube.com/live/Ro7dayHU5DQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ro7dayHU5DQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":441,"text":"7:21","a11yText":"Süre 7 dakika 21 saniye","shortText":"7 dk."},"views":{"text":"334,9bin","a11yText":"334,9 bin izleme"},"date":"27 ara 2012","modifyTime":1356566400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ro7dayHU5DQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ro7dayHU5DQ","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":441},"parentClipId":"16791687109102819451","href":"/preview/16791687109102819451?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/16791687109102819451?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3805548858636482982":{"videoId":"3805548858636482982","title":"Sampling Distributions: Deriving the Mean and Variance of the Sample Mean","cleanTitle":"Sampling Distributions: Deriving the Mean and Variance of the Sample Mean","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JLmD0sJId1M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JLmD0sJId1M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/user/jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":285,"text":"4:45","a11yText":"Süre 4 dakika 45 saniye","shortText":"4 dk."},"views":{"text":"94,9bin","a11yText":"94,9 bin izleme"},"date":"26 eyl 2012","modifyTime":1348617600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JLmD0sJId1M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JLmD0sJId1M","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":285},"parentClipId":"3805548858636482982","href":"/preview/3805548858636482982?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/3805548858636482982?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1154685848863284334":{"videoId":"1154685848863284334","title":"The Expected Value and Variance of Discrete Random Variables","cleanTitle":"The Expected Value and Variance of Discrete Random Variables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Vyk8HQOckIE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Vyk8HQOckIE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":679,"text":"11:19","a11yText":"Süre 11 dakika 19 saniye","shortText":"11 dk."},"views":{"text":"399,8bin","a11yText":"399,8 bin izleme"},"date":"14 tem 2014","modifyTime":1405296000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Vyk8HQOckIE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Vyk8HQOckIE","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":679},"parentClipId":"1154685848863284334","href":"/preview/1154685848863284334?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/1154685848863284334?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9244528070355632111":{"videoId":"9244528070355632111","title":"Discrete Probability Distributions: Example Problems (Binomial, Poisson, Hypergeometric, Geometric)","cleanTitle":"Discrete Probability Distributions: Example Problems (Binomial, Poisson, Hypergeometric, Geometric)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Jm_Ch-iESBg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Jm_Ch-iESBg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":890,"text":"14:50","a11yText":"Süre 14 dakika 50 saniye","shortText":"14 dk."},"views":{"text":"351,4bin","a11yText":"351,4 bin izleme"},"date":"9 kas 2013","modifyTime":1383955200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Jm_Ch-iESBg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Jm_Ch-iESBg","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":890},"parentClipId":"9244528070355632111","href":"/preview/9244528070355632111?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/9244528070355632111?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12072438615848583708":{"videoId":"12072438615848583708","title":"The Sampling Distribution of the Sample Mean (fast version)","cleanTitle":"The Sampling Distribution of the Sample Mean (fast version)","host":{"title":"YouTube","href":"http://www.youtube.com/v/0zqNGDVNKgA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0zqNGDVNKgA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/user/jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":444,"text":"7:24","a11yText":"Süre 7 dakika 24 saniye","shortText":"7 dk."},"views":{"text":"457,4bin","a11yText":"457,4 bin izleme"},"date":"26 eyl 2012","modifyTime":1348617600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0zqNGDVNKgA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0zqNGDVNKgA","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":444},"parentClipId":"12072438615848583708","href":"/preview/12072438615848583708?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/12072438615848583708?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"959313134886548354":{"videoId":"959313134886548354","title":"Proof that if two events are independent, so are their complements.","cleanTitle":"Proof that if two events are independent, so are their complements.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bnDpZNlVZ3k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bnDpZNlVZ3k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"https://www.youtube.com/channel/UCiHi6xXLzi9FMr9B0zgoHqA","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":284,"text":"4:44","a11yText":"Süre 4 dakika 44 saniye","shortText":"4 dk."},"views":{"text":"50,7bin","a11yText":"50,7 bin izleme"},"date":"20 mar 2019","modifyTime":1553040000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bnDpZNlVZ3k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bnDpZNlVZ3k","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":284},"parentClipId":"959313134886548354","href":"/preview/959313134886548354?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/959313134886548354?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5031331938342937031":{"videoId":"5031331938342937031","title":"Calculating Power and P(Type II error) (A One-Tailed Z Test Example)","cleanTitle":"Calculating Power and P(Type II error) (A One-Tailed Z Test Example)","host":{"title":"YouTube","href":"http://www.youtube.com/v/FUVL7ppjYuA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FUVL7ppjYuA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":519,"text":"8:39","a11yText":"Süre 8 dakika 39 saniye","shortText":"8 dk."},"views":{"text":"73bin","a11yText":"73 bin izleme"},"date":"8 mar 2012","modifyTime":1331164800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FUVL7ppjYuA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FUVL7ppjYuA","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":519},"parentClipId":"5031331938342937031","href":"/preview/5031331938342937031?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/5031331938342937031?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7370521484173341159":{"videoId":"7370521484173341159","title":"t Tests for One Mean: Investigating the Normality Assumption","cleanTitle":"t Tests for One Mean: Investigating the Normality Assumption","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=U1O4ZFKKD1k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/U1O4ZFKKD1k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":473,"text":"7:53","a11yText":"Süre 7 dakika 53 saniye","shortText":"7 dk."},"views":{"text":"28,4bin","a11yText":"28,4 bin izleme"},"date":"5 mayıs 2013","modifyTime":1367712000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/U1O4ZFKKD1k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=U1O4ZFKKD1k","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":473},"parentClipId":"7370521484173341159","href":"/preview/7370521484173341159?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/7370521484173341159?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13433627166346955836":{"videoId":"13433627166346955836","title":"What Factors Affect the Power of a Z Test?","cleanTitle":"What Factors Affect the Power of a Z Test?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=K6tado8Xcug","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/K6tado8Xcug?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":744,"text":"12:24","a11yText":"Süre 12 dakika 24 saniye","shortText":"12 dk."},"views":{"text":"37,8bin","a11yText":"37,8 bin izleme"},"date":"19 şub 2013","modifyTime":1361232000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/K6tado8Xcug?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=K6tado8Xcug","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":744},"parentClipId":"13433627166346955836","href":"/preview/13433627166346955836?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/13433627166346955836?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5982338972076148514":{"videoId":"5982338972076148514","title":"Z Tests for One Mean: The Rejection Region Approach","cleanTitle":"Z Tests for One Mean: The Rejection Region Approach","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=60x86lYtWI4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/60x86lYtWI4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/user/jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":622,"text":"10:22","a11yText":"Süre 10 dakika 22 saniye","shortText":"10 dk."},"views":{"text":"175,3bin","a11yText":"175,3 bin izleme"},"date":"26 oca 2013","modifyTime":1359158400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/60x86lYtWI4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=60x86lYtWI4","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":622},"parentClipId":"5982338972076148514","href":"/preview/5982338972076148514?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/5982338972076148514?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1955698311069342270":{"videoId":"1955698311069342270","title":"Standardizing Normally Distributed Random Variables (fast version)","cleanTitle":"Standardizing Normally Distributed Random Variables (fast version)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=BN-2XOMnoCs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/BN-2XOMnoCs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://gdata.youtube.com/feeds/api/users/jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":397,"text":"6:37","a11yText":"Süre 6 dakika 37 saniye","shortText":"6 dk."},"views":{"text":"228,1bin","a11yText":"228,1 bin izleme"},"date":"22 haz 2012","modifyTime":1340323200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/BN-2XOMnoCs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=BN-2XOMnoCs","reqid":"1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL","duration":397},"parentClipId":"1955698311069342270","href":"/preview/1955698311069342270?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","rawHref":"/video/preview/1955698311069342270?parent-reqid=1769311061220720-4031901320547004496-balancer-l7leveler-kubr-yp-vla-176-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"0319013205470044967176","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"jbstatistics","queryUriEscaped":"jbstatistics","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}