{"pages":{"search":{"query":"mathematicaATD","originalQuery":"mathematicaATD","serpid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","parentReqid":"","serpItems":[{"id":"1702872130846802702-0-0","type":"videoSnippet","props":{"videoId":"1702872130846802702"},"curPage":0},{"id":"18264675776589610782-0-1","type":"videoSnippet","props":{"videoId":"18264675776589610782"},"curPage":0},{"id":"2558130551869648317-0-2","type":"videoSnippet","props":{"videoId":"2558130551869648317"},"curPage":0},{"id":"6933445347525557954-0-3","type":"videoSnippet","props":{"videoId":"6933445347525557954"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dG1hdGhlbWF0aWNhQVRECg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","ui":"desktop","yuid":"5480170451769685901"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"17905638044613974876-0-5","type":"videoSnippet","props":{"videoId":"17905638044613974876"},"curPage":0},{"id":"9198057119920364184-0-6","type":"videoSnippet","props":{"videoId":"9198057119920364184"},"curPage":0},{"id":"8967532193542987364-0-7","type":"videoSnippet","props":{"videoId":"8967532193542987364"},"curPage":0},{"id":"7996312336562252424-0-8","type":"videoSnippet","props":{"videoId":"7996312336562252424"},"curPage":0},{"id":"3717948618757045711-0-9","type":"videoSnippet","props":{"videoId":"3717948618757045711"},"curPage":0},{"id":"1512634282590884988-0-10","type":"videoSnippet","props":{"videoId":"1512634282590884988"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dG1hdGhlbWF0aWNhQVRECg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","ui":"desktop","yuid":"5480170451769685901"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"2980479139161156403-0-12","type":"videoSnippet","props":{"videoId":"2980479139161156403"},"curPage":0},{"id":"12883977154621466833-0-13","type":"videoSnippet","props":{"videoId":"12883977154621466833"},"curPage":0},{"id":"9213111892433365838-0-14","type":"videoSnippet","props":{"videoId":"9213111892433365838"},"curPage":0},{"id":"2879724685599581656-0-15","type":"videoSnippet","props":{"videoId":"2879724685599581656"},"curPage":0},{"id":"6778664141704106106-0-16","type":"videoSnippet","props":{"videoId":"6778664141704106106"},"curPage":0},{"id":"1708796046185505467-0-17","type":"videoSnippet","props":{"videoId":"1708796046185505467"},"curPage":0},{"id":"16381959044693439865-0-18","type":"videoSnippet","props":{"videoId":"16381959044693439865"},"curPage":0},{"id":"3111259351034174219-0-19","type":"videoSnippet","props":{"videoId":"3111259351034174219"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"correction":{"items":[{"kind":"misspell","url":"/video/search?text=mathematical","params":{"text":"mathematical"},"query":"mathematica\u0007(l\u0007)","helpUrl":"https://yandex.com.tr/support/search/info/request-correction.xml","helpTarget":"_blank","helpAriaLabel":"Yazım hatası düzeltme servisi"}],"id":"982031414722"},"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dG1hdGhlbWF0aWNhQVRECg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","ui":"desktop","yuid":"5480170451769685901"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DmathematicaATD"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9060552669814134728743","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1457144,0,85;1450764,0,79;1472350,0,10;1470499,0,97;1457620,0,96;1471439,0,91;1473738,0,62;1424968,0,74;1476203,0,85;1460716,0,77;1460214,0,18;1152684,0,98;1456929,0,76;1472029,0,3;1471630,0,59;123855,0,52;1464523,0,35;1466296,0,41;1470795,0,9;1467161,0,6;1470515,0,84;124063,0,33;89018,0,12;1404017,0,92;45963,0,77;1469396,0,77;1002325,0,70;1297912,0,88;151171,0,76;1281084,0,25;287509,0,4;1447467,0,24;790811,0,22;1466396,0,50;912281,0,74"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DmathematicaATD","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=mathematicaATD","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=mathematicaATD","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"mathematicaATD: Yandex'te 3 bin video bulundu","description":"Результаты поиска по запросу \"mathematicaATD\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"mathematicaATD — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yb1bccc40c10a31c842b93cba050241b2","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457144,1450764,1472350,1470499,1457620,1471439,1473738,1424968,1476203,1460716,1460214,1152684,1456929,1472029,1471630,123855,1464523,1466296,1470795,1467161,1470515,124063,89018,1404017,45963,1469396,1002325,1297912,151171,1281084,287509,1447467,790811,1466396,912281","queryText":"mathematicaATD","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5480170451769685901","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1475824,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769685981","tz":"America/Louisville","to_iso":"2026-01-29T06:26:21-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457144,1450764,1472350,1470499,1457620,1471439,1473738,1424968,1476203,1460716,1460214,1152684,1456929,1472029,1471630,123855,1464523,1466296,1470795,1467161,1470515,124063,89018,1404017,45963,1469396,1002325,1297912,151171,1281084,287509,1447467,790811,1466396,912281","queryText":"mathematicaATD","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5480170451769685901","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9060552669814134728743","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":152,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"5480170451769685901","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1758.0__92da10e6e1e89374a81e86c5e5366c3357f68658","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"1702872130846802702":{"videoId":"1702872130846802702","docid":"12-4-14-Z4488F36D6D47E978","description":"In this video, we explore the fascinating world of mathematical physics. We delve into the relationship between mathematics and physics, and how mathematical models can be used to explain...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2711143/85a03e1cd280f24b48c98212a4dbf2ca/564x318_1"},"target":"_self","position":"0","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvKQZj9kJO5c","linkTemplate":"/video/preview/1702872130846802702?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematical Physics","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vKQZj9kJO5c\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTMTcwMjg3MjEzMDg0NjgwMjcwMloTMTcwMjg3MjEzMDg0NjgwMjcwMmquDRIBMBgAIkQaMQAKKmhoeW1tdXFzcHNibGJqcWRoaFVDdElsbDlya3ZhRG05N00wT25CQUswdxICABIqD8IPDxoPPxN-ggQkAYAEKyqLARABGniB9wT6_voGAPb-AwX-Bf4BBgb4APf__wD2APX1AgL_APn2BAALAAAABAX3AQIAAADz-gEF_QAAAAn9-AUDAAAAEQj4_fcAAAAUBf8A_gEAAAMAAPwCAAAAEQkIAf8AAAD1CgP6AgAAAP0ICAQAAAAAFgf_BgAAAAAgAC1aVOQ7OBNACUhOUAIqcxAAGmD4HgAICQ0C2RYo-_by6Pfz_RXrFfPkAOcMABPsBe0CK97yBxQA_c8I7tIAAAD78vcCIwDTP9bf3yAY8An99PgSCH_0CPYGIPj3zxD-6_kOJRXR6wAA6-7WFRUB0h4AIBkgAC1RyHw7OBNACUhvUAIqrwYQDBqgBgAAAEAAAIDAAAAQQgAABMIAAOBAAADIwQAApEIAAIDBAAA0wgAAgL8AAKhBAADAQAAAuMEAACBCAABwQQAAgsIAAEBCAACAwQAAYEEAAADBAACwwQAAjsIAADDBAADIQQAACMIAAFDBAACuwgAAkEEAAIBBAACKQgAAHMIAAABBAAC4wQAAQEEAAIrCAADIwQAAMMEAAJhBAACAPwAAIEEAAHDBAAAwQQAAqEEAAEBBAAAkQgAAuMEAAMDAAACCwgAAZEIAANBBAACQwQAAwEAAAODAAAB8QgAAEEIAALLCAACYwgAASEIAADxCAABEQgAANEIAAEBBAACUwgAAEMIAAAAAAABwwgAAsMEAAJDCAADAwAAAMMEAADDBAABYQgAAwMAAADBCAACAwAAAusIAAIbCAACYwQAA0EEAAEBBAABMwgAAZEIAAIjBAABowgAAWEIAAERCAAAIwgAAAEAAAAxCAACgQQAAAMEAABhCAAAoQgAAgD8AADxCAABswgAAqEEAADxCAABUQgAAKEIAAATCAAAAAAAAmEEAAGzCAADIwQAAoMAAAODBAABIQgAA4EEAAIpCAACuQgAAYMEAAIA_AAAQwQAAEEEAABRCAACQwQAARMIAACRCAACQwgAAMEIAAADBAABwQQAA5MIAAFhCAADQQQAAqMEAACzCAABEwgAAwMEAALjBAADgwAAAUMIAAHxCAAAIQgAAyMEAAOBAAABQQQAAsMEAALjCAAB4QgAAHEIAAOBBAABAwQAAVEIAAKDAAACgwAAAoMAAACDBAABAQAAA0MEAAABAAACoQQAAUMIAAILCAADwwQAAWMIAAKBAAABUwgAAqEEAAGDCAABgQgAAQEEAADBBAABAQgAAIEIAAEBCAAC4QQAAYEIAAOjBAABAwgAAAEEAAOhBAAAQwQAAwMAAAIpCAAAAQAAAAEEAAABCAACIQgAAAMIAAK7CAADIwQAAAEAAABBCAACAQAAAgMAAADBCAABYwgAAwEEAAITCAAC4wQAASMIAAGBBAACowQAAoEAAALDBAACgQAAAwMEAALbCIAA4E0AJSHVQASqPAhAAGoACAACSvgAAqL0AAIg9AACgvAAAuD0AAAk_AACYPQAAUb8AAJq-AAAcPgAAoj4AAIi9AACYPQAAHD4AAOi9AAAQvQAAqj4AAOC8AACGPgAADT8AAHU_AADavgAAwj4AAKA8AACovQAAZL4AAEQ-AADYvQAA2D0AAEw-AADKPgAA1r4AAPi9AAA0PgAAuD0AABA9AAAEvgAAwr4AAAO_AAA8vgAAXL4AANq-AACSPgAANL4AAFC9AAAsvgAAZD4AAKK-AACYvQAA8r4AAAG_AACKvgAAoj4AAKA8AADgvAAAcD0AAH8_AACAOwAARD4AAKC8AABwvQAAXD4AAIC7AACYPSAAOBNACUh8UAEqjwIQARqAAgAAuL0AAKA8AABcvgAAGb8AAAy-AADgvAAAyj4AAPi9AAAQvQAAcD0AADA9AACGvgAAqD0AAPi9AABQvQAAEL0AACQ-AADaPgAAZL4AAJo-AABcPgAARD4AAOi9AACIvQAAgDsAABC9AACAOwAAMD0AAHA9AADIPQAATD4AAFA9AAAkvgAAuL0AAJi9AABQvQAAPD4AAFw-AAB8vgAAEL0AAL4-AABwPQAATD4AAHA9AABwvQAAJD4AAH-_AAAsPgAAuL0AAFA9AABkPgAA-D0AACw-AACAOwAA6D0AAOg9AAAwvQAAFD4AAOC8AADIvQAAcL0AAKA8AACAuwAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=vKQZj9kJO5c","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":null,"cheight":null,"cratio":null,"dups":["1702872130846802702"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18264675776589610782":{"videoId":"18264675776589610782","docid":"34-8-6-ZDE5DFBE85C1B550D","description":"Part 3 of the Basic Mathematics is another interesting and innovative thoughts of Maths. How to remove the casual mistakes, I have discussed here. The links of the other two topics Part 1 and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2461135/d187e36836203075fe16432b3b4f1056/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UnrteQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9m0Sq0rbrxA","linkTemplate":"/video/preview/18264675776589610782?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Fundamentals of Mathematics | Part 3 | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9m0Sq0rbrxA\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFgoUMTgyNjQ2NzU3NzY1ODk2MTA3ODJaFDE4MjY0Njc1Nzc2NTg5NjEwNzgyaocXEgEwGAAiRBowAAopaGh4b2l1emdwZGtkY25qaGhVQ1NONE9OenRGdlhISlVHV21aLUNpUXcSAgARKhDCDw8aDz8ToAWCBCQBgAQrKosBEAEaeIH2-_v7-wUA-QcFCAAG_QH6A_8B-f39AP__9Pv9BP4A-PYEAAsAAAAFDfUJBQAAAPj6-w___wAABALuBgIAAAAOA_7__QAAABQF_wD-AQAA_PgC_wL_AAAFDAgAAAAAAPcDC_wBAAAABg0KCQAAAAAEAfsEAAAAACAALVmR4js4E0AJSE5QAiqEAhAAGvABf9cQ_8H74P-f9sUA4w8IAdwGNf_8PMsAnPkgAcAazwDOIgcABPMDAPPpEf_SJPoAE9jGANTg6QEx0BD_MPMfANAI5gA30C8DagciAAjg6f7G6hv88fINABzQywMDG-ME_uMa_z_hEv4S_80D_gU0ACT9JQf_3SkD1sEOAdj7-wP917b-Ev4d_A3aEfa01CwC-97iAfsJ6_-jJfT9987v_8whHQIZSeb_EQjvCAziGQzg0_ANAvDV-hkmKf6699v__c0Z88n46PMh0QoFINrq8_ML8hP3x_ERKeoX-Af-Awb_5un_4RMECdcB_gn69vftIAAtTAn-OjgTQAlIYVACKs8HEAAawAcuIKS-IrjbPGfzUDmx38O9PKhfvXC-B70jE_C91y0nPff9QLwUdhE-3w7evCa-gzsU6DO---_cPFnThrwm__M98QW3vaBlJzx6Fy--CDwwPSmf1Lzn_iq-Xcv_PEh0KjwTwa48DUEEvYJy27zBfr498vfBvRetbbwzMf29Na4kvMKQ8Lz5Rrm9U5ecvWWa37wbf4c81zebva6pYrvTTu09dUANvZ1pHb2_40o99gtWPZb5_bxdHka8EAaePGGZLb2QURk9eoQ_PfxmLD0TCYu9CjdUvbK2jryI8BS9Fd8VPUoEDz1jXmw8Ow4NPS1O67wUruc9pBiAvVMefrtdkbO9jEIYPD41h7v31rY9qvDUOWhXBDsdPd69vsAMPrsIC7oSycY8Kk-FvEJDf7y5ido9CesVPa4LhTvEEJQ9xFb1PNaUv7zkO8Y7jPcDPr8syDzDuhE-zpGwvH2nk7xd_yk9DLXBPD90nLyyUhg8AgkPPdm8vzsjibm8kZ7gO08SPztGn6q8N8xpO0GwjzwFI6U91gI7vknlmjrgvNi9d2GAvT59ArznzFE9uKCIPVl9Hrxu_Ok9TOStvStzqbvEe849hTWvvYcVjzvDPps9E481vSUkEjyJFcS9pn_pPesQLLpUruy75Fl4PZYVFrzp7Mk8TBjNPV_omrlaxXE97yUIvUXzvju0YFg9z_npPMQvqzoqATE9Fa3cPDW0PzsJjcA9p9uovd-s2rnUoIE7dBWxvT6zW7jvZay8WG0jvSxPHDvHZxI-rqDpvZAJtLkomcE8cfKRvKHyA7gb6qG9sluVPSzZmTga-FW7Lrxcve8-uTirPZG9GlIVvjBRCjq4Tq08MZVePZxGjji08Ku7M3V5OvKpjDmnR8m8mxPFvQMCszhTUzc9E6eJvGqOJbieUJ492OksPZn8dbgTCUu9WdqOvO-NJblxTzy9f9U2vDSgvzh1U288SrzHPRmCf7i-58Y9AB2mvWpDhjntgyw83mSqPV7pvbg_yXg8ngG_PXtAh7YjYYQ8ume9PSVfd7d4jZc99W9yvE8yajct97g8D4qMPam9irhYn8y9pi40PYN_LDlu1FQ8tESdvDPnADigzms9zSa4u66rvTdTZAi9KxPePaU17zjB4ys-3KVovAeJdLnfx4y9H9mcvIRKDLYGqF-8G54Ovpl_wDfabKG9jeayPSF0CTheqki9OukdvrRj-riKllc9EFj5PY0XQDhgmpg8W5r7PYSt_bhvyPW8vbNsPb83Nji0kWu910myPVIb1TcgADgTQAlIbVABKnMQABpgBvoAJA0b6t0DCvbzuvj23NkgtQ711QDw8gD-6unmJxni3AwVAAzNEt-8AAAAGP4F_RcA31bd5OdCCv_6ytoLCQ9_8w0n5AQA5sgIHwj5JDAJxeYaAAnpsiQiI7AiFEAyIAAtqCU_OzgTQAlIb1ACKq8GEAwaoAYAACDBAACQQQAAFMIAAABBAAAQwgAAfMIAABhCAABgwQAAmMEAAOBBAAC4QQAAqMEAAOjBAAAgwQAAOEIAAEDBAACwQQAAJMIAAODAAACQQQAAMMIAAFTCAADQQQAAQEEAAAhCAABAwAAALMIAAHTCAABQQgAAIEEAAEzCAACgQQAAXMIAABDBAADYwQAAREIAAHBCAAD-QgAAGMIAAEBCAAD4QQAAGMIAAChCAABwwQAAMMEAAMBAAAC4wQAAEMIAAAxCAACAQQAAmMEAAATCAAAEwgAAEEEAAAAAAADgQQAAoMIAAKjBAACgwQAAgEAAABhCAAAAAAAAgMAAAKzCAABwwQAAGMIAAKBAAABAwQAAMMEAACDCAACiQgAAnkIAABTCAAAAQAAAuMEAAJjCAAAYwgAAwMAAALhBAABYQgAAGMIAAMBAAAAYwgAAMEIAAHDBAACAQAAAhEIAAKBBAACQQQAAoMIAABTCAACAQgAAPMIAAEjCAAAEwgAAcMEAAPDBAACWQgAAQEEAABBBAABgwgAAEMEAAIC_AABowgAAHMIAAJhBAAAQwgAAQMAAAGTCAAAAwQAAgD8AAPhBAADAQQAAEMEAAIhBAACQQQAAgEAAADjCAACwQQAAFMIAAGTCAACYwQAAgMAAADDCAACoQQAAsEEAAEBBAAAgQQAAVMIAANjBAAAAwQAAkEEAAIDAAADoQQAAsEEAAAxCAACAvwAAHMIAAADAAADGwgAAuEEAAKjBAAAswgAANEIAAIBAAADAQAAA8MEAAHBCAADwQQAAIMEAACBCAAAgQQAAgEEAAGDBAADQwQAAwEEAAOBBAACqwgAAKMIAADxCAAA4wgAAcEEAAKDCAAAswgAAJMIAAFBCAAAQwQAAkkIAAHBBAACwQQAA0EEAADBBAACAwAAAoMEAABRCAAAkQgAAdMIAAKLCAAAkQgAAgkIAADDBAAAQwQAA4MAAACRCAADgQgAAQMAAALLCAAB8QgAAjMIAAMDBAADkwgAAcMIAAChCAAAIwgAAkEEAAIJCAACEwgAAoEEAACDCAACowSAAOBNACUh1UAEqjwIQABqAAgAA3r4AAIq-AACoPQAAqD0AAJg9AAANPwAAEL0AAFu_AADCvgAAuL0AADQ-AACCvgAAND4AAOA8AACgvAAAJL4AAI4-AACoPQAADD4AANI-AAB_PwAAEL0AALI-AAC4vQAAoLwAAKK-AADgvAAAHL4AAMi9AABQPQAA_j4AAKi9AABAPAAA4DwAAOA8AAA8PgAA2L0AAFy-AAAfvwAAVL4AAIa-AAAQPQAAcD0AAFy-AACOvgAAbL4AAGQ-AAAUvgAALL4AAOa-AADCvgAArr4AAJo-AACOPgAANL4AAIA7AABvPwAAmj4AAFA9AACIPQAAoLwAANg9AABwPQAAmL0gADgTQAlIfFABKo8CEAEagAIAAHy-AAC4PQAAoLwAACe_AACGvgAAuL0AAMY-AABAPAAARD4AADC9AAAwPQAAgr4AANg9AABMvgAAoLwAAOA8AAAUPgAADT8AAOi9AACuPgAABD4AAHA9AADIvQAAHL4AAFC9AAAQvQAAyD0AACQ-AADgvAAAUL0AANg9AAAMPgAA-L0AAFy-AACoPQAAgLsAACw-AACGPgAAgr4AACw-AACOPgAAdL4AAFA9AADgPAAA4LwAAKg9AAB_vwAAQLwAAKK-AABQPQAAdD4AAPg9AACAuwAAQLwAAI4-AAD4PQAAmL0AAHQ-AADgPAAAiL0AABA9AAA8vgAAQLwAAAw-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=9m0Sq0rbrxA","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18264675776589610782"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3967596196"},"2558130551869648317":{"videoId":"2558130551869648317","docid":"34-11-15-ZA053C4C0EF8BC509","description":"Fundamentals of methamatics mathematicaATD. Proper knowledge of mathematics must provide many opportunities for problem solving relevant challenging questions, for concept building and connection...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4266178/a6b331a453b32f33003c65fbe6037f99/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UONUtgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D6Zo8JnX2Y_o","linkTemplate":"/video/preview/2558130551869648317?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Fundamentals of mathematics | Part 1 | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=6Zo8JnX2Y_o\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTMjU1ODEzMDU1MTg2OTY0ODMxN1oTMjU1ODEzMDU1MTg2OTY0ODMxN2qSFxIBMBgAIkQaMAAKKWhoeG9pdXpncGRrZGNuamhoVUNTTjRPTnp0RnZYSEpVR1dtWi1DaVF3EgIAESoQwg8PGg8_E9MHggQkAYAEKyqLARABGniB9wT6_voGAPX_CgsCBv0B_Qj4_fj-_QD___T7_QT-APn2BAALAAAABQ31CQUAAAD4-vsP__8AAAwC-A8CAAAADgP-__0AAAAZEP8A_gEAAPz4Av8C_wAABQwIAAAAAAD2AP_6AwAAAAYNCgkAAAAAB_v-CQAAAAAgAC1aVOQ7OBNACUhOUAIqhAIQABrwAX_7EwHQ-9H_twXcAA0E5gDO_SUA_THUAMP7HwC798oA7Rn3AP3q-f_q_RgB2iXgACPs2v8A3PYAEMXn_RX-_ADEEfsAJA78AEECFv8M7d0Av_cW_unREAAX2NQDHivk__7oFf8sGO7_ANfeBA7-OwEMCCoD8wIS_N-0_QHL-fkHCvHZAAUXDQT0v-T84vYtBwLbCAj5-QcDzR_s_wjXCvzn8_z6ByzX_iL_CP_m_PwJ8Pj-BRf2_QUVHyH-6-HQAc7mFAOu9Pz19eT3_RDv-PjoJu0HGfX1DBAJCP4V8fz9A7rx--cPAwfmIf0H8ebz_iAALVwwGzs4E0AJSGFQAirPBxAAGsAHH7zOvrESmDtG7cA7XNf5vO97b720BQS9FNqYvSdPeT0LEYm7p834PewkrLy1hhe9FOgzvvvv3DxZ04a8y4AzPubRiL2YYjM8dXT8vS8Tmj0LAhC9_FQlvjHZLrwHc-Y3NhxbPdow1LwMtNa8wX6-PfL3wb0XrW28K1fDvZ1sXr36lAi9Q-f1vX-2H71aIgG9G3-HPNc3m72uqWK7hTiAPW_etLqu1xS9t1dLPVZ01rvGpyC91jEzvY1S-Dw0P8i8dWYsPaaLwzz_dKg8BbOovUe1Q712Yyu9TLQavY-RB7yttg08Y15sPDsODT0tTuu88gjuPXsUzr3HgKy8nZ0Mvr4RXbyVdjS8Puq_Pei0-Dx2Co-33O-Fvd0J9j3Ineu6f2VKPb_R87z_zKC8cN2zPfgR5Dw9NWq7xBCUPcRW9TzWlL-85DvGO4z3Az6_LMg8BynYPf9Z87ygibC8QVliPe0bDj0XlVy7kirAvKCnYT2lfVG53fRCO_0FET1jRao7uBRBveoz77sPHMA7xTVDPfhRDb4Jbyy7x4NtvVcQjr2dt1a80cffOzPdqzyXQwG8bvzpPUzkrb0rc6m7jEzAPCAyW725SAw8wz6bPROPNb0lJBI8mHx9vR7GZD3dUAK888yGvfB63zw4npG76ezJPEwYzT1f6Jq5KXCcPZIry70o9to49StdPXMRPz2wlem6z35JPN1cXD2CV8Y58WhjPfZuYr3Btym6FXgCPX8thL3dLmq7zI0zPIpnmr21tea43WGTPbuXC76lDmg5SqFnPekHmjzzGic5qSiYvf3xAz3LRX04cdzzOyL8C70QL9s4qz2RvRpSFb4wUQo6rGg9PEipJD0lyfK5Wt2FPX6KA73MUne5L1DyvahcnL1DgL-3VSjcPOYHyTw9LZW4j6CCPeiKMrpCviI43huovbZkujw7vQq59NhbvTJeTjx-7No42kJmPQFHhz0T0Qo2Wq-DPQGPw72m0Vo5n_FxO6XYAT6orjG5RhomvX7XET1QACO3vztDvIgToz2yx1O4eI2XPfVvcrxPMmo3nsfyPAZuWD1slHa4WJ_MvaYuND2Dfyw5QWliO_BA0zxi-_w2DRGcPXqwID08eMM3stOdOULQ0T0swIk2kl0ZPtlPUL2swj-5voPfvHgJDr15e3i4dfX0vFnd6r0NI_E1QJCCvaa8cT2gfvW2va8FPaVJCb6tnoW4yvRwPSLhKz7xy4o4AEg3u3dVNj0-ld24kDjavBXlsj3Eoi03vXbEvCYuET2D2yU4IAA4E0AJSG1QASpzEAAaYPkAAB0JJvXgAhL488H66tbTGrYb6ewA5fEABfjw9RwQ2dQEIQAJyiDUtgAAABoA8w4qANVe4tvkPywLD8jGARUUf-gIBNIPAeLKAxv5-B4hCMgFMAAB77AqNBmtORlGLCAALVqANDs4E0AJSG9QAiqvBhAMGqAGAADQQQAA4MAAAKDAAABQwQAAhsIAADjCAABAQAAAGMIAAJhBAAAkQgAA4MEAAMDBAAC4wQAAUMEAAGBBAADYQQAAmMEAAETCAAAgQQAAsMEAACDCAABwwQAAHEIAAGBBAAAwQQAAyEEAABTCAAC4wQAAmEIAAEDAAADIwQAAKEIAAMDBAACMwgAAQEIAAHxCAABsQgAAykIAABDCAABQQgAALEIAAETCAACAQgAAoMAAAADBAACoQQAAAAAAAIC_AAAoQgAAgMAAAMDBAADgwAAAXMIAAEDBAAAcQgAAyEEAACTCAACQwQAAAMEAABxCAAAAwAAAgEAAAADAAACiwgAAOMIAAIjCAABMQgAAqEEAAHzCAADAwAAAtEIAAHhCAAAAwgAAoEEAANhBAACAwQAAZMIAADDBAABoQgAAQEIAAFjCAADgQAAA4EAAAABCAAAwQQAAAEEAAKJCAACgwAAAFEIAADTCAACCwgAAfEIAAMjBAAAAwgAACMIAAKDAAABswgAAvEIAACRCAAD4wQAAIMEAALDBAAAwQQAAmMIAACDBAABcQgAAGMIAAGxCAABAwAAAQMAAADxCAAAkQgAAQMAAAFBBAAAEQgAAuEEAABzCAAAwwgAAREIAAIBAAABQwQAA2MEAAADAAAAIwgAAgL8AAJBBAADgwQAAQEAAABDCAACywgAAEEEAACDBAAAUQgAAhEIAAEBAAAAYQgAAqMEAAIDCAACCQgAArsIAAGBBAACQQQAAosIAAKhBAACQQQAAAEIAAADAAACKQgAAAMEAAIA_AABgQQAAqEEAAIC_AADAQAAAYEEAAI5CAAAIQgAAEMIAAGBBAADIQQAAmMEAAKhBAAAgwgAAmMIAAAjCAABAQgAAcMEAAODAAACAPwAA0EEAAFDBAACQwQAAAEEAAADCAAAgQQAA0kIAABzCAAB0wgAACEIAAFRCAAAIwgAAJEIAAPhBAACQwQAAhkIAALbCAAAAwgAASEIAAHTCAABwQQAAmMIAABzCAABAQgAAgMAAAADCAAA0QgAAmsIAAMBAAADAwAAAPMIgADgTQAlIdVABKo8CEAAagAIAAI6-AACSvgAAQDwAAIC7AACAuwAAFT8AAFC9AABBvwAAwr4AABA9AABUPgAAhr4AAIg9AACAuwAA-L0AAIi9AACSPgAAQDwAAAw-AADCPgAAfz8AADC9AAB0PgAAmL0AAKi9AABMvgAAoDwAAIA7AABEvgAA6D0AANo-AACovQAAyL0AANg9AAAwPQAA6D0AAOC8AABEvgAAAb8AAI6-AABkvgAARL4AAEQ-AAAsvgAAmr4AAGy-AAAsPgAATL4AAJ6-AAADvwAAir4AAI6-AADCPgAAVD4AABS-AADgvAAAZT8AACQ-AAAMPgAAiD0AANg9AAAcPgAAMD0AAMi9IAA4E0AJSHxQASqPAhABGoACAAB8vgAA-D0AAKC8AAAfvwAANL4AAKC8AADKPgAAEL0AABw-AACgvAAAgLsAAGy-AABwPQAARL4AAKC8AABAPAAAHD4AAA8_AAAUvgAAsj4AADQ-AACgPAAAmL0AAAS-AACgvAAA4LwAAKA8AAAcPgAAEL0AAIA7AADoPQAAuD0AANi9AABEvgAAyD0AAEA8AAAUPgAARD4AAGS-AAAsPgAAqj4AAFy-AAAMPgAA4DwAABC9AADIPQAAf78AAIA7AACWvgAA2D0AAGw-AAAMPgAAED0AAIC7AAB0PgAA6D0AALi9AAAsPgAAgDsAAHC9AACAuwAA-L0AAEA8AAAUPiAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=6Zo8JnX2Y_o","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2558130551869648317"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1419004882"},"6933445347525557954":{"videoId":"6933445347525557954","docid":"34-6-14-Z78080A57029CEC2C","description":"Taylor's Series of a Polynomial Function | #mathematicaATD In the next video you will find the application of taylor's series in limits and continuity. Some other video links on limits and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4580315/d3b141f32e78dd7e0914a835718ccee8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/85klcwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJ5FIWM_Nofc","linkTemplate":"/video/preview/6933445347525557954?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Taylor Series approximation of Polynomial Functions | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=J5FIWM_Nofc\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTNjkzMzQ0NTM0NzUyNTU1Nzk1NFoTNjkzMzQ0NTM0NzUyNTU1Nzk1NGqHFxIBMBgAIkQaMAAKKWhoeG9pdXpncGRrZGNuamhoVUNTTjRPTnp0RnZYSEpVR1dtWi1DaVF3EgIAESoQwg8PGg8_E-oDggQkAYAEKyqLARABGniB9AMC_v8BAAUEDwX6CPwCCwz19_UAAADoAfj7-f4BAOj5AwYJ_wAA-gPyCQcAAAD-A_8Q9_4BAAQE9wcEAAAADQgHA_wAAAD9EQEP_gEAAPX-AwUDAAAAFwX-BgAAAAD39v3-AgAAAAQJBAQAAAAAD_4B9QAAAAAgAC3YMtQ7OBNACUhOUAIqhAIQABrwAX_0_wDp5eMCufUFANQGBQHDNA0A_DXRAKn6HAHL_-wBzjn6ANz_EP8G8B0A3UMQ_zTV0P_u0OkAL7kMAvvg-gDLBAUAG-siAl0GHgAA7gMAywUd__nx-wAe5eUADhny_v8LHPwqBtf-Cw7kAiEVJwENCC0EDfMQCNvJDQHnBOoA69zY_RM5DADx8Af3vtonAhDp4QEAA_r35ATxAQjUCvwI7xj2FkDp_z3jFwIQBBQGwAnsABju6ggJGxEF4PHpAQvnGALE_wH1JvYOBxPM_PTrIPgBCe71CAzrC_oADQb8_-nsANf-9gXsAPgT9ebx5yAALaQ3ETs4E0AJSGFQAirPBxAAGsAHT3SVvs9_ND0aXIi7bttnvsf8t7x5bka8qOEbvt8W7DyH20Y8vD-OPd2TKDuJ4Cm9FOgzvvvv3DxZ04a8y4AzPubRiL2YYjM8ehcvvgg8MD0pn9S8V7E4vkelfTyl1Ao9IuSXPaqgfb2EAMs7dvzXPU9ll714KgA9LpJ2vYmmQj0b7si7Ag4Rvg4617wnPi28KeimPT0vgL3_Py49LlmlPWNCTLwfCFo8NpYrPezuizwSKVK9Vdm8PXj3qz1xSJm8x0wCPkgMLD1eHAs9qoHmvQIrB77SYl88JRetvdtewbwLIc46E2fBu5aGL7vnT0C8aTPzPB5v8r3XJdM6rfkBvlSlkjwh0d87GkKPPfbwwDxnMak6Klwqvbdr-DygUqW8f2VKPb_R87z_zKC8APKEPYkrAj34Ky486XYAPTBiBD0bB8U75DvGO4z3Az6_LMg8W5WUPeoOqL0wMIa8IzTdPBW4Kz23b388slIYPAIJDz3ZvL87VOYGvcl9Zj0VudY8lqHgvAvssTzcZio854U_u2GBqb3rCBa8CcMAvvnZuL0_iiI6PRVGPeprpzx6BkO8QZSJPW0lL707SPw6P531Obt7QL3JsOk7MKtTue7Omrxtk4a7ziaWvfqerDy14TC7_H8mvQBKbT2Slue7RYCTPE8wLT1t7bM7n6a7PFH8s72XBps7uI98PTwck7y4SzC72AAbPQ3uHT1JvQa7zKwvPcW9s726ocY6ggtoPB3IurzzxBo8fSPavQTLkb02XIE5bQPXPbWj2L0Mn685GFWQPXiLMT1gxBI5ceA6vS66Sz1yFsc3IojzPLWeq7yyxhQ5y6LwvFtCHr43BeM5O7hFvUSVkD0c6L44Ha0qPdzhZTwwxl44zCDDvdQNBL4IU4U5-nIQPYYIkzzqlJq41ZbaPcQvKzxC8DQ4MQn3vUKNzLzlvDk2bHakvWYPmbzcLa053v8nPZoTmj0Z2xS5HGW4PZ_6Eb0pQnQ5Kdt2vOfssz0nn4A36FGMvFpAcj0J5bw3uEclvBeC3D0mHeU3P4ZzPQdEiDz2KBE3xKvRPBhdwTtDtlW4tJAQvtiMoj2ZewS39-8wvNtHGD1R3w05_PVUPYYUDT19Ss62b08LPWe4AT0wY5g4weMrPtylaLwHiXS5qp7HvXqdjr2STdU3f4mDvQ7Y9b0L0RK4pNAIvSRECT6bFsE2szEGuwivvb0cfaa3Iv_sPTUpBT7zflu4PCn6u1UqbT3gMo24XIllvWQz0TynvaA3EL8svedaLz0tpmQ4IAA4E0AJSG1QASpzEAAaYBADABr4L-ngBBX8_fD3-uPYEsMd9_8AE_QADPn57xkS7tYEFgAW1B_VwQAAABAF8xUTANFS2QTbIvr5AsnCAAoVf-AGNcb9EeXcAxz7EzEcBuILEADx-74NIxvCKhg7LCAALS5JTzs4E0AJSG9QAiqvBhAMGqAGAAAYQgAAAAAAAKDBAABQwQAAaMIAAPjBAACgQQAAyMEAAFDBAAAsQgAAEMEAAGzCAACQwgAAVMIAAHRCAAC4wQAA6MEAAIDBAAAwwgAAMMIAAEDAAAB8wgAA8EEAACBBAADgQQAAAEIAAIBBAAAIwgAAXEIAAMDAAAAswgAAXEIAAMjCAAAQwQAAoEAAAABBAACowQAA-EIAAEjCAAAAQQAAeEIAAEDAAABcQgAAKEIAAAxCAAAAwgAAJMIAAFDBAACIQgAAMEEAAJjBAADgQQAA4MEAAIBAAAC4QQAAAMAAANzCAACIwQAAiMEAABxCAACAwAAAAAAAADzCAACmwgAAqMEAAFjCAADoQQAAEEEAAKDAAACgwQAAnEIAAJRCAADwwQAAYEIAAKjBAACIwgAABMIAAFBBAAB4QgAA4EAAAITCAACgwAAAmEEAABRCAAAowgAA6MEAAOhBAABAwAAAmEEAAPDBAAA4wgAAaEIAABBBAADqwgAA2EEAAHDCAAAAwAAAKEIAAPhBAAAEwgAAoMAAABRCAAA0QgAAsMIAAGDBAABIQgAAiMEAAHxCAABwQQAAcEEAAAhCAACAwQAAmMEAADzCAADwQQAAEEEAABDCAABAwgAAQMAAAMBAAACQwQAABMIAAPjBAAAgwgAAQEIAANhBAACowQAAkMEAADjCAABQwgAA-EEAAMBBAAAQQQAAoEEAAKhBAADIQQAAoMEAAIjBAADwwQAA-sIAANDBAADgwAAAwEAAAFBBAAAgQgAAwMAAADDCAAAYQgAAAEEAAMDAAADQQQAAiEEAAPBBAACgwQAAqEEAABBBAAAAAAAAoMIAALhBAAAAAAAAQMEAAFBCAAB4wgAAMMIAAEDBAAAAAAAAlEIAAAxCAAAQQQAAAEEAAKzCAACAPwAA6MEAAADBAAA0wgAAMEIAABTCAABwwQAAbEIAAChCAADQwQAAgEEAALhBAACgQAAAtkIAAKjBAAA4wgAAgkIAAHDBAABQQQAAIMIAAKLCAACAwQAAgL8AALDBAAAAAAAAhMIAAHBBAAA8wgAAYMIgADgTQAlIdVABKo8CEAAagAIAAGS-AABEvgAAfD4AALg9AADIPQAApj4AADC9AAANvwAAmr4AAIC7AADYPQAA2L0AAMg9AAAsPgAAmL0AAKA8AAB8PgAAgDsAADA9AAC2PgAAfz8AAIA7AAAsPgAAEL0AADC9AACIPQAAFD4AAKA8AADIPQAAND4AAI4-AACIvQAA6L0AABw-AAB8PgAAqD0AAFA9AAC4vQAAur4AALq-AABsvgAAgr4AALg9AAAEvgAAuL0AAMi9AADGPgAAfL4AAEC8AAB0vgAAiD0AAFS-AAAsPgAA-D0AANi9AAAwvQAAJz8AANg9AAAEPgAA6D0AADA9AAAQvQAABD4AABy-IAA4E0AJSHxQASqPAhABGoACAABwvQAAmD0AAJi9AAAvvwAAXL4AAHA9AAC6PgAAuL0AADC9AAA8PgAAEL0AAHy-AABMPgAAPL4AAEA8AAAwvQAAHD4AABM_AADIvQAAsj4AAAw-AAD4vQAA4DwAAKC8AABQPQAAED0AAKi9AAAQPQAAgLsAABA9AABAPAAAML0AAOC8AAB8vgAAuL0AABA9AACIvQAAQDwAAKi9AABQPQAADD4AAFA9AAB8PgAAEL0AAIC7AADYPQAAf78AAKA8AACWvgAAMD0AACw-AAD4PQAATD4AAKg9AABkvgAAmD0AANi9AAAcPgAAiL0AABy-AABQPQAA4DwAAJg9AACgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=J5FIWM_Nofc","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6933445347525557954"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3485237344"},"17905638044613974876":{"videoId":"17905638044613974876","docid":"34-2-8-ZDAA83A0E82629729","description":"#mathematicaATD Types of Relations: Void, Universal and Identity relations. In the next video you will see Reflexive, symmetric, transitive and anty-symmetric relations. Also visit the other...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4436769/b1a64c5c01ca750d4a2e10e8793f4177/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kd4YawAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DF0ZrK04kyWE","linkTemplate":"/video/preview/17905638044613974876?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Void, Universal and Identity Relations | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=F0ZrK04kyWE\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFgoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzZaFDE3OTA1NjM4MDQ0NjEzOTc0ODc2aocXEgEwGAAiRBowAAopaGh4b2l1emdwZGtkY25qaGhVQ1NONE9OenRGdlhISlVHV21aLUNpUXcSAgARKhDCDw8aDz8T5AOCBCQBgAQrKosBEAEaeIEBCPr5AAAA-e0JCQYH_AEY-vAE9QEBAOwC-wQAAAAA-Pr_BQUAAAAEAgkFAgAAAAT7_Av__QEABQLtBgIAAAAeCfMF_QAAAA4Z-gL-AQAA_f8CBgT_AAAeB_n6_wAAAP7__fsCAAAA_AgIBQAAAAD_B_7__wAAACAALQix0js4E0AJSE5QAiqEAhAAGvABf_QF_sr5-P-d9sQA5x_jAJU3K__8PskAq-4NAar0uwHpCOUA6ATr_yIKKgLW_-r_Qe_g_vjGAgAyzxD_EAntAdsXBQEf5PMBPekpAPr6_v-3Eg4B0qUBAvHTpP8KDcf-B-b5AuD60QQjG8AC-ug4ARAKNAT_BSMF688AAc_n-fr197v-Ehn9_QPM_vi8_iUBFtoL_gvmFvm2GPkFxcsH-OgACPQEHt4G9-rzERj_-wi84f4HIvTh9iMuDPnk3_Xv8PUuArriBf4jtvQAJtQD7-gQ6Pj72_AMKukY9wLS9-8YCAP59PYO-AID_QDzBPQAIAAtReL2OjgTQAlIYVACKs8HEAAawAcfvM6-sRKYO0btwDuagpu9qbUXvAMFXr0U2pi9J095PQsRibu8P4493ZMoO4ngKb1s7FK-d2RRPQMqF73FVYU-VDBvvZt_KryG4wm-3yD1PKwBKr38VCW-MdkuvAdz5je6VrG8w1RpPPauZryIZXM9pWqbvXACmTohsrO9TTutu6sxV7xD5_W9f7YfvVoiAb1xsRy8tDmevcZp7byGHnE9T5snvdWCLb2vx6k9KCYQu6zQFr1PJHO8uIIcPVoNibxFZFg9vaDqPF98j7qJAy29B0BhvZ6W_ru3PHu9EZ8mO83gND2oyjI9fxT1PIk8brzyCO49exTOvceArLxRh9W9FQ5TPahZe7xBXvQ8ABEsPWwt5TsdPd69vsAMPrsIC7q8bVA9kCX_uylptLxcHQA-kGaRPDNXgjsgooc8-aRuPaBIgbxjYD09Dy7IPX357jzDuhE-zpGwvH2nk7y6h389Jc53um_TYTtrvTq9u5nRPbIf1rvd9EI7_QURPWNFqjtmCRy94M4NvCK7nDyblQi9CHYMvs2l4bvHg229VxCOvZ23VrwdbcE9OWkQPS4Ff7xz8209LZOBva9QNTyIEKc9G9YUva4Zsjs9kXE9-GEuvfnmirtQAqa9eh9CPQTBSruUdyS9L4W3PSeh17vp7Mk8TBjNPV_omrmF6FU9NXCxvSLHGTq4j3w9PByTvLhLMLtjMQA9V12HPHRiCzuVRaE8_bsDvbJoNrtIpO08f40_vRKkTrt-aDC9KSuhvZROuLh9ldw9Fm4pvnw88rlILy89G9R-vALGBrkmbLS9ZEDWPVwmEDioBcq8sRy-OqWEc7n8s1W9dz2yvYUbMLi4Tq08MZVePZxGjjjxRmY9aH4QPEVlnrhrHsG9xK6ivVn4Iji-Knw9xaIzPAbGiLgMhLM9jy8GPUh15rhIWXq9JCYovPUXDrkmN8w6kf6ovIkI3jkl1wO9BLS4Paonqrhar4M9AY_DvabRWjkp23a85-yzPSefgDdbPUy7uzS0PMu1mbg8sG09JO2LPcJGr7jHN2o9IF-CvXb5yjaex_I8Bm5YPWyUdricenO910vTPZ-Nlzi6rBg98cVNPdzSyziGqng9tSIAvdovAzjsLB-9a8lUPVu5oDjB4ys-3KVovAeJdLkZm2y9iYTlvLRKzjdmErU8XqHPvYC6sjcyC7O9Ev5APbJytjfk1Z68eonxvWVVMLjK9HA9IuErPvHLijhZlnk8xQxjPRu4jrhvvQG9j4mUPTSh2zfcOYO9cIIKPS2gwzcgADgTQAlIbVABKnMQABpg_AYAFg0XAejyG_oA1vXv-NckyA3k9QDm4AAC7_PrEgXv0voOAB_EG-rAAAAAIPkJIhoA8lXw29s0JBkAtsPz-iN_5AokvhIJ7McHBef0Ei0S5QQdAOjsvBUPAbglDhotIAAtEJBJOzgTQAlIb1ACKq8GEAwaoAYAAKDBAAAgQQAAmMEAADTCAAAcQgAAwMEAAAxCAAC4wQAAGMIAAHBBAADgQQAAxMIAAEjCAAA8wgAAmkIAABzCAACwwQAAQEAAAIBBAACowQAAcMIAADDCAABAQAAAiEEAAFBCAAA4wgAAaMIAAPjBAACQQQAAsEEAAI7CAAC4QQAAjMIAANBBAACIwgAA2MEAAMBBAADUQgAABMIAAFhCAAAUQgAA8EEAACBCAADAQQAA-EEAAHDCAAB8wgAAkMEAAKZCAACIQQAAHMIAAADBAACYQQAAgD8AANBBAAAQwgAA3sIAACRCAAAEwgAAEEIAAHBCAAAUwgAA4MAAAJLCAACAwQAALMIAAODAAAAMwgAAgL8AAKDBAABQQgAANEIAABTCAACEQgAAgL8AAMjCAACQwQAAQEAAAIBAAAAUQgAAEMIAAJhBAABQQQAAdEIAAFjCAAAgwQAA-EEAAIBCAAD4QQAAdMIAAHDBAABQQgAAyEEAAJDCAABAQAAA4MEAABDBAAAAQQAAbEIAAHDBAACYwQAA6EEAABxCAADgwgAAGMIAALDBAADgwAAAQEEAAEBAAADgQQAALEIAAIhBAADgQAAAiMEAAExCAAAAAAAAVMIAAETCAADAQAAA4MEAAOjBAAAUwgAA4MEAACjCAACIQQAAhEIAAKDBAADowQAAhsIAANDBAABAQQAA-EEAAGDBAAD4QQAAIMEAAEDBAAAwwQAA-EEAAIjCAAC-wgAAIMEAACDBAADIQQAAqMEAACBCAAAAQAAAhsIAAEBAAACQQQAAkEEAABTCAADAQAAADEIAAJDBAABwwQAAiEEAAEBAAAC6wgAAksIAAIZCAACIwQAAgD8AAFTCAACowQAAgD8AACDBAADAQQAAREIAAEhCAABgQgAAuMEAANhBAAAgwQAAoMEAAKjBAACIwQAACMIAAADBAAAMQgAAOEIAAJhBAACgwQAAiEEAAPhBAACWQgAAoMAAAGzCAAAEQgAAgD8AAODAAAC4wQAAjMIAALhBAAAQQQAAmEEAAKBBAAC4wQAAcMEAALrCAAAYwiAAOBNACUh1UAEqjwIQABqAAgAA2L0AABC9AACYPQAAFD4AAEA8AAB0PgAABL4AAO6-AAA0vgAA4LwAAKA8AAAkvgAAND4AABA9AAAkvgAAUD0AAGQ-AAAwPQAA4LwAAIo-AAB_PwAANL4AAAQ-AACAuwAA6L0AAJg9AADgvAAAhj4AAIC7AACIvQAAfD4AABC9AAD4vQAAUL0AAKg9AACIPQAA4DwAAAy-AACuvgAAXL4AAFC9AAAsvgAAHD4AAHC9AABAPAAAED0AAEw-AAB8vgAADL4AABy-AABAPAAAuL0AAGQ-AABcPgAAXL4AAIA7AADiPgAADD4AAIA7AABUPgAAMD0AABC9AABwPQAATL4gADgTQAlIfFABKo8CEAEagAIAAIq-AABkPgAAiD0AADW_AAC4vQAARD4AAMI-AACAOwAA4DwAADw-AABcPgAAfL4AADQ-AAAEvgAA2L0AAEC8AACYPQAASz8AAKA8AABkPgAALD4AAEy-AACWPgAAdL4AAOi9AACIPQAAoLwAAEQ-AACYPQAAgDsAABQ-AAAwvQAApr4AABC9AACGPgAAfL4AANg9AABwPQAAlr4AAIA7AACmPgAAQDwAAIY-AAAQPQAAPL4AAMI-AAB_vwAAgDsAADy-AABEPgAARD4AAGw-AAB8PgAAPD4AAJI-AADgPAAAEL0AAMg9AADgPAAAnr4AAFA9AABQvQAAgLsAAKi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=F0ZrK04kyWE","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17905638044613974876"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1711248717"},"9198057119920364184":{"videoId":"9198057119920364184","docid":"34-5-6-ZE0B11AF45C26CDDA","description":"#mathematicaATD Equivalence Relation | Its definition and an example on it discussed. Some other video links on relation and function are given below: Visit your favourite channel / atdhelp and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3805512/06b86b9e7bd48fc8e80dd435402ff673/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CZzB0wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DN_xgwOYs8jA","linkTemplate":"/video/preview/9198057119920364184?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Equivalence Relation | Example | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=N_xgwOYs8jA\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTOTE5ODA1NzExOTkyMDM2NDE4NFoTOTE5ODA1NzExOTkyMDM2NDE4NGqHFxIBMBgAIkQaMAAKKWhoeG9pdXpncGRrZGNuamhoVUNTTjRPTnp0RnZYSEpVR1dtWi1DaVF3EgIAESoQwg8PGg8_E5MEggQkAYAEKyqLARABGniB-_D8B_8BAPkHCwb4Bv0CDgzyBPUAAAD4_f4DBQL_APrzEwIFAAAA9Pv2C_0AAAD7_f4H_v4AAP_89QQDAAAAIA39-fsAAAAXCfYI_gEAAPgBCv4CAAAAAgkEBQAAAAD3Agb2__8AAAEKDf8AAAAAEv7uAwEAAAAgAC0g_9c7OBNACUhOUAIqhAIQABrwAX_mAv_O1sYAw_XQAMMm9gC5JTn__DnNALHvDAGw9cEB3y_2_-gAJQD2DCsA1BHkADnRy_7s5-kAJbn1_hzbAAG2HhIAAvL6AFcYEgEI4ur-xgYg_-jc_f4a0s0D_Bf6ABQMBgAhBQQB9fLXByQXKgEHJjIKC_Qn_NjEDgHa7uQG_tm6_hsi-QQjywv83fQ1CBTW6_wQ9P75xiz_-QnX-Pjx0Sf_LzPtAjDuBQgHBvMKvA0ECRrs6QgKHRMF8gLi9_7PF_TSA_j_DOYR_Q_kCfzpIvcBLvvwAyfrFvgG_gMG7d3q9eMSAwj3_PT84xzb8CAALWrNBTs4E0AJSGFQAirPBxAAGsAHH7zOvrESmDtG7cA7HMg_vQnqjDuczC69fKGbPCLdFD2AxGU8uBmDPZQ5Ub1_5gK9bOxSvndkUT0DKhe9y4AzPubRiL2YYjM8ehcvvgg8MD0pn9S8iQsQvjZqrrrOj_k7E8GuPA1BBL2Cctu8oDTEPabVUL0R_9Y5MzH9vTWuJLzCkPC8Q-f1vX-2H71aIgG9bjC5PNkFSL1qocc77a-IPYPuHL0u2mu7s81yPUH7hzwK98q8XR5GvBAGnjxhmS29CXmTPQ3WyTz8jmE8KEJvvULRp72hf6e7n0xtvELzlDy5Wdc8WPMtvHURNT164U68_MPWPWaAjzv78he8Iz3LvTjuuTzetqW8Z-YTPQaqErxWQRA73O-Fvd0J9j3Ineu6vG1QPZAl_7spabS834iuPQSJEjxOGCC878ouPNgHgjvyiIC85DvGO4z3Az6_LMg8k1IQPjEmXb2Vuyq8llmpPKIBhjzAPbI7kirAvKCnYT2lfVG5OhEzPUpKlbzUsZA79OlnvPqcNj0-vxw8JF6eu2L46L1TGGc7ldw8vTzxwb1D6ea7ew2WPWS-bT3Lq8a6WYfDPQrPVb30glM735twPVMYtb0a8ey7gqtcPS9NkbwBw3I8mHx9vR7GZD3dUAK8Ik7MvNT_aD2L9bK6nyoVPbAAZj0DZra708xpPQ7d7L2Piji6ow3GPZavyzpgbr07LYuTPZ6vHj2gog86IqwEOyiZkb3NyrS7X7kZPcrAZr1QCog7tCKlvW0tPb1quIQ57q8OPp8Skb1-0JQ5GFWQPXiLMT1gxBI5ceA6vS66Sz1yFsc3tfSNPHCY6LxroOI3vsXgO6xTFb6mjMk5rGg9PEipJD0lyfK56MpWPGpcSTygN5E5AvSLvUU1kL07hjE4yYsRPfgtxLzWF4i5eJ6TPW642Tz9qJ24ymyAvTgtOL2Tkpk4D1ImvGDuzbpCWCc4cQddOi-VrT0v-uK3EaBQPbpJnL2osHk5KfSwvHrQkj3ROUq3ACMDPQ7b1j0-T4w33JQcPU6ilD26wIc3ixaAPUQqwb19KiM40UQTPc2KLT3JZzS4tJAQvtiMoj2ZewS3VF3ZO2cxyjsuSgI4t8Q7PT_ekLxR34U4jcIEvcxVvTtGP2a3weMrPtylaLwHiXS5ZoKRvXqVC71U1IS3dfX0vFnd6r0NI_E1hs2LvQiw6D1Us5Y4XqpIvTrpHb60Y_q4yvRwPSLhKz7xy4o4lV8rPM-8jD3F_Aa5squPvXy6-jxzlDQ3B8mnvAI-ST0wAdi2IAA4E0AJSG1QASpzEAAaYBIBABsEHfXkFR7p7tMB3vHcBrEK6wL_6OkAB_kL9CoZ-uXrBgARwiPlwAAAABPu-wcwAOlW3e_yJiL3CrvnChsof-gLOM4lFPm4Dhfw_Q82FAXoJAD05skYJfO-IPQlNiAALRPKRjs4E0AJSG9QAiqvBhAMGqAGAACAQAAAuEEAAODAAADIQQAAuMEAABDBAACQQQAATMIAAOjBAACQwQAAFEIAAODAAACQwQAAmMEAACRCAACwwgAAOEIAAEDBAAAAQAAAREIAAABBAABAwAAAUEEAADDBAAAUQgAACEIAADjCAACIQQAAikIAAABBAADgwAAA4EEAAHTCAADQwQAAoEAAABhCAABIQgAAtkIAAOjBAACIQQAAIEEAAABAAABEQgAAOMIAALBBAABQwQAACEIAAKjBAABQwQAAgEEAAEBAAAAAwgAAgsIAAIA_AAAAQAAAiEEAAKBAAAD4wQAABEIAAJjBAADwwQAAcEEAAABBAACUwgAAvsIAAAxCAABEQgAAAEIAAFzCAAAEQgAAkEIAAGBCAACGwgAAEMEAAJDBAACCwgAAuMEAAJBCAAAEwgAAcMIAAI7CAABwQQAAEMEAAPBBAAAgwgAA4EAAAFhCAAAAwQAAXMIAAKjBAAAAwQAAgEIAAMDAAABwwgAA8EEAAJBBAACAwAAAqkIAAEjCAADYwQAARMIAAODAAABAwQAAoMEAAODAAADoQQAAMEEAAODBAACQQQAAUEEAALhBAABAwQAAcEIAAOjBAADAQQAAqMIAABhCAAC2wgAAgEEAAGDBAAD4wQAAYEEAAIDAAACYwgAAAEAAAExCAAAgQQAAPMIAADDCAADwQQAADEIAAMJCAACIwQAAiEIAAPhBAAAAQgAAJEIAABTCAAA0wgAAdMIAANBBAACQQQAAHMIAAOhBAADAwAAANEIAAJjBAADAQQAA4EAAANBBAACgwAAAcMEAAPjBAABYwgAAgL8AAKhBAAA4QgAAXMIAADBBAAAsQgAAwMEAAJzCAABwwgAA0EEAADjCAAAEwgAA4EAAAIBBAACoQQAACEIAAITCAADwwQAAMEIAABTCAADIQQAAoEEAAJTCAABswgAAUMEAAHBCAAA8wgAAGMIAACjCAAA0wgAAPEIAAIDBAABAwgAA8EIAAHzCAABwQQAAEMEAAGDCAAAkQgAAEMEAAEjCAACsQgAAyEEAAIhBAABYwgAARMIgADgTQAlIdVABKo8CEAAagAIAAMa-AACYPQAA4LwAADQ-AAAUvgAAij4AAIA7AABFvwAAvr4AAJi9AADoPQAAwr4AAEA8AAAQPQAAmL0AAAy-AADYPQAAoDwAAGw-AAAhPwAAfz8AAHA9AACOPgAAXL4AADA9AAAwPQAALL4AAFC9AADIvQAALD4AANI-AAAEvgAAcD0AAEC8AABAPAAAbD4AABC9AACCvgAA9r4AALq-AAB8vgAABL4AAGw-AAAEvgAAgr4AAIC7AAB0PgAA-r4AAMK-AADyvgAAmr4AAAS-AABcPgAAND4AAAS-AACAOwAARz8AAKo-AABEPgAAND4AADA9AACoPQAAcD0AANi9IAA4E0AJSHxQASqPAhABGoACAAAsvgAAJD4AAEC8AAAnvwAAyL0AAIC7AACePgAAqL0AALi9AACSPgAA6D0AAAy-AAAUPgAAFL4AACy-AAAQvQAAoDwAACM_AADgPAAAqj4AAAw-AACAOwAA2D0AAFS-AADIvQAADL4AAMi9AAAEPgAAgLsAAJg9AADYPQAAyD0AADy-AAAUvgAAED0AAGS-AACKPgAATD4AAFS-AACoPQAAlj4AADy-AABQvQAAgLsAAEA8AACePgAAf78AAMi9AAAkvgAATD4AAMI-AAAEPgAAVD4AAIg9AACYPQAAUD0AALi9AACAuwAAiD0AALi9AACoPQAAMD0AAOi9AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=N_xgwOYs8jA","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9198057119920364184"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3819472928"},"8967532193542987364":{"videoId":"8967532193542987364","docid":"34-9-2-Z6E64EE189D32CB93","description":"Proper knowledge of mathematics must provide many opportunities for problem solving relevant challenging questions, for concept building and connection with curriculum and real World situations.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/760719/0fada681b1c672d9eb0a943b38cec3f2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/rdNVDwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJ22VipckDs4","linkTemplate":"/video/preview/8967532193542987364?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Pen Fight | A Relaxation Game | Mathematics | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=J22VipckDs4\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTODk2NzUzMjE5MzU0Mjk4NzM2NFoTODk2NzUzMjE5MzU0Mjk4NzM2NGqHFxIBMBgAIkQaMAAKKWhoeG9pdXpncGRrZGNuamhoVUNTTjRPTnp0RnZYSEpVR1dtWi1DaVF3EgIAESoQwg8PGg8_E6gBggQkAYAEKyqLARABGniB-_8B__sGAPsDAw0KCPsC_QH1Bvj9_QDy-_MD-QH_APn2BAALAAAABRL2AP4AAAD2AQIHBP8AAAQG-wf5AAAAEQj4_fcAAAAWBvb6_gEAAP4HAwAC_wAADw39_f8AAAAB-wEA__8AAP4PBQAAAAAABwj7AwAAAAAgAC3En-M7OBNACUhOUAIqhAIQABrwAXTPFP3ZBAgBzAa6ACgf1wC0QBAAGdwqAIEW9gEsL_4ARx3uAcARMgDqBu0AojP2_0ICBQD4wwIAiQE4_w8zAgHt_w0BIhYSAfkPAQAZAwz-rCH__wn1-P8rMf4C8_nv-BFQFPoK4g8F0eUt_zDz6AARsfgCCiEGA039LQnvWQv8wOUeAui00f_vOe8BDewiCebx_wQjzxYFnCjz_ffk9QHwDSIGGw7bBVfV5gAIB_ILGhwM_kYnKgT7-ej8yv0vCE4JEf_nFevxPwPsCyLz9AEPAs7zUCD3Ah4VDBL9vQz00fcT7DBW__fQ3QQC8_kIByAALZpt6zo4E0AJSGFQAirPBxAAGsAH36WsvvyTEz0Zfqa8SQu8vWrkSjsCznc85sSiu04Tkbw5tK28_dKnPQmyFL1L_aE8FM_hvsGt-7zV5wq9i42UvGH2lzyJZvk8Bf1lvv8HOL16pNM5QiFHvdETJT2hB8g8IDDKPcDLUb0Xt5O7k2iuvGN-rrwBleA8Fli2PSGqNT0johg90qkrvtqNHj3cF0g75suLPXyWDL1uPM48nFJePvoZ6Dx25rk8xsSBPBhysT3NqYk8RG4mPkO5Yz06nC-8w41KPDpboL37q6w8cEQSvQQbfLydSBA96_azvda-JTxV18a70ex1vfv1-byD_bK8K006PhOMFjwbOR68FvPYvEH5tj2tp7G6LqvyO9DsnzyvxF44s9qyPMpLo7zzgpk8YYJEPSquibt-sdI8Sw-ZPSEYrLw_iCa79zORPWIPDT5ahQs7CM1JPX5tojzq_8U7TR1aPWPNbbwkin-8zCKZvXq9YL0F3zS8FqGoPR_TH72-5os8BNiBvfs14zx4SIw84iZevYl3pbwvbI285WyQvZ7dkDwOwje8efu9PCk39rwJh568saC1vXPhVr0Wvh062UhtvZzMDTzE-WU8h-YVvOWagjyqQFK8URD-uzZbuTzIUjU8VCU9OvBVxjwpE-m6yeqxPOTCPL2dtSE7qhyJvCumAj4O6g2595ZtPT4SBT3J7e47RTG3u48Y3T1Nn3c6mqdEPZwYUr0-_hi7B-7gPXrcHrv2pQ66lhV5PV_R7bzKf1Q6-afvPDN347zzb1m7fCvSPOo4o7w7_cE5i052PSXZqb2qsRa5P6D9PBWS5zx7X6s48V7avI9_MDwRqXK5_LNVvXc9sr2FGzC46X_5vTa6ObyW9EU5RKmovd52gDuzJq45Ix8qPchHpr0DqoI4MGh8vXj5jD0RAXi3yHSNPMebPL3EoJC4FnCqvT6Ai73IR5Q2cU88vX_VNrw0oL84JdcDvQS0uD2qJ6q42gZJvCvUZDz36MG4FjLXvaDfVjuF4ZU4WpUOO5DvVz23dY24proAvghBIDxuacW4IqsLPtimCLvXJIY3K9mBvfsH8T288Bw5vWvUO9hJjb2zYMw4508gvfVH2D0kghw59icBPkRSS70bbDg47lG5vd3WcTxXV483tLQuvFQ1RTt-uuQ2_VfMvAPTpD02ZqK3q7eRvbXyXLyKNVS42myhvY3msj0hdAk4-P4GPRfl4zxExXy3uEAdPRzCgjy99pc4CA6OvRhzfLwt3IG4UapYPRoMP73R6iI4e7o_vVELD73IH7e3IAA4E0AJSG1QASpzEAAaYOYMACLeKBrP5wfn66UH693lCKIa1g7__gP_DOnqygoL2fcUJgALzATarAAAAPvr5wgpAM5rCeHHHQHfEIcE_hACf9v__Qg3Ehq9MgvZFCoi8b_g_gD9778-PzH_RAtXNyAALdM3Izs4E0AJSG9QAiqvBhAMGqAGAACQQQAAmEEAAGxCAAAUQgAAvMIAAODAAACoQQAAAEAAAAxCAAAYQgAAKEIAAMBAAAAwwQAA4MAAAKhBAAAwQQAAwEAAACjCAADIwQAAgD8AAHBCAABAwQAATMIAAIBAAADAQQAAIEIAAILCAAC4wQAAQEIAAGhCAAAMQgAAQEIAAHDBAABcQgAACEIAABhCAACcQgAApkIAALDBAAAYQgAAnsIAAI7CAAAsQgAABMIAADjCAADQQQAAuMEAANBBAACwwQAA-MEAAIDAAAAgwQAAcEEAAAzCAAAYQgAA6EEAAEDAAABMwgAAgkIAAIjBAACwQQAAIEIAABzCAACAwgAAQMEAAExCAADYQQAAUEIAAFBBAACwQQAAUEIAAChCAAAAQAAAYEEAAAjCAAC-wgAAMMEAAEBAAABkQgAAcEEAAKDAAACUQgAA6MEAAHBBAAAAwgAA2MEAALBBAACIwQAA4MEAADDBAACgwgAAUEIAAEBAAAAUwgAAQMAAADDBAAA0wgAA7kIAAFBBAABwQQAAgD8AAEjCAACgQQAAQMAAACDBAACIwQAAhMIAAOBBAACAvwAAQEAAAEBCAADgwQAA3MIAAKjBAAAoQgAA4MAAAOjBAACwwgAA6EEAABTCAACIwQAAIEIAAIA_AAAwwgAAiEIAABDBAABgQQAA2MEAAFDBAAAUwgAAgMAAAMBBAAAAwgAAiEEAAETCAACgwAAAoMAAAADCAADgwQAAJMIAABzCAABgQQAAQEAAAKBBAACQQQAAMEEAAGhCAACKQgAAAEEAAATCAACQwQAA4EEAAODBAACcwgAAcMEAACxCAAAAQAAAMMEAAAjCAAAoQgAAoEAAAOBBAACQwgAAvsIAAMDAAABEQgAAaEIAACBCAADwQQAAcEEAAPDBAADgwAAAREIAAGDCAACAwQAAkkIAACTCAACswgAAwEEAAO5CAAAgwQAAqEEAALDBAAAgQQAAwEAAAOjBAAC4wQAAIEIAAJbCAAAkwgAAHEIAAJDBAABowgAAkEEAANDBAABUQgAAUEEAAFDCAABgwQAAEEEgADgTQAlIdVABKo8CEAAagAIAALa-AAAEvgAAFD4AAGQ-AABsvgAAMT8AAMi9AAA_vwAAjr4AADS-AADYPQAAAb8AAPg9AABMPgAAsr4AAHC9AADmPgAA4DwAAN4-AADSPgAAfz8AAHS-AACGPgAAgr4AAOA8AAAsvgAAiD0AAHA9AACIvQAAgDsAAN4-AAAQvQAAJD4AAIg9AACovQAAMD0AAJi9AAB0vgAAQb8AAOK-AABwvQAAHL4AAL4-AAAsvgAAyL0AAJ6-AAAkPgAAuL0AAAS-AAAEvgAAML0AAPK-AABEPgAAXD4AAES-AACoPQAAdT8AAM4-AAAQPQAAmL0AADC9AAA8vgAAUD0AACS-IAA4E0AJSHxQASqPAhABGoACAACOvgAA-L0AALg9AABDvwAAEL0AAJg9AACSPgAAfL4AAKg9AAAEvgAAiL0AANi9AABMPgAADL4AAOA8AACgPAAAoLwAAC0_AABkvgAAqj4AAMg9AABwvQAAML0AAAy-AACgPAAAXL4AABy-AADIPQAA4DwAAIi9AAAMPgAABD4AAIA7AACGvgAA1j4AAKC8AABcPgAAPD4AAJ6-AACgPAAAgj4AAAy-AACgPAAAyL0AABS-AABEvgAAf78AABw-AABQvQAAcL0AAKY-AACgvAAAoLwAACw-AAD4PQAABD4AAKi9AACYPQAAQLwAAKC8AADIPQAAuL0AADw-AADIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=J22VipckDs4","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8967532193542987364"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"320314799"},"7996312336562252424":{"videoId":"7996312336562252424","docid":"34-0-0-ZB75A7A5F935CFC1E","description":"The basic concepts on Comparison is a burning topic. So some examples on this topic are consulted here. You also go through other videos to clarify the other mathematical topics. Ex.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2122636/8ebd6d3a07386328c0b178a8905eb01e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Z6BKXgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrU2NwfvzdHE","linkTemplate":"/video/preview/7996312336562252424?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Fundamentals of mathematics | Comparison | Part 2 | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rU2NwfvzdHE\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTNzk5NjMxMjMzNjU2MjI1MjQyNFoTNzk5NjMxMjMzNjU2MjI1MjQyNGqHFxIBMBgAIkQaMAAKKWhoeG9pdXpncGRrZGNuamhoVUNTTjRPTnp0RnZYSEpVR1dtWi1DaVF3EgIAESoQwg8PGg8_E8gCggQkAYAEKyqLARABGniB9vv7-_sFAPX-CgwCBv0B-gP_Afn9_QAACO_-AwT-APj2BAALAAAABQ31CQUAAAD4-vsP__8AAAQC7gYCAAAADgP-__0AAAAPEPr5_gEAAPwAAv0D_wAABQwIAAAAAAD1AP_6AwAAAAYNCgkAAAAAAAACBgAAAAAgAC1ZkeI7OBNACUhOUAIqhAIQABrwAX8G-_632-b_geO_APoY-wG0BSH_CyPi_7QG_ADeLrsB2iHpAPsA-P4Y5SwAqy73_y224v_-8dcBMNEP_xgNAgDY8iMBIfr3AGcHIQDkABkA4vgo--LfDAHy1aoANSnoAe_LGP30DN0C7wXbARH-RgH3ASsHINYU_dXS9gLl9fMC8Qvp9vv0CAjethf-0wUnAgL5EwIYFQn53OzN_sfrBvrw8h_4IR_d_QTqDQXu8AUF2untBiEgAAUx8xn44c7w_dLwNAbq3u_3GOL6Cw_jCfzjLeoJ98nyEQj7Ce8C1PfwD8P8_-MD7AL3EPn89OPv5SAALVm5Ajs4E0AJSGFQAirPBxAAGsAH36WsvvyTEz0Zfqa8sWm6vYoktb1RSPg7FNqYvSdPeT0LEYm7fshrPnZoHb2N7Eo8aDePvSZ-1jxA_Je8A2D8PXIIK70neR-9ehcvvgg8MD0pn9S8R48Pvm2kkTxoOMo8al0TPEZ8J70gcw67wX6-PfL3wb0XrW28vMsFvlyPIbz8PQM6mK1rvRflQ728SQK9BSmCvJp-RL1mz688vFruPUBjS7wrAac8t1dLPVZ01rvGpyC98Q97vb4aGz102Le6_m6QPcfscjuhcw09nS7rva9Pb7xfmsO7UwIHvRTaKDwutKk8rMJrPZ1_YD3XRXa89GxpuWCrJL6AMoC7rfkBvlSlkjwh0d87olJ2PbL3Hb0yaLI8UMPXvcSSdz1rjM46Q3m6PLdSOb2soDO8YCETPRvcgT1OiM47e_QGPkouuTvWur-75DvGO4z3Az6_LMg8w7oRPs6RsLx9p5O8E7ysPXAk0D3690-8KRTYvKFvAT0diUC6vUtzvS4gDz33mMC7Y59bPEzZjrqYGOY8BSOlPdYCO75J5Zo6hnQIvhlIYb2UE8y66xPKPAnmQzxuQqu85CxMPupXj70DDIU7m1xHPaI4gb1_fZ27G2czPduJ8r3Zqmq7nFMJvl_6TT10S6O7ssuBvPcMvD1x8g27cwdbPQNTxz1yDME5tb7tPKiTJ71o6rO7w5v3uxV1gzqNlJC7J_SvPV9AlD2I2xa3aeTTPcnSvbxSsAa41wZdvGdKRrzAAjm7zI0zPIpnmr21tea47nScPazizb0q_705KJnBPHHykbyh8gO4c0u7vfPt-Dzccuk4mS6fO0x_wL2GlFY4kvNUvSc2ir2fqgm54gKlOaEFkj3nZAe2fQVJPQt_o7urCKO4ax7BvcSuor1Z-CI46ln1vBF55jwL7Ns4JkBjPTMq_DsozYM4SzBGvW-4Tz3cB8Y32vdyvZoMAr1JrqI5eH1mPDtU8z1THCg4vufGPQAdpr1qQ4Y5fYDJO2tmbT2aeOE4udCqu1yNLL0kpX24hPIAPKB62jxO72m3ge2LPQjKTb3nrKA4FUcvPer7Wj2eNvS4a_HpvXnWJLzuL2A2Z0XUvLoFHD1R_pQ4T9RoPXd-Nr0TCSM3_XERPaJF1j0ZBtM4ndnuPZ-Vk7qjag65ZoKRvXqVC71U1IS31V2ZvBGXgr0HcQO4MguzvRL-QD2ycrY3Br-ovOZMlL0KymS3VRimPW0LxT2Dx-c4mJNlO4AL0j2Y5A-5mA-Nvd0fhD2Mw9E32OsCvSqjNj2Y8m00IAA4E0AJSG1QASpzEAAaYPv6ACcQHtHbExD-3cn38dngEs0M5egA8PL_EvPt-BMO29kMDQAPuBzYtgAAAB7l_w8fAPBe4-PrQwALCbXI-Bn7f_8LCdccBuXY_iQL9Bce8tD4IgD99qoxLBqjLwlPOiAALWHnNjs4E0AJSG9QAiqvBhAMGqAGAAAQQgAAAEEAAMjBAABAwAAAHMIAAJbCAADwQQAA6MEAACRCAACYQgAAAEIAAHzCAADQwQAAuMEAACBCAAAAwAAAEMIAABjCAABwQQAA8MEAADzCAABgwQAAIEEAAHBBAABAQgAAmMEAAAzCAAAgwgAAikIAAOBAAACgwQAAAEAAAEzCAACQwQAA4MAAADRCAAAwQgAA6kIAAFTCAADgQQAAhEIAAEzCAAAwQQAAAEAAAJhBAAA8wgAAgsIAAIBBAAB4QgAAfEIAACDBAABAQQAAiMEAACDBAACwQQAA-EEAAJDCAADAQAAAwMEAABxCAAA8QgAAEMEAAEBAAAB0wgAA4MEAAKjBAACgQQAA8MEAAKjBAADIwQAAtkIAAIpCAAAgwgAA2EEAAGBBAAC8wgAAAMEAAAjCAAAkQgAATEIAAFTCAAA8QgAAYEEAAIxCAAAUwgAAIMEAAEhCAAAAQAAAuEEAAGTCAAA8wgAALEIAAIDAAACMwgAAAMIAACDBAADAwQAATEIAAIBCAADowQAAMEEAALhBAADoQQAAqMIAAETCAACgQAAA4MAAACxCAADowQAAYEEAALhBAABcQgAAAMIAAIDBAACMQgAAGEIAAHTCAACawgAAyEEAALDBAAAUwgAAKMIAAFDBAABkwgAAAEEAAIZCAABQQQAAWMIAAKDBAABIwgAAAMEAAHDBAAAAQQAAMEIAAKjBAAAsQgAAAAAAAKjBAADgwAAAzMIAAABBAADIwQAAGMIAAJhBAAD4QQAAAAAAAAjCAACQQQAAwEAAAJDBAABwQQAATEIAAPBBAABwQQAABEIAADxCAACIQQAAqsIAAAAAAADAQQAAkMEAADxCAABUwgAAisIAAABAAACCQgAAXEIAAHBBAAAEQgAAEEIAAAAAAACgQQAABMIAAIDAAADwwQAANEIAAAzCAAA4wgAAikIAAARCAAAYQgAAUEEAAIhCAABgQQAAmkIAAJjCAAAowgAAYEEAAODBAABAwAAAdMIAADTCAAAAAAAAQEEAAPBBAACoQQAAXMIAACjCAACowQAABMIgADgTQAlIdVABKo8CEAAagAIAAIK-AAB8vgAAmD0AAKA8AACgvAAACz8AADC9AAAtvwAArr4AADA9AAC6PgAAjr4AAAQ-AADoPQAAHL4AADy-AADaPgAAED0AAI4-AADqPgAAfz8AAFC9AABEPgAAyL0AAHC9AACCvgAAcL0AAIi9AACAOwAAPD4AAMY-AACYvQAAgDsAADA9AAAMPgAAqD0AALi9AACovQAABb8AAAy-AAB0vgAA-L0AANg9AAAkvgAAXL4AAFy-AAAsPgAALL4AAAy-AADGvgAAgr4AAHS-AADWPgAApj4AAHC9AABAPAAARz8AAI4-AABwPQAAQLwAAOC8AACgPAAAUD0AAEA8IAA4E0AJSHxQASqPAhABGoACAABEvgAA6D0AAOC8AAAXvwAAdL4AALi9AADiPgAA4DwAACw-AACgvAAAcD0AAIK-AABwPQAAJL4AAEC8AAAQPQAA-D0AAAM_AABUvgAAkj4AAKo-AABwPQAAyL0AAAy-AADgvAAAoDwAAHC9AAA8PgAAqL0AAHA9AADYPQAADD4AAFS-AACOvgAAUD0AADA9AAB0PgAAJD4AAHS-AAC4PQAAsj4AAHy-AAC4PQAAmD0AAPg9AADoPQAAf78AABC9AACmvgAAQLwAACw-AACOPgAAQDwAABC9AABkPgAAJD4AAPi9AAAcPgAAyD0AAKC8AAAwPQAA2L0AAEA8AACYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=rU2NwfvzdHE","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7996312336562252424"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"795249184"},"3717948618757045711":{"videoId":"3717948618757045711","docid":"34-7-1-Z1848C5C73FDDB740","description":"#mathematicaATD Relation and function is an important topic of mathematics. In the previous video you saw Void, Universal and Identity relations. Now in this video you are getting the types of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1003139/0bddd6c7c8039101ba30669cc654404b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/U5mbLQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DItfxKIvq1LI","linkTemplate":"/video/preview/3717948618757045711?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Types of Relations | Reflexive, Symmetric, Transitive and Anti-symmetric Relation | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ItfxKIvq1LI\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTMzcxNzk0ODYxODc1NzA0NTcxMVoTMzcxNzk0ODYxODc1NzA0NTcxMWqHFxIBMBgAIkQaMAAKKWhoeG9pdXpncGRrZGNuamhoVUNTTjRPTnp0RnZYSEpVR1dtWi1DaVF3EgIAESoQwg8PGg8_E9cHggQkAYAEKyqLARABGniB9P_-BfsGAPsDAw0KCPsCCwD7-_cAAADyAAL8_gEAAPcBEgEBAAAA9Pv3Cv0AAADw9QYAAAAAABAHAQv2AAAAGAL9APgAAAAWBvb6_gEAAPgBCv4CAAAACAQCCgAAAAD_Af7__QH_APv7AgMAAAAAEQr1CAAAAAAgAC1PGOQ7OBNACUhOUAIqhAIQABrwAX_0_wDp5eMCyPbUANMn4gGoHAoA8xHPALfxCwGe9OYA1THg_9r27_8dCSQB6gEIAGbu4_8d4v0AIr_2_wXy9gHSGPQBCfHpAUUDF__h8tMAuvcY_Qzk5gEr4NcC9hTg_hgAFP4ODNgBC_7qADbZEgINCC0E9_IA_dvJDQHd8OYFy9vK-xkg-gQl6Pv84PUxByDa9QoQBgj02S30AvjU8f_S2Rr8DhPQAP7h_gH0Cv4I0_3s_yz93wQeJBYJ1vb09QvnGALE5wX-Eu_9_yDbA_HTEfwAEf_xAi71Cvr-4AMG6wPx8ucCAQnpAvz92fL0-SAALaQ3ETs4E0AJSGFQAirPBxAAGsAHTz7Fvn7Y3DwxxrA7CgfMvVcPFLw0hQ69MgDUvWEmID1Cpds8vD-OPd2TKDuJ4Cm9oUh3vnNWujykNjG9mN0jPoFJkL1D9PW8ehcvvgg8MD0pn9S8FRxOvqxNyDw1lx87yTM0PTjoXL1QkDO8wX6-PfL3wb0XrW28soJfvfQIpLx5fJa8Q-f1vX-2H71aIgG925lTPZILmb286-y7-dCPPYVEir2uoMS8s81yPUH7hzwK98q8ypQFPY2iAj27s5u8gkLIPdoT7jwi2N086_uFvT5oTL2HOxE8sgKdvR9hPbySWNI8Y15sPDsODT0tTuu8YvSMPZ5-0L2-dl27Iz3LvTjuuTzetqW8GkKPPfbwwDxnMak6sOLUvXU2yT08jlU8vG1QPZAl_7spabS8XB0APpBmkTwzV4I7KTkMPYNwID132IS85DvGO4z3Az6_LMg8BynYPf9Z87ygibC8_OAcPbnjSD1qu-y7kirAvKCnYT2lfVG5I4m5vJGe4DtPEj875BqXujxy2jt6iZY8m5UIvQh2DL7NpeG7x4NtvVcQjr2dt1a8HW3BPTlpED0uBX-8QZSJPW0lL707SPw6jEzAPCAyW725SAw8gqtcPS9NkbwBw3I8UAKmvXofQj0EwUq7lHckvS-Ftz0node76ezJPEwYzT1f6Jq5F-DBPUWVq71MuOi5tfWYPTmCr7x5GAO7KgExPRWt3Dw1tD872scqPSFLNb2Atri7clSJPCcFLL3kFYg7LolYvd3pM730jaa6bQPXPbWj2L0Mn685HV1APTlOQLvMNsi5X61_vS7isD0JAjo5BQuvuylt-7wbFd84XFQLvZwV8b3cnnU5xUJjvHjePD2odcO48UZmPWh-EDxFZZ64BiRGvcNXtb0IyF03yZRqPCn4NzxcvAC4t0ROPal7A7l7tyi4gzevvej20rzpx423CKnAvASp1Lzr2Uc5vyAzvKwbzz1JDDQ1I6yMPfRsBr7PcKU5KfSwvHrQkj3ROUq3Xa44O4HznT2zGGK23JQcPU6ilD26wIc3ge2LPQjKTb3nrKA4FUcvPer7Wj2eNvS4oFDPvRXvhj3C0gI4LkEBPUP2Cz1IvQ04oM5rPc0muLuuq7039qRCvTAlFz2Dw8g3kl0ZPtlPUL2swj-5ZoKRvXqVC71U1IS31V2ZvBGXgr0HcQO42myhvY3msj0hdAk4JtyQvBYwMb5BoFq5yvRwPSLhKz7xy4o44hiuPG-loj1MJ1K4BqF8vWAcgTxhfLU3WCSBvRYKYj2Mkji4IAA4E0AJSG1QASpzEAAaYPL5AAAYFvbc_wzm_sTd8_a4EqMb1PL_69z_EQrf7hcE_-ABHgAxyRf2swAAACX_6ykCAOVkxsnpFyf8Eciv9S4Jf98EJs70COqxBhcj-wsxGOn6MgDsAbgWONjEQCFKKSAALaJ2LDs4E0AJSG9QAiqvBhAMGqAGAACoQQAAkEEAABDBAADYQQAAAMEAAHjCAAD4QQAAoMAAANhBAAAMQgAAiEEAAFjCAACgwQAAAMAAADxCAABkwgAA4EAAAMjBAADAQQAA4EAAAODAAABkwgAAqMEAAABAAACsQgAAyMEAAADCAABIwgAAQEIAAMDAAAAEwgAA4EAAAIDCAAAIQgAAMMIAACBCAAAgQgAAuEIAABjCAADgQQAAZEIAAKjBAACYQQAAoMAAAFBBAACIwgAAoMIAAJjBAAAEQgAAXEIAAIjBAABAwQAAAMIAAODAAACoQQAAhEIAAHjCAAAgwQAAyEEAABhCAABsQgAAdMIAALjBAABwwQAAmMEAAARCAAAAQAAAUMEAAIjBAACAwAAAvEIAAKpCAAD4wQAAmMEAAABAAADowgAAMEEAANjBAAAAwgAA6EEAADTCAACaQgAAAMEAAJpCAADAwQAAQEAAABBBAAAEQgAAAMAAAKbCAABgQQAA0EEAAABAAACEwgAAyMEAAAjCAACAwQAAQMAAALhBAAAAQQAAMEEAAAhCAABkQgAAUMIAABDCAAD4wQAACMIAAKBAAACwwQAA4EEAAIA_AABEwgAA-MEAAODAAAA4QgAAQEEAAATCAADMwgAAUMEAABzCAAAwwQAAWMIAACDBAACIwgAAEEEAAGhCAACAvwAAeMIAAATCAADowQAAkEEAAFBBAAAUwgAAkEIAAEDCAACCQgAAuEEAADBBAAAcwgAAyMIAAMBAAACgwQAAAAAAALBBAADAQQAAqEEAAHzCAABgwQAACEIAAAAAAACIwQAABEIAAExCAAAAQAAAGMIAADBCAADAwQAAysIAACTCAACIQgAA6MEAAGBBAACEwgAAmMEAAAhCAAB8QgAAQEIAALhBAAAwwQAAiEEAAODBAABUQgAAAMEAAKBBAADgwQAAEMEAAIDCAACwwQAAqkIAAMBBAADoQQAAAEAAABBCAAAwQgAAxkIAAIDAAAAYwgAA4EAAAMDAAAAAAAAA4MAAACDBAACIQQAAgEEAAJJCAAAUQgAA4MEAACTCAAB0wgAAgMAgADgTQAlIdVABKo8CEAAagAIAAMa-AAAQvQAAmD0AAKA8AAAkvgAAkj4AABA9AAAhvwAAHL4AABS-AACYPQAA-L0AAOg9AAC4PQAA-L0AAEA8AACmPgAAUL0AAI4-AAAnPwAAfz8AAHC9AACaPgAAgDsAAFA9AAAEPgAABL4AAIg9AAAUPgAAqD0AAGw-AACYvQAAyL0AAAy-AAAEPgAAUD0AAAy-AADYvQAAor4AAJ6-AABkvgAA-L0AAJY-AAAcvgAAHL4AAKC8AAA8PgAA1r4AACS-AABcvgAAVL4AALi9AAB8PgAAPD4AACy-AACAuwAAPz8AAMg9AADoPQAAuD0AAKC8AAC4PQAAQDwAAHC9IAA4E0AJSHxQASqPAhABGoACAAA8vgAALD4AABA9AAA9vwAAVL4AAFC9AAD2PgAANL4AAHC9AADOPgAAXD4AALi9AACgPAAARL4AAOi9AACgPAAAQLwAACs_AACYPQAAsj4AACQ-AABQvQAA4LwAAOi9AADYvQAAoLwAAEy-AAA8PgAAir4AAKA8AADoPQAAmD0AABC9AADIvQAAPD4AACS-AABsPgAARD4AAHy-AACgPAAAyj4AAEA8AADIvQAAiL0AALg9AAD4PQAAf78AAKi9AABAvAAA2L0AANI-AABkPgAAfD4AAOA8AABwPQAAuD0AAAS-AADgPAAAiD0AAES-AACYPQAAFD4AACy-AABwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ItfxKIvq1LI","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3717948618757045711"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2614713053"},"1512634282590884988":{"videoId":"1512634282590884988","docid":"12-4-12-Z569F82014916C213","description":"a Time - Physics Edition » One problem at a Time - Mathematical Physics Edition: • One problem at a Time - Mathematical Physi... » Study Background Themes: • Study Background Themes » Fun with...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1674474/651c173debe7c6df797bc6f7b9bc52ef/564x318_1"},"target":"_self","position":"10","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7sU_b5tdVow","linkTemplate":"/video/preview/1512634282590884988?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"A Problem Set on the Basics of Mathematical Logic","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7sU_b5tdVow\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTMTUxMjYzNDI4MjU5MDg4NDk4OFoTMTUxMjYzNDI4MjU5MDg4NDk4OGqvDRIBMBgAIkUaMQAKKmhodnN3dmxscW9naWllcGJoaFVDM21RSFNGckpvWTNWYkVHcUZVTGFjQRICABIqEMIPDxoPPxP8AYIEJAGABCsqiwEQARp4gfv6AQT-AgD1_goMAgb9ARz2_Qb2AgIA6Pv8_gT-AQD8_wgDAQAAAPIO9wb8AAAA8QD5CQEAAAAEBPgHBAAAAB8M_fn7AAAAEQUADP4BAAD89Az8AgAAAAn3CgIAAAAA9g8BAwEAAAAMD_8CAQAAAA4GAgMAAAAAIAAtwqTaOzgTQAlITlACKnMQABpg7hEAPhwWxuvyMefyAs8WvsHxrPHt_f8NG_8jKuvK1y2_2gQoAB_MCvWrAAAAAgMDHDgAvGvS2sQXEA7S0Nn7Hgx6HPv74UTxEcAMIRQq6Af7zggTAMwB8B4JGYEmFihMIAAtTqsiOzgTQAlIb1ACKq8GEAwaoAYAAFBBAAA4QgAAGEIAAEDCAADGQgAAQEIAAMZCAAAEwgAAUMEAAPhBAADgQAAASMIAAAjCAACowQAAQEEAAMBAAACAPwAAoMEAAFBBAADQwQAAHMIAACzCAABswgAAMMEAANjBAAAMwgAAEMEAAMbCAADwQQAA4EEAAADBAACoQQAAqMIAAEBAAAAcwgAAsMEAAABCAADcQgAAQEAAAJRCAACgQQAAAEAAAIBBAADYwQAAFEIAAOjCAAAwwgAApEIAAHxCAACgQAAAKMIAAKDAAADIQQAAiEEAAPhBAABAQQAAzsIAAIBBAACQwQAAWEIAAMBBAACSwgAAgMEAAJrCAAAgQgAAHMIAAAzCAABYwgAA0EEAAEzCAAAkQgAAlkIAAHjCAACgQAAA4MEAAFTCAAAQwgAAEEEAAIBAAACQQQAAwMEAAKRCAAAIwgAA0EEAAEBBAACgwAAAmEEAAKDBAABAQgAAcMEAADBBAADAQgAAAMAAAEBBAAAgwQAATMIAAHBBAAAwwQAAgEIAAIBBAAAcwgAAkEEAALhBAAAAQQAAyMEAAABCAAAYwgAAoEAAAOBAAABUQgAAqEEAAEBBAADgQAAAgMAAAAjCAABEQgAAAEEAAEDBAACMwgAAIMEAAMDBAADQwQAADMIAADDBAABAQAAA4EAAAFhCAABAwQAA6EEAAABBAADgwQAAEMIAALhBAABEQgAAHMIAAFhCAADAwAAAUEEAABDBAAAEwgAAQEEAAJDBAACEQgAAoMEAAPBBAABIQgAAHMIAACBCAAAQQgAA4MEAAJDCAAAEQgAAHEIAAOBBAAAwQQAAIMIAAOjBAABEwgAAWMIAAJhBAAAAAAAAEEIAACBBAADQwQAAEMEAANDBAADgwAAAqEIAAOBBAACAvwAAMEEAABBBAAAQQQAAWMIAAGDBAAAwwgAAjEIAAKjBAAD4QQAAmMEAAGjCAACIwQAANMIAAARCAACAQgAAOMIAAMjBAABowgAABEIAAHDCAADwQQAAisIAAIA_AADoQQAABEIAACxCAAAgwQAAkEEAAKhBAAAQQiAAOBNACUh1UAEqjwIQABqAAgAALL4AAIi9AACSPgAAMD0AAEC8AADmPgAAyD0AAEW_AACevgAAiD0AALg9AABkvgAAuL0AAHQ-AACivgAAUD0AAEQ-AABAPAAADD4AABc_AAB_PwAA-L0AAPg9AAAkvgAADL4AAPi9AABUPgAAcL0AAOA8AACWPgAAkj4AABC9AADgPAAATD4AACy-AABUPgAAhj4AAI6-AADWvgAAkr4AAJ6-AABEvgAAkj4AAKC8AAAQPQAAuL0AAFw-AACKvgAA6L0AAFy-AACYPQAAZL4AAMg9AAD4PQAAsr4AAIC7AABLPwAAUD0AAIg9AAAMPgAARL4AAPg9AABUPgAA4DwgADgTQAlIfFABKo8CEAEagAIAAFS-AABwPQAALL4AAC2_AAAcvgAAqD0AACw-AACgPAAAgLsAABw-AACAOwAAFL4AAIA7AAAUvgAAED0AABC9AAAEPgAADT8AAPi9AADGPgAADL4AAIg9AABwvQAA2L0AAKA8AAA0PgAAED0AAEA8AAAQvQAAED0AAHA9AAAwPQAA6L0AAKi9AAAQPQAAiL0AAOg9AACaPgAAfL4AAIi9AABQPQAA4LwAADA9AABwPQAAqL0AAOC8AAB_vwAAoDwAAIa-AADIPQAAHD4AAIC7AAA8PgAAmD0AAIg9AADgPAAAgLsAAKg9AACAOwAAmL0AAAw-AAAwPQAAqD0AAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=7sU_b5tdVow","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1512634282590884988"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2980479139161156403":{"videoId":"2980479139161156403","docid":"34-10-7-Z62FF92BDDB1C572A","description":"Binomial Theorem | 2nd tutorial | Class 11 maths | mathematicaATD A friendly discussion... Friends, Binomial theorem is an important topic of JEE(Main) and Advance. A total discussion is...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/892693/5dfbcd5639787549b311c25c04427f30/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/80r_vwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DoHnWQL7pqxE","linkTemplate":"/video/preview/2980479139161156403?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Binomial Theorem | Class 11 maths | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=oHnWQL7pqxE\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTMjk4MDQ3OTEzOTE2MTE1NjQwM1oTMjk4MDQ3OTEzOTE2MTE1NjQwM2qHFxIBMBgAIkQaMAAKKWhoeG9pdXpncGRrZGNuamhoVUNTTjRPTnp0RnZYSEpVR1dtWi1DaVF3EgIAESoQwg8PGg8_E4MIggQkAYAEKyqLARABGniB7_oBAPwFAAMABQcBCPwCBgLz9vf__wD98vX4_gT-APPyBwoAAAAA_gf0B_wAAAAE-_wL__0BAAQB9v4DAAAACQ0G_PoAAAAaEP8A_gEAAP_8CfsDAAAACAQCCgAAAAAABwL3AwAAAAYNCgkAAAAAEwH5AAAAAAAgAC18Zd47OBNACUhOUAIqhAIQABrwAX8ICAHT2swAxRPiANQn4gG2IPgA7zD0Aa3-AAC-6t8B-fnaALoc2v8m_hIA2R_7AGXu4_8fyggBUL8JAPL88QHBEvsAV_j4AEQCF__i-OX_yyEc_vP0CwAi_94B8gvxA-IQEfcOEff-Cuq4CTTvIALl6RkAARIn_dzKDAHoE_EFHQnE_AUYDgTw3f_56AcmAdod9P02Bv3_CS_mAPnV8v8P1wz8BBnkBQns5wjf_hIE5t8S-Onj8PkENhb_3gj18-bwGPnCz_j3CAwI__7s_Qf1AOoD6RHwAfAREgQk5Q77Aej3DCH9Ee3qAvz9-vf57yAALY27Ezs4E0AJSGFQAirPBxAAGsAHvHSrvipbIDxklVK8Zk4Hvv4qn7uC-KW8ZsE0vis1Vj2jO4g8IJbCPQqjGb0QBp68gQgBvjc-ST2ubYC8LQtWPrCKXL1BLSa92UNLvkOSdjspf4K92NWEvY3yJ7wO3aw8OC_OPM5twrwxb5886QvhPa0ei7wj1DE86JmDPCRU-jybKSO9Q-f1vX-2H71aIgG9_tVDPWA-eb181rU87a-IPYPuHL0u2mu7t1dLPVZ01rvGpyC9FpJivRFedbs-9NO8_m6QPcfscjuhcw098SWZvYfU_rz1UeE8JRetvdtewbwLIc46uKSUPSCFBr06Pc67YvSMPZ5-0L2-dl27Y7QevjYWe7t_YFg88H9sPWapwD3lZQk87-SzvfeRmz3N_bq8f2VKPb_R87z_zKC8ZJPcPW79TzxnMcw8Ms8lPSRNFz3mut88Y2A9PQ8uyD19-e489PNQPdPAD727kq68nCVyPVQRiD1b64s6ft0uvSmnRz13SX87HVpkvHmHBT3C7I66OT2UPWPZB73zcAc9xTVDPfhRDb4Jbyy7CkKDvWy_u70Mg-g7tZEmPX-rMD27Hcy7IhsoPrFpyrzbpcs6dqrcvY388Lz8qwU80TIaPOeMSL3ZPDM8kNlZvbAjabw1pQi8KHJSvXQwMT0-qf67g23kPcKmmT1LomU5xWUGPfoMCL5VIQO6tGBYPc_56TzEL6s6_3UuPSrXpbwdPR878WhjPfZuYr3Btym6CqNZvY5p2LvLKvC6hAWxvY39m7wQ30G17nScPazizb0q_705GFWQPXiLMT1gxBI5vNpAvGKcZD2yDPW51xDBPEB99Dv5OTK4y6LwvFtCHr43BeM5uE6tPDGVXj2cRo44g52nPfWNHr3yRyy5SgsXvgrcmr2pquG2j0R-PYi-G70Q5Zm51ZbaPcQvKzxC8DQ4PM34vMY377xmnN84CKnAvASp1Lzr2Uc5oaVGPWU7Oj3wf784w4AlPOeOjr3DZnI5RZzvOz3R1T3iCUe5eGKWvYlVzbxiP424olPBPaUjaj1op0w43ln7PNjxn70YDZc44tf-uop6rD3VWJW4oFDPvRXvhj3C0gI4QNXNPAriUTsCDso3fOGEPDf8sLpszNQ2eXqAvEkI_zu4Hmc4raf2PbPqmLx7Ozq5zcd6vdMV7L3mm_i4SJZCvSwRw73BzI-4rSRDvQxzRz0ewRY33uhePXjlhL1BUrS4Iv_sPTUpBT7zflu4AEg3u3dVNj0-ld24bgONvSdprj2_9xY3KDWqvDPcIL0Vkkw2IAA4E0AJSG1QASpzEAAaYPv2ABQEKPrgBP7f6s4GE9bCFKwf4gX_AQX_FBvx7iITyssWMwDfyhrkrwAAACnX9QsOANFwqtDmOCzzGNbF1z4Qf-YQEcDxAgDO8Ozl8B1QM9v4FQD99a4sJRG5OwtJOyAALXhgIzs4E0AJSG9QAiqvBhAMGqAGAAAIQgAAgEAAAIBBAAC4QQAAAAAAAEjCAAA0QgAAqMEAAKBBAACMQgAAoEAAAODBAAAMwgAAQMEAANhBAACYwgAAAMEAALjBAADgwAAAAAAAAKBAAACwwQAAoMEAAODAAACSQgAAmMEAAADCAADgwQAAZEIAAJBBAAAQQQAAEMEAAGTCAAAoQgAAwEAAAFRCAADYQQAA0kIAAFzCAACgQAAAlkIAAPDBAACgQAAAAAAAAFxCAACOwgAAnMIAABTCAACKQgAAcEEAAIA_AADgQQAAAEAAAFDBAADwQQAABEIAAKTCAAAQQQAAyEEAAIpCAADgQQAA-MEAABTCAAAIwgAAEEEAABxCAAAUQgAA-MEAAIDAAAD4wQAAdEIAAFBCAAAswgAA8EEAAEhCAAAAwwAAsEEAAKBAAACAQQAALEIAABDCAACgQAAA4MAAAHRCAACIwQAABMIAAAhCAADwQQAAGEIAACjCAAC4wQAAoEEAABDBAAC0wgAADMIAANjBAADAQQAAAEAAALhBAADQwQAAuEEAALhBAABAQgAAYMIAAIDBAACYwQAA6MEAAOBAAACoQQAAsEEAAEBCAAAgwQAAEMIAAIC_AACAQgAAAMAAADDBAACuwgAAAAAAAIBAAAAYwgAAgL8AAKDBAADMwgAAOEIAADBCAAAwwQAA0MEAAMDBAABMwgAAbEIAAJBBAAAwwQAAfEIAABTCAADwQQAAIEEAAIA_AADgwAAAtsIAAMjBAACgwQAA8EEAAMDAAAAQQQAAgMAAAIDBAABgwQAA8EEAAADCAACwwQAA4MAAAABBAAAQwQAAMEEAAEBCAAAQwQAAnsIAAMDBAACiQgAAYMEAAABCAABAwgAAgMIAALBBAAAgQQAAJEIAAIBBAAA0QgAAMEIAAEzCAABUQgAAiMIAAKBAAAD4wQAAAEAAAKjCAAAcwgAAsEIAAGBCAACQQQAA6EEAAExCAADIQQAA4EIAACTCAADIwQAAiEEAAOjBAADwQQAAgD8AADTCAAAQQgAAAEAAAPBBAADoQQAAUMIAAHzCAACuwgAA4MEgADgTQAlIdVABKo8CEAAagAIAALK-AAD4vQAAlj4AAHA9AACIPQAAqj4AAHS-AAAfvwAATL4AADA9AAAcPgAAXL4AAKg9AACCPgAALL4AAIi9AACiPgAA4LwAABw-AADWPgAAfz8AAHC9AACgPAAAgDsAANi9AAAcvgAAoDwAADC9AAAQPQAAbD4AADw-AADovQAAqL0AAIC7AABAvAAAQLwAAIC7AADgvAAAgr4AAES-AAAMvgAAyL0AAGw-AABQvQAAFL4AAHC9AACWPgAAdL4AADy-AAC2vgAAuL0AAAy-AADOPgAA-D0AAGS-AAAQvQAAPT8AAMY-AACAOwAAML0AANi9AABQPQAAQLwAAKi9IAA4E0AJSHxQASqPAhABGoACAACWvgAAND4AADC9AAApvwAABL4AAHA9AADqPgAA2L0AAKg9AACoPQAAoLwAAHy-AACIvQAAPL4AAOC8AAAwPQAAED0AAB8_AAAcvgAAlj4AAFQ-AABwvQAAuL0AAOi9AAAwvQAAFD4AAMi9AAAcPgAAFL4AAIA7AAC4PQAA6D0AACy-AACCvgAAoDwAAKC8AABEPgAA6D0AAHS-AACIvQAAjj4AAFC9AAA8PgAAQLwAAFA9AACYPQAAf78AABS-AADYvQAAiD0AAHw-AAAMPgAAUD0AAEA8AACGPgAAqD0AAKi9AAD4PQAAgLsAAKA8AAD4PQAAiL0AAHA9AACYPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=oHnWQL7pqxE","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2980479139161156403"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3050090379"},"12883977154621466833":{"videoId":"12883977154621466833","docid":"34-10-13-Z6BCCB6BA43DB7811","description":"#mathematicaATD Wavy curve method is an interesting and important mathematical method to find the solutions for inequality. These videos may help the students and maths loving fans.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/752307/a243de5f4641c61b039b3dd1fe2ddd4b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/8ZOnRwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQCFQYkKBgjw","linkTemplate":"/video/preview/12883977154621466833?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Wavy Curve Method | You must know | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QCFQYkKBgjw\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFgoUMTI4ODM5NzcxNTQ2MjE0NjY4MzNaFDEyODgzOTc3MTU0NjIxNDY2ODMzaocXEgEwGAAiRBowAAopaGh4b2l1emdwZGtkY25qaGhVQ1NONE9OenRGdlhISlVHV21aLUNpUXcSAgARKhDCDw8aDz8TnwWCBCQBgAQrKosBEAEaeIH28PwCA_wA_AARBQcH_AICDQD_9___AOn1Afz5_wEA-PUFAA0AAAD5BPEJBwAAAPX4__7y_gEACxH9DQQAAAAbAv0A9wAAABwS_wD-AQAA_QET9gIAAAAOFgoBAAAAAPYME_v_AAAA_Q0A-QAAAAANBP37AAAAACAALVxFyjs4E0AJSE5QAiqEAhAAGvABf8LsAuXv0AHL99YA9x_cAdkYIwD9MtQA3OL9ANvxxAHjKA3_7_P4AAkGNgDT__7_GwHGAAPKFP8j1_H__xD6ANUmFgEJ6wsBQQIW_yAA5v7OBRz_8tcF_hbyx__9Nwv-6wMX_ScF2f4ABuEDOAwrABwNHAHpDBoA29n3At_x6AXt3tr-OBDzARfd-f_B3CUC_ev4_yIbEfztEt39-ev4APPXIv8ILNb-Os36BB__DAXEDAMIFwL0AS8UDQLT3eUF5uId__3--_np6Pz9Ht0C8vUJ9BD8A-r8K_UJ-hfg-vrg8-0B7vP9_94B_gjnGODyIAAtPHgZOzgTQAlIYVACKs8HEAAawAdPPsW-ftjcPDHGsDtTYBy9JELjvG-RBb1Rh_W915eGPYWnYb1x6bM9Jmv5vC-Hjb0cQhW-UPCDPJtIH73LgDM-5tGIvZhiMzzZQ0u-Q5J2Oyl_gr1Hjw--baSRPGg4yjyazLg8vjmCvX_DHzzBfr498vfBvRetbbyygl-99AikvHl8lrz5Rrm9U5ecvWWa37w_P2c9e2GXvNILDryxXhs9EKScPIr117xbleQ9LSXLvDTmH71rEbG9x8jIPB8R07yEWRI9uOdZPWIgGTxJdCW9CFwSvf5cerslF629217BvAshzjqoyjI9fxT1PIk8brxlQ509dzW0vZB2Mr1-xQq-TyAMvaJG3zs-6r896LT4PHYKj7fc74W93Qn2Pcid67oy9ZQ9U0fqua6OEr0OTuQ9WvoLvSt2ajs3TIk9jf02Pcsqz7ok0Q28mWgrPViQZjyG4k49kP5yvUagVbyWWak8ogGGPMA9sju7fGu9g8NmPCB7nDtb5U494ypNuQ-4LjzkEHG8CKWEvfpFaDvFNUM9-FENvglvLLtjKn28o0XMvYcqRrx7DZY9ZL5tPcurxrr2Bak9wbzRvG988bsi5ZI902ldvcI-cDxktmC7qASPvZo0GbucUwm-X_pNPXRLo7u_a6e7OsO5PNY1f7yh_Bg90XxJPXYqKjzTzGk9Dt3svY-KOLq0YFg9z_npPMQvqzo42Ds9owIHPj2c67liL1Q9KaPAvL93I7vPBJQ8NHqPvSeZCLoq6IG9nDygvc4AdbhtA9c9taPYvQyfrzlw9yg9VAqwPCNOIzlx4Dq9LrpLPXIWxzeqfuW8IRK0POCmgzkeEai9zvxKvgHLDjl5uIg966qAPW5gkTn3TIA8om5Rve9ycLizPxC-yDgQvQyTSrnJlGo8Kfg3PFy8ALgbi3w9NckZPW07gra81EO9QVgVu7lI5rcOYYG9RxgrPO8LFLoP0aq7b54KPqCiGbmMGDE9FxiIvTOVHDl5-am7pyXGPcSu_7hbPUy7uzS0PMu1mbhTM7W8DiByPSSYIrnHN2o9IF-CvXb5yjbP4N05-rpnPQoFh7i0kBC-2IyiPZl7BLfFQii9P2A0vWrYlTYcXvA9fQT-PPTnkLi_4ZG67MbWPCnwpjiSXRk-2U9QvazCP7kr3BO8ZJUCvnE9G7g455a8RsA3vWriA7iXUZG9h3IdPVM4i7Yd4ww8Z0bfvWlQErjK9HA9IuErPvHLijh1yfY7Rxk2PcKSjbiYD4293R-EPYzD0TcupJi9fbtbvJDlJ7ggADgTQAlIbVABKnMQABpg8_4AGOct6M_2EwHtywX4_-wxvvjl4f_4Ev8HJP_8CQLg2xoPAPHOKNi1AAAAKwHzFQcA1GC6z9koA_4AutUMFA5_4g0brg0B6NgF-frkJhgS0SYTAPoNuf81ENwwGls4IAAtFCM3OzgTQAlIb1ACKq8GEAwaoAYAAADAAAAIwgAAQMEAAEBAAABYwgAACMIAAJRCAACSwgAAYMEAAABAAACAQgAAuMEAAJjCAACIwQAAhkIAADDBAAAQQQAAeMIAAODBAAAwQQAA8EEAAIbCAADAwAAAiMEAAChCAACAPwAAlMIAAADBAACeQgAAgEEAAKjBAABwQgAAgMIAACDCAAC4QQAAUEEAAAxCAAAIQgAAgsIAAEBAAAAAwgAA2EEAABRCAAAwwgAAKEIAADBCAAAUwgAAAMIAAIhBAACAvwAAwMAAACDBAABAwQAAAEEAALBBAADAwAAALMIAAAzCAACwQQAAQMEAAABBAAC4QQAAAAAAAFzCAABcwgAACMIAAMBBAACAQQAAsMIAAHxCAACgQgAAjEIAAIDCAAAowgAA6EEAAO7CAABcwgAAyEEAAEBBAABcwgAAbMIAAHBBAACgwAAAHEIAAHDBAAAMwgAAOEIAABBBAADAwQAANEIAAPBBAAC8QgAAcMEAAODBAAA4QgAAyMEAAKDCAABMQgAAgMAAAPjBAAAwwQAAyEEAAFBBAACwwgAAQEAAAEBAAADowQAAAEEAABRCAAAAQQAAjkIAABRCAACAwQAA4EEAAABCAAAEwgAAAAAAACTCAAAEwgAAMMIAAOBAAACoQQAA4MEAACjCAADoQQAAVEIAAIDAAACYwQAASMIAAIA_AADAwAAADEIAAFjCAABkQgAADEIAAEBBAACgQAAAIMIAAIrCAABswgAAqMEAAHxCAABUwgAADMIAAFBBAAAUQgAAYEEAAGDBAAAwwQAAvkIAADBBAADAQAAA4MAAADTCAACwQQAAeEIAAEDBAADQwQAAoMAAALBBAABcwgAAEEEAADjCAABQwQAAiMEAAIA_AABAQgAAFEIAACDBAAAYQgAALMIAAMBAAABcwgAAgMAAAFDBAADgQQAA8MEAACDCAABAQQAAgkIAAAjCAABcwgAABMIAALBBAACuQgAAoMAAACjCAADGQgAAAEEAAPhBAACAQAAAsMIAAIBAAADwQQAA8MEAAOBBAADAQQAAIEEAAFzCAAAQwiAAOBNACUh1UAEqjwIQABqAAgAA6L0AABS-AACGPgAAqD0AAOg9AACuPgAAmL0AAAu_AAABvwAAQDwAAIC7AADYvQAAPD4AADQ-AADoPQAARL4AAJ4-AAC4PQAAMD0AAJ4-AAB_PwAABL4AAKg9AAAwPQAAqL0AAJ6-AAAcPgAAiD0AAOi9AADYPQAAJD4AADA9AAD4vQAAiL0AAKg9AACIPQAA6D0AAMi9AAB8vgAAmL0AAFS-AABwPQAA2D0AAIA7AAC4vQAABL4AALg9AAA0vgAALL4AAK6-AAD4vQAAuD0AAI4-AAC4PQAAfL4AAIA7AAAlPwAAcD0AALY-AABwPQAAQDwAAEA8AACYPQAAgLsgADgTQAlIfFABKo8CEAEagAIAAGS-AADYPQAAyL0AABO_AACovQAAyD0AAMo-AAAwvQAAUD0AACQ-AACgPAAANL4AAOC8AAD4vQAAED0AAKA8AACYPQAAJz8AAFS-AADGPgAAqD0AADC9AACovQAAcL0AAEC8AACYPQAAoLwAANg9AACIvQAAiD0AAHA9AADoPQAAVL4AAFy-AACYPQAAML0AAAQ-AAC4PQAAdL4AAOA8AAA0PgAA-L0AALg9AACgvAAAgDsAALg9AAB_vwAA-L0AADy-AACIvQAADD4AAMg9AABQvQAAgDsAAIY-AADYPQAAML0AANg9AABQPQAALD4AAMg9AAC4vQAAcD0AADA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=QCFQYkKBgjw","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12883977154621466833"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3350057049"},"9213111892433365838":{"videoId":"9213111892433365838","docid":"34-7-8-Z9162DDB3FFE00E5D","description":"Power Series and Convergence | mathematicaATD In this video definition of power series, radius of convergence and example are discussed. In the next video applications of power series in limits...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4830796/436ce27f716c0c3bc7aa1e6ce1070a66/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/uYWRdwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkEFkjViimBg","linkTemplate":"/video/preview/9213111892433365838?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Power Series and Convergence | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kEFkjViimBg\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTOTIxMzExMTg5MjQzMzM2NTgzOFoTOTIxMzExMTg5MjQzMzM2NTgzOGrVEBIBMBgAIkQaMAAKKWhoeG9pdXpncGRrZGNuamhoVUNTTjRPTnp0RnZYSEpVR1dtWi1DaVF3EgIAESoQwg8PGg8_E7wFggQkAYAEKyqLARABGniBBv74_fwEAPX-CgwCBv0BAQj-CPj-_gD2APX0AwL_APP6BwEEAAAA9QTx-wkAAAD-BQUH_v4BAAQC7gYCAAAAEQQG-fgAAAAJB_T2_wEAAPX3BwIDAAAADRQJAQAAAAD2DgEDAQAAAAYNCgkAAAAACAn7AwAAAAAgAC2mjt87OBNACUhOUAIqhAIQABrwAX_o9AHS2csAvOTD__ch2gGoHAoA_DXRAMr2_gDZ8MEBzgr4APkCCQD5ABX_zC_-_yXr1__u0OkAIr_2_wvZDADAEvsAJvobAT0TLv8T0Av_uvcY_eXiCgEY1tED9hTg_vrk_Pfx_OH6D__TAyX7LwEOCBcE_wQeBb3NAwDH-PgH_ty__xkg-gQL3w_4qf4dB_z84wcWEwn55iHoAvjYBf3-3hj8HRzg_ST_CP___QkKyyf-Ahju6ggJGxEF7-DlAdfxLwbU-wr3COkIDAXYEfQPF-YD_ODzChXaE_v98-r7BN_4-ecCAQkM9e4Q-Av28SAALTw7ETs4E0AJSGFQAirPBxAAGsAH5E22vkIFLDxr56Q7oRBRvjqbqbyfsF-946C5vRxtizxeBSO8z9vYPcjkib3WL2K99pZivgV4gTx5Pw28Jv_zPfEFt72gZSc8dXT8vS8Tmj0LAhC9Px46viAZAb1txb48nRidPQh8mbx_xh68oDTEPabVUL0R_9Y5rf6TvY6_Hj2eG6Q86-Z9vYmukL3-HiM8QqC5Pdt9GL24BP07IAe6PYKRN72Ispy8s81yPUH7hzwK98q8t9WsO-fMMT3ZPgS9x0wCPkgMLD1eHAs9Wm2ZvDNkhr2-ew-8TLQavY-RB7yttg08ZEBRvDcXfzxnPow8YvSMPZ5-0L2-dl27rfkBvlSlkjwh0d87LOVGPYZNrjxjUJ477-SzvfeRmz3N_bq8vG1QPZAl_7spabS8XB0APpBmkTwzV4I7KTkMPYNwID132IS8Y2A9PQ8uyD19-e48w7oRPs6RsLx9p5O8U51EvIZ4IDtRgI08GEsnvYNZ1zzJwrw8jLJIPIhWXTzIGZQ8waPyvFmBRj1nk6g8m5UIvQh2DL7NpeG7CkKDvWy_u70Mg-g75cPCPVdSuDyMx5w7ZfBhPWlRxLw_dP86jEzAPCAyW725SAw8qQiBPCaOvLynBti7_DGyvctBqj0DH0C5VK7su-RZeD2WFRa8cwdbPQNTxz1yDME5IziEPYEtZb34cY86tfWYPTmCr7x5GAO7OwZfPXi3Ej1BxrO6zKwvPcW9s726ocY6AWV4PDw0B71Tgjm6kWGlvSVGir30qLs5bQPXPbWj2L0Mn685mcCIPfN23zzFB4q3CH8VvVtErz2Ygfg48V7avI9_MDwRqXK5HhGovc78Sr4Byw45uE6tPDGVXj2cRo44nfvGPHXhDTxkEpi5L1DyvahcnL1DgL-3-nIQPYYIkzzqlJq4eJ6TPW642Tz9qJ24KWPXvI3-Ib1wTZu5hd6xvQJ2H73yNZ45D9Gqu2-eCj6gohm5EaBQPbpJnL2osHk57YMsPN5kqj1e6b246FGMvFpAcj0J5bw3I2GEPLpnvT0lX3e3gTpKPW3YQL05Hq-3ui48PdThEzyBZRW4IvsAvsZfJD0XmGU40KINPWA8Zrpz4ie4hXq6PTompjzH6Gg49yizO3oxGT3Zetw4weMrPtylaLwHiXS5VMXUvf97S70YUVe2eTMUvWoslr1I6DC3BpadveuMHz5bH_I4JKMevdlHkr2w4DS4ipZXPRBY-T2NF0A4G3fUPNMnYz2lNKC4squPvXy6-jxzlDQ3WCSBvRYKYj2Mkji4IAA4E0AJSG1QASpzEAAaYAYEACb3NO7VCyXu6eLs6gTbIM0b1vX_5vEAHAHr1BkV_OUHHQAcxBzauQAAABbrBgsXANdg48kLGAkmAcvZBR8Vf80QO7P2D_vZDggE_yBIAd8IIwDcA7QjHPu-OwEYGCAALYi7PDs4E0AJSG9QAiqPAhAAGoACAADOvgAAQDwAAJo-AAAcPgAAHL4AAMY-AAB0vgAAK78AAHy-AACIPQAAPD4AAFS-AABwPQAAoLwAAPi9AADovQAAij4AACy-AAD4PQAA_j4AAH8_AADgvAAAPD4AACS-AABwPQAABD4AAHC9AAAwPQAAyL0AAIg9AAB0PgAAQLwAAEy-AABcPgAAJD4AABS-AACgPAAA6L0AAJq-AADevgAATL4AAMi9AACaPgAAML0AAOi9AACIvQAAij4AAFS-AAB8vgAAVL4AAK6-AACWvgAAyD0AAHw-AABMvgAA4DwAADE_AADIPQAAoDwAADA9AADgvAAA6D0AAOg9AAAsviAAOBNACUh8UAEqjwIQARqAAgAA6L0AALg9AACYvQAAD78AAEA8AACoPQAAqj4AABy-AAAsvgAA1j4AAKC8AAA0vgAA2D0AAHy-AAAEvgAAcL0AAHA9AABDPwAAiL0AAJ4-AAAwPQAAoLwAAFA9AACAOwAA4LwAADC9AAC4PQAABD4AANg9AABAvAAA6D0AAFC9AAAUvgAA6L0AAHC9AACovQAAHD4AAMg9AAB8vgAA4LwAAIo-AADIPQAAVD4AANi9AACovQAAjj4AAH-_AAAEvgAAPL4AAKg9AAAEPgAABD4AAKI-AACYvQAAqD0AAEC8AAAQvQAAbD4AALi9AABwvQAA4LwAACw-AAAQvQAAyL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=kEFkjViimBg","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9213111892433365838"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"186978670"},"2879724685599581656":{"videoId":"2879724685599581656","docid":"34-10-4-ZD7C33D67DF4F0F0E","description":"Taylor's and Maclaurin's Infinite Series | Two Examples | #mathematicaATD Some video links on limits and continuity are given below: Sandwich Theorem or Squeeze Play Theorem for Evaluating Limits...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3645798/e5a9c9d45879f9e19747229e378d416c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XKSIcwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFP9Dy3iVX9I","linkTemplate":"/video/preview/2879724685599581656?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Taylor's and Maclaurin's Infinite Series | Two Examples | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FP9Dy3iVX9I\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTMjg3OTcyNDY4NTU5OTU4MTY1NloTMjg3OTcyNDY4NTU5OTU4MTY1NmqHFxIBMBgAIkQaMAAKKWhoeG9pdXpncGRrZGNuamhoVUNTTjRPTnp0RnZYSEpVR1dtWi1DaVF3EgIAESoQwg8PGg8_E5oFggQkAYAEKyqLARABGniB-AMIEAT7AAT0EgT7CfwC8RcA9Pj9_ADj8PX_-_0CAPIA_f7-AAAA7QoAAQAAAAANDQH_Af0CABP_7ggCAAAAFg0AAf4AAAAGBwkU_gEAAAMAAPsD_wAACwb9_P8AAAD--gsSAAAAAO0bAQcAAAAA-AQAAf8AAAAgAC3zHMc7OBNACUhOUAIqhAIQABrwAX_0_wDp5eMCvOTD_9Mn4gGlLiX__DXRAMr2_gDUDrkB4QjzAN7qHf8G8B0A5xzj_0vd7f4A2vYAK9YO__vg-gDSGPQBE8YDAEUDF_8N3Pz_5fkk_AnZ-_8Y1tED7QPf__r8EwDx_OH6Cuq3CR7oFwMHIy4KKeMp_vHECP_fAwsBy9vK-wwA9QoA5_n-xv4gAfzp-P8J4QH_5iHoAvjYBf3p4wn0FkDp_w3WGQcXD-MBvBUI-BIB3QENPAH_198EBBLTHgzj8vvz4-IK9xrzDwgMBP77Ce71CAHZFfwv7vz_9Prq__gY-QDp4_QO4ib58SAALaQ3ETs4E0AJSGFQAirPBxAAGsAHv7q6voAL1zyR_WK8d2UnvhVEk7xBye68MgDUvWEmID1Cpds8z9vYPcjkib3WL2K9bOxSvndkUT0DKhe9y4AzPubRiL2YYjM8dXT8vS8Tmj0LAhC9V7E4vkelfTyl1Ao9O56APSjABr2RjOY6wX6-PfL3wb0XrW28nkuMve1ItTyZy1e8Q-f1vX-2H71aIgG9_tVDPWA-eb181rU8IAe6PYKRN72Ispy8t1dLPVZ01rvGpyC9I57RPK-rDTyuy1q9CXmTPQ3WyTz8jmE8nFg2vS2eNb2Q4-I80V6IvfqCEb32pek7rGMLPQ0GMjxa7Ju8ZUOdPXc1tL2QdjK9rfkBvlSlkjwh0d8799a2Parw1DloVwQ7A3NZvQ3mmj0vYy-8vG1QPZAl_7spabS8z3yjPbgyUj2n0FQ8VmZFPQyoXD1bUOm8kCQQvBDfoz2mYgM9k1IQPjEmXb2Vuyq8llmpPKIBhjzAPbI7q-bevNZHtj0eVpM8bayEPB0QNz2zW3A8VjdtvVBhFj105NI8JF6eu2L46L1TGGc77EO4vY9QA75_QBC7PRVGPeprpzx6BkO8WYfDPQrPVb30glM7P531Obt7QL3JsOk7FvVuPDCQFr2BXGI7KVvkvRv3IT1eq5C7_H8mvQBKbT2Slue7IB8ZPdhhnD0krBW7KXCcPZIry70o9to4Rg6MPcWUA738MW87-5trPfYLVj0OKye6li8ePa7Yj732P-G6clSJPCcFLL3kFYg7KuiBvZw8oL3OAHW4bQPXPbWj2L0Mn685XS-iPUSidTys0Ic4X61_vS7isD0JAjo5U7MnPdKQTL0zGpQ4y6LwvFtCHr43BeM5n4nZOzCnXz2VyeA4QIUjPRrwQ7zJoLI5L1DyvahcnL1DgL-3vLS8O94EPz3wrKU58UWQPVKtTzyesr84VA6HvR7b17zQvJ-4KFqTvQtx9rxuJq45JdcDvQS0uD2qJ6q4jBgxPRcYiL0zlRw5w0-XvdODAj7Tfkm5UdnwvDnlGz2SSpQ4W8gMvIuvgT03bjq5ge2LPQjKTb3nrKA41_QlPZ8yCD1JDHC4aHUyvmSkKD0Xyky3axGsu4uA8bsFPYU4vjA5PaNLrjzwjkY4b7eJPEJRajyHQik4sRUEPsb_-Dsy2VO4J3e-vTqbCb1EyjM4znI0vF0Py72ocJu3hs2LvQiw6D1Us5Y4HeMMPGdG371pUBK4yvRwPSLhKz7xy4o4PCn6u1UqbT3gMo246FWzvRYk7DzNuCE42OsCvSqjNj2Y8m00IAA4E0AJSG1QASpzEAAaYP39AC8fO97p9BP28uft-uvKIL3-1Q3_CvT_1enX_f4g5dYAEf8ZnSrfpwAAADHQF_wJANt3zeXuLQ7UBbafDfMSf9wZM6naBgfl_hD4GSdNEOLdRwDX56MgD_veWu5BOCAALYVLHTs4E0AJSG9QAiqvBhAMGqAGAAAkQgAACEIAAEDBAADgwAAAkMEAAFjCAAAAQAAA4EAAAEBCAABgQQAADEIAAGzCAABAwgAAgEEAAHxCAABIwgAAiMIAAATCAAAAwQAA8MEAAEBAAABowgAAuEEAANBBAAAoQgAAAMAAACTCAADMwgAABEIAAMBBAABAwgAAREIAACTCAAC4wQAAKMIAAABBAAAQwgAAkEIAAABAAAAgQQAAGEIAABTCAAAQQgAAMEEAACBCAACowgAAZMIAADBBAAAgQgAA-EEAAFzCAAAcQgAAFMIAACDBAACAQgAAYEEAALDCAACAvwAA4MAAAGRCAABYQgAAGMIAABDBAABowgAAQEEAACTCAAAQwQAAJMIAAATCAAAAwQAA0kIAAFxCAAD4wQAAoMAAAEBBAAAAwwAAkMEAAODBAABQQQAAuEEAABTCAAAMQgAAgEAAAIhBAACQwQAACEIAAIBCAACAQQAAgEEAAKLCAACQQQAAokIAAIDAAAB8wgAAgMEAABjCAABgwQAAFEIAAFRCAACwwQAAMMEAAERCAADQQQAAXMIAANDBAABQwQAAoMEAANBBAAAgwgAAUEIAAKBBAABQwQAAKMIAAAzCAAAIQgAAoEAAADDCAACKwgAAQMEAAMDBAACwQQAARMIAABTCAAAwwQAAFEIAAAxCAAAAAAAAoEAAACDCAABAwgAA8MEAAODAAACAPwAACEIAALjBAABMQgAAAMEAAJDBAAAkwgAAzMIAAIhBAACAwAAAsEEAAMBAAABAQgAAgMEAAAjCAADgwAAAEEIAAEBAAADQwQAADEIAAExCAAAAQgAAEMEAAMBAAADwwQAAisIAAFTCAAAMQgAAGMIAADRCAADwwQAA-MEAAFBBAAB4QgAAhEIAAIBCAAAwwQAATMIAALDBAACYQgAA-MEAAIjBAACAwAAA-EEAAIjBAAAgwgAAxEIAAEBAAADgQAAAwMAAAKBBAAAMQgAAYEIAAIjBAAAcwgAAqMEAACDBAACIwQAAfMIAAILCAAAgQQAAgEAAAJxCAABQQgAAKMIAAKjBAADAwAAAIMEgADgTQAlIdVABKo8CEAAagAIAAK6-AAAsvgAAkj4AADA9AABQPQAAdD4AAFQ-AABbvwAAmr4AAIC7AABQvQAAqL0AAOi9AACWPgAAuL0AAAy-AAA8PgAAQDwAAAQ-AAAhPwAAfz8AAOC8AAAwPQAAoDwAAOC8AABEvgAAZD4AAIi9AABcPgAARD4AAFQ-AACOvgAAXL4AAPg9AABMPgAAEL0AAPg9AADgvAAA5r4AAKq-AAA0vgAADL4AABQ-AACIvQAABL4AAHC9AAAPPwAAHL4AADQ-AACyvgAAgDsAAES-AACYPQAAij4AAJa-AACAOwAAbz8AALg9AABwvQAATD4AAAQ-AACYPQAAPD4AABS-IAA4E0AJSHxQASqPAhABGoACAACoPQAAUL0AAMi9AAA3vwAAir4AALg9AACWPgAAQDwAAOi9AACSPgAA4DwAADy-AACaPgAAFL4AAIA7AACYvQAAyD0AACM_AAAMvgAAsj4AADy-AADgvAAAgDsAAKi9AADIPQAAMD0AAHA9AADgPAAAiD0AABA9AACAOwAAcL0AAEy-AACSvgAAML0AAIi9AACgPAAAiD0AAFS-AAAQvQAAgDsAANg9AACAuwAAiD0AAAS-AADYvQAAf78AAIg9AACKvgAAuD0AALg9AAD4PQAAUD0AAPg9AAAwvQAA4DwAAFC9AAB0PgAABL4AADS-AABsPgAAND4AAHw-AACSviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=FP9Dy3iVX9I","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2879724685599581656"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2651153240"},"6778664141704106106":{"videoId":"6778664141704106106","docid":"34-11-12-ZA5EF65296A6A9166","description":"Proper knowledge of mathematics must provide many opportunities for problem solving relevant challenging questions. This video will help to understand the difference between onto and into functions.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2351325/405f8bb01f303f6067572d7da4531de9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TvmKcAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dw9MOjX1fGmc","linkTemplate":"/video/preview/6778664141704106106?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"ONTO and INTO Functions | Difference between them | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=w9MOjX1fGmc\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTNjc3ODY2NDE0MTcwNDEwNjEwNloTNjc3ODY2NDE0MTcwNDEwNjEwNmq1DxIBMBgAIkQaMAAKKWhoeG9pdXpncGRrZGNuamhoVUNTTjRPTnp0RnZYSEpVR1dtWi1DaVF3EgIAESoQwg8PGg8_E-4EggQkAYAEKyqLARABGniB_vTzAgL-APX-AwX-Bf4BFQX4BvUBAQD___P7_AX-AOj8EQUFAAAA-gj6EQIAAAAB9gEE9f0BABcQ9ggDAAAAD_r89PUAAAAODPsD_gEAAPsAA_0D_wAADgkBBQAAAAD5Bv73_gAAAAAS_P8BAAAAFPwABQABAAAgAC3McNA7OBNACUhOUAIqhAIQABrwAX_qF_7HG-gAoPbGAPUm1QLE_C0AO0Xb_535IAGxBNwA3BACAOfmEwALCEEA3OfhASEBugDs1tEAKs_u_hwo9wDnIx4AIOoUAk4DGv8P6dYAowoQ_-fb_f4c0MsDAC73_yPyBP0jEu8CDOetChH-SAH_IBoG2vgd_dX__PzQKOQA_di3_ioZGQX6rQ_73tAsAw7k_AkJDSn77PUBA-zg5Qb97QfzCTXO_TDU9QLk1CX97OMECUfa6Awj-CkH5trGAuPtHPe4yPf1KOn_AR2k-PrjLukJ_vcBFCcIE_X00gH7Bdr3-PT59BP9AOUIDAPr-CAALb9OADs4E0AJSGFQAipzEAAaYAUAADPnHuPr_Qb66snY9e6yGdMS7Aj_4vsAFgTXAicQ19b-CQAV3Rr0twAAABkPBw4fAOFc8Mz5Hgcs8LzLCBQlf-0XGsfvGv_S8BoP9S4ZGuj5HQDwDLoaVRq9KhkoPyAALamQOzs4E0AJSG9QAiqvBhAMGqAGAAAAAAAAAMAAAFBBAADgQAAAQMEAAFzCAAAQQQAAkMIAABDBAADwwQAAuEEAAOhBAADAwAAAmMEAAFBBAAAAAAAAwMAAAKrCAAAgQQAAQEAAADxCAAAwQgAAIEIAALhBAACEQgAAGEIAAJzCAAAIQgAAgkIAABDBAADAwAAAEEEAAEDBAADQwQAAWEIAALBBAABYQgAAIEIAAIC_AAAwQQAAOEIAAEDBAADYQQAAFMIAAPhBAABQwQAA0EEAAHDBAABcQgAAQMAAABxCAADQwQAAbMIAAJzCAADQQQAANEIAACDBAACAPwAAAEIAALBBAABQwQAAZEIAADRCAAA8wgAAEMEAAIjBAABAwAAAmEEAAKrCAACYQQAAbEIAAKJCAACCwgAAQMAAAEBCAABkwgAAMMEAADRCAACcwgAABMIAAAjCAACAQQAAFEIAAIC_AAAgQQAAgL8AAGxCAAAIQgAAYEEAAJBBAABwwgAAFEIAAERCAAAgQQAAAEAAAADBAACQwQAA0EEAANDBAACAvwAAgEAAADDBAADQwQAApMIAAHRCAABAQAAAKMIAADhCAAAwQQAA4EAAAIBCAADgQAAA2MEAAKZCAACeQgAA8MEAAABBAABkwgAAAAAAALjBAAAAwQAAGMIAANjBAAC6wgAAHMIAAFxCAABgwQAAHMIAADjCAAAswgAA8EEAAEDAAACQQQAAtEIAAJJCAABAQQAAkMEAADjCAABgwQAAwMAAANjBAABwQQAAIMEAAIBBAAAUQgAAiEEAABDBAADgQQAAJEIAAGhCAACAvwAA4MEAADDBAABYwgAAhEIAAKZCAAAAwAAANMIAAADBAADgwAAAAEEAADTCAADYwQAAiMEAAADAAADIwQAAYEEAAIBAAAAgQQAA2EEAALjBAADgwQAAgsIAABDCAACAwQAA7kIAABDBAACgwgAAQEIAANxCAACgwQAAHMIAAAxCAABcwgAAyEEAAGjCAACgwQAAAAAAAKDAAACYQQAAHEIAAKjCAADKQgAADEIAAOhBAADIQQAAQMAAABDCAABwQQAAUMIgADgTQAlIdVABKo8CEAAagAIAAGS-AAB0vgAAUD0AAKC8AAAQvQAABz8AAKA8AAAPvwAAdL4AAMg9AACAuwAAgr4AABw-AAAwPQAAmr4AAFA9AACCPgAAoDwAABQ-AAAZPwAAfz8AADy-AAAEPgAAgDsAALi9AAC4PQAA6D0AANg9AAAwPQAAFD4AAIY-AADYvQAA-L0AADC9AAD4PQAAMD0AABQ-AAAsvgAAgr4AABS-AAB8vgAAyr4AADw-AAAEvgAARD4AAIC7AACYPQAArr4AAEy-AAC-vgAABL4AABS-AACSPgAAbD4AAOg9AACAOwAAJT8AAEw-AADIPQAAfD4AAKA8AADYPQAAML0AADA9IAA4E0AJSHxQASqPAhABGoACAAAwPQAANL4AAMa-AAADvwAA-L0AAMg9AAAPPwAAUD0AABS-AACIvQAA6D0AAGS-AABQvQAAgr4AAAQ-AACgvAAA6D0AANY-AACCvgAA1j4AAK4-AACSPgAA6L0AABS-AACoPQAA4LwAADy-AAAUPgAAgDsAANi9AAAcPgAAqD0AAJK-AABkvgAAFD4AACS-AADePgAAPD4AALa-AADYvQAA-j4AAEC8AADIPQAAyD0AAFA9AACCPgAAf78AACy-AADovQAA4LwAAJi9AACePgAABL4AAKA8AABkPgAAHD4AAMi9AABAvAAARD4AALg9AACAuwAAdD4AAMg9AAAwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=w9MOjX1fGmc","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6778664141704106106"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1481241004"},"1708796046185505467":{"videoId":"1708796046185505467","docid":"34-1-17-ZF2A551F63EEFCC9A","description":"Proper knowledge of mathematics must provide many opportunities for problem solving relevant challenging questions, for concept building and connection with curriculum and real World situations.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2225548/d884bddc5c62749cd116530413d276c8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/elcyBgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHdXN8nrZ5wM","linkTemplate":"/video/preview/1708796046185505467?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Important Algebraic maths Formulae | For begineers | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HdXN8nrZ5wM\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTMTcwODc5NjA0NjE4NTUwNTQ2N1oTMTcwODc5NjA0NjE4NTUwNTQ2N2q1DxIBMBgAIkQaMAAKKWhoeG9pdXpncGRrZGNuamhoVUNTTjRPTnp0RnZYSEpVR1dtWi1DaVF3EgIAESoQwg8PGg8_E7kIggQkAYAEKyqLARABGniBAvj9-AL-APT-Cg0CB_wBAfz2_Pj9_QD1APT0AwL_APfs_gcHAAAABhT1AP4AAAAHBgMF-f0BAA4D-BEDAAAACg37AvoAAAARFQf5_gEAAPT7_vwDAAAADQ4P9gAAAAD4DwXw__8AAPoTCg0AAAAA-wkHA_8AAAAgAC0R7c47OBNACUhOUAIqhAIQABrwAX8HDQDP5uD_qAbVALob2v-0EwQA_DvLAJXK8gDOELABzPbjANjwBQEIIhYBxTX-_xbTqQPl9ff_MNEQ_xjx7gDsNg0AH-knAjMANQExEwL82yc0_ffhFAD9vtkAHh7YAP7jGf8J-tQBEf_OAzMUGAUQCRoFG_MnAt7XF_z27OP96djT_SctFATt2P_45-0dBfvf4gESBgnyshLhAffTBfzm3wvz-UTh-frP9AUG3-sOp84P_ykE5vwiLAv5ywnL_dzAKwfR4QD279MAAxvdIvngFO4J98jyEfnyDPwP8wwA4fcBCgr_Af_13fMC8-Pv5CAALVzRADs4E0AJSGFQAipzEAAaYA7yACQbL-b77Pzt7sz05rLJIKQs3_P_6Pz_IRHw-i8awNEHGgDywS3YpwAAABz__AgFAN91xbEDSRbh5L--ASkWf8UPQskL9we07w3sFvQ9FgLpOgDqBpsrKjS8SgA8SSAALUoWGDs4E0AJSG9QAiqvBhAMGqAGAACIwQAAUEEAAAAAAADwQQAAuMEAAKBAAAAoQgAAHEIAAEDBAACYwQAAPEIAAGDCAAC4wQAAHMIAACBBAAAgwQAAMEEAAFBBAADYQQAAiEEAAIBAAACAQAAACEIAAJbCAABMQgAAQEEAAEjCAAAEwgAAPEIAADBBAADAQAAAYEEAAGTCAAAMQgAATMIAAKjBAAAkwgAAfEIAAOBBAADAQAAAoEEAACDBAAB8QgAAoMAAACxCAAD4wQAAgEAAAIzCAABAQgAAIEEAAOjBAABgQQAAIMEAAOBBAAAAQQAAAMAAAI7CAAAgwQAAmEEAAOBBAAAQwQAA4MEAAIA_AADAQQAAfMIAAIhBAACSQgAA8EEAAOjBAAAEQgAAtkIAAKhBAACowQAAgMAAALDBAABQwgAACMIAAFBBAAC4wQAAIMEAAKbCAAAwQQAAAAAAACxCAAAswgAAoMAAAIC_AAAUQgAAcEEAAMDBAACIwQAAjEIAAKhBAADIwQAAcEIAAMLCAADowQAAwEEAAODAAAAwwgAAIMEAAIDAAACYQQAA8MEAADDBAADgQAAAUMEAAAxCAAAAAAAAEEEAAJpCAACawgAA0MEAAADAAACwQgAAhMIAAKDCAACMwgAAQMAAAHBBAADAwQAAcMEAAMhBAAB0wgAAiMEAAHBBAAA0wgAAcMIAAETCAAAYwgAAOEIAAJRCAADIQQAA3EIAAABCAAAUQgAAoMAAAHDBAABkwgAApMIAAGDBAACwQQAAAEEAAOBAAAAEQgAAYEEAADTCAADgwQAAuEEAABxCAAAwQQAAoMAAAJjBAACAwgAAQEIAAHxCAADoQQAA0sIAAMhBAACEQgAASMIAAMDAAADowQAAoMAAAADBAAAUwgAAAMEAALhBAABAQgAAgEIAAEjCAAAAwAAA4EAAAIjBAAAwwgAAsEEAAIDAAAAgwQAAMEIAALpCAADgQAAAoMAAAJDBAACGwgAAKEIAAEDBAABAwgAA3kIAAFDCAABwQQAABEIAADDBAABwQQAAwEAAAODBAACiQgAAMEIAAJTCAACywgAA2MEgADgTQAlIdVABKo8CEAAagAIAADS-AADYvQAADD4AAHA9AAAQPQAAmj4AACS-AAD6vgAAnr4AAJi9AACgPAAAfL4AAKg9AABUPgAAPL4AAAy-AABUPgAAML0AABw-AAC2PgAAfz8AAEC8AACYPQAAoLwAAAS-AABUvgAAoDwAABA9AADIPQAAND4AADw-AAAEvgAA6L0AAKA8AACYvQAAED0AACw-AAD4vQAArr4AACy-AACevgAAuD0AABw-AACIvQAABL4AAOA8AACqPgAAVL4AAJi9AACivgAAFL4AABy-AACqPgAADD4AAGy-AADgvAAAHz8AABA9AAD4PQAA-D0AAIa-AAD4PQAAMD0AAAS-IAA4E0AJSHxQASqPAhABGoACAABMvgAAVD4AAOi9AAA_vwAAkr4AAOA8AADCPgAAgLsAADA9AABUPgAAUD0AACy-AAAsvgAAqL0AALi9AACgPAAAiL0AABM_AABcvgAApj4AACw-AAC4vQAAyL0AAGS-AADIvQAAND4AACy-AAAsPgAAqL0AAOA8AAC4PQAAUD0AAKi9AACGvgAAqD0AAOC8AACSPgAA-D0AAFS-AADIvQAAtj4AABC9AADgPAAAQDwAALi9AAD4PQAAf78AAOC8AAAwvQAAyD0AADw-AAAUPgAA4DwAAAQ-AACaPgAAyD0AALi9AACgPAAAiD0AADC9AADYPQAA4LwAAJg9AADoPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=HdXN8nrZ5wM","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1708796046185505467"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16381959044693439865":{"videoId":"16381959044693439865","docid":"34-2-13-Z4CAD036C032C1982","description":"Relation between Beta and Gamma functions | mathematicaATD It's an important topic. It will also help you how to evaluate a double integration. Please watch the complete video.For more...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1615789/a53a23dc30d3329008f1bce9de247ea1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eOFhcAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZnrn75t-SaI","linkTemplate":"/video/preview/16381959044693439865?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Relation between Beta and Gamma functions | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Znrn75t-SaI\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFgoUMTYzODE5NTkwNDQ2OTM0Mzk4NjVaFDE2MzgxOTU5MDQ0NjkzNDM5ODY1arUPEgEwGAAiRBowAAopaGh4b2l1emdwZGtkY25qaGhVQ1NONE9OenRGdlhISlVHV21aLUNpUXcSAgARKhDCDw8aDz8TmgSCBCQBgAQrKosBEAEaeIH0_Pb-Af8A-f_3-wUDAAEVAvH69AICAPD68gT4Af8A-fMUAgUAAADzA_oHAQAAAPby_Qn3_wEADQP4EAMAAAAW-AAN-AAAAAgLB_kR_gEB_ggDAAP_AAAUEgEK_wAAAAkKBO4AAAAAAxEBCAAAAAAQ_QoFAAAAACAALYVB0Ts4E0AJSE5QAiqEAhAAGvABf_vgAebv0gHaBMwAzD7sAcQfMP8ILfIAyBAhAb33ywD5-t0AucXw_gkGNAD7HtoARODv_gPaJgA3zOf__NbuAeIl_QEj1_QBNCUXAOTz1wDn-iH87O0sARbZ1QP9FPsA3voL_voAAP0A198EKu75B_foIAXx_iMC4rMiAO4E-gL-4MX_CiIEA_Hf__r49SP-7-P3BRQRCPrzLuT9-8HcAfP0GvkNEtQAEdED_wvwAgThBgr19QD0_Rg_BvjRAgj88_cjAuX25fvh8_QIDvECBuoaCAIJ7_YHEAgI_hzb_wcE4fn6Hgj5A-4ICgbq_u0EIAAtXgAfOzgTQAlIYVACKnMQABpgAvoAL_su4Lr6_uAF3_r88MsGriLu_P_jB_8fCv3vHgfrtRsdAAHlEui1AAAAHgkGERgA4mPf7No5_O36sPD8HRt_Exc40O38_8MF6AXhKS8N1P0pAPHuuxA2EMldECkkIAAtq-A0OzgTQAlIb1ACKq8GEAwaoAYAAABCAABkwgAAwEEAAIjBAAAAwgAADEIAADhCAAAgQQAAisIAAIDBAAA4QgAAgL8AAMBBAAAgwQAAGEIAAMDBAAD4QQAApMIAAODAAABAQAAAiEEAAFjCAACgwgAAuEEAAEDAAAAcQgAAusIAAABCAAAUQgAAwMEAAODAAACAPwAAhMIAAFBCAAA4wgAAbEIAAMBBAAC-QgAAiMEAAKhBAAAAwAAAgD8AABRCAACQwQAAJEIAAHDBAACAQAAAwEAAAMBBAACgwQAADMIAACDBAADAQAAAgEAAAMDAAAAMQgAAiMIAALDBAADaQgAAgkIAAHBBAAA8wgAAJMIAAKTCAAAgwQAAgL8AAEBBAAAYQgAAFMIAAMDBAABMQgAAdEIAAHzCAABUQgAAAMIAALDCAAAMwgAAAMEAAMBBAABwwQAAAMEAABhCAABIwgAAIMEAADTCAAAoQgAAgEEAAIjBAADowQAAGMIAAFBBAAC4QQAAksIAAFjCAACAvwAA2MEAAPjBAADYQQAAIEEAAEDBAAAQwgAAgEEAAIRCAADgQQAANMIAABBBAABgwQAATEIAAFBBAAD4wQAAgL8AAIA_AABwwgAAoMEAAADAAAC4QQAASEIAAIjCAAAEQgAAwMEAAADCAAAwwQAALMIAAJTCAAC4QgAAAAAAAKDAAABQwQAA-MEAAIDBAABAwAAAAAAAAODAAACqQgAAXMIAADBCAACowQAA8MEAAODAAACWwgAAoMAAAGxCAACYwQAAgD8AAABBAADAQQAAuEEAANBBAABkQgAAQEEAAJDBAABAwQAAqEEAADDBAAAAwQAAcMEAAKjBAABMwgAApMIAAIBBAADAwAAA-EEAAADBAADIwQAACEIAAIjBAAAgQgAAyEEAAHBCAAAgwQAAcMEAAKBAAADAwQAAMMEAAGDBAAAAwQAAsMIAAKrCAACEQgAAvEIAANbCAAAAwgAAUMEAAGDBAADIQgAAFMIAAKjBAACoQQAAyMEAAFBBAAAUQgAA4MEAABBBAAAwQgAAAMEAAKRCAABAwAAAAMEAAEDBAAAAQSAAOBNACUh1UAEqjwIQABqAAgAArr4AADy-AADIPQAAED0AAOA8AADePgAAcL0AACW_AACGvgAAMD0AAOA8AAC6vgAALD4AALi9AADIvQAA4LwAAPg9AABAvAAAFD4AAAc_AAB_PwAAyL0AAFA9AADgvAAAPL4AAOA8AACoPQAAMD0AAJi9AAC4PQAAqj4AAJi9AAAUvgAA2L0AAGw-AACgPAAAcL0AAJi9AADGvgAAPL4AAAy-AACWvgAABD4AAFy-AABAPAAA4LwAAMY-AABcvgAAbL4AAP6-AACGvgAAnr4AAIY-AADqPgAAgLsAABA9AAAnPwAAlj4AADC9AAB8PgAABD4AAKC8AACAuwAABL4gADgTQAlIfFABKo8CEAEagAIAAHS-AAAEPgAAmr4AACO_AADKvgAA4LwAADM_AACIvQAAFD4AAMg9AACGPgAAqL0AAEA8AABcvgAAyL0AAKg9AACYvQAABT8AACS-AADyPgAAmj4AAAQ-AAA8vgAARL4AAOi9AACoPQAAQDwAAGw-AAAUvgAAmL0AADw-AADgPAAAbL4AANK-AADYPQAAcL0AAAw-AABcPgAArr4AAOg9AADuPgAAFL4AANg9AAAQPQAA-D0AAPg9AAB_vwAAZL4AACy-AACovQAAbD4AALI-AACgPAAADL4AAAk_AAAEPgAAXL4AAAQ-AABwPQAANL4AALg9AAAkPgAA2D0AAIC7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Znrn75t-SaI","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16381959044693439865"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2193488790"},"3111259351034174219":{"videoId":"3111259351034174219","docid":"34-9-17-Z16C1CE851A373AD8","description":"One-one Onto function : That is The Bijection is an important topic for starting inverse functions. So Before going to Inverse function please go through this video. It will help you. If you...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3445336/71f60d8098e6d6d9c1b154271e7ab2b3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/atjMbwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DwdrmLP50iYo","linkTemplate":"/video/preview/3111259351034174219?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"One-One Onto function or Bijection | mathematicaATD","related_orig_text":"mathematicaATD","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"mathematicaATD\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wdrmLP50iYo\",\"src\":\"serp\",\"rvb\":\"EqkDChMxNzAyODcyMTMwODQ2ODAyNzAyChQxODI2NDY3NTc3NjU4OTYxMDc4MgoTMjU1ODEzMDU1MTg2OTY0ODMxNwoTNjkzMzQ0NTM0NzUyNTU1Nzk1NAoUMTc5MDU2MzgwNDQ2MTM5NzQ4NzYKEzkxOTgwNTcxMTk5MjAzNjQxODQKEzg5Njc1MzIxOTM1NDI5ODczNjQKEzc5OTYzMTIzMzY1NjIyNTI0MjQKEzM3MTc5NDg2MTg3NTcwNDU3MTEKEzE1MTI2MzQyODI1OTA4ODQ5ODgKEzI5ODA0NzkxMzkxNjExNTY0MDMKFDEyODgzOTc3MTU0NjIxNDY2ODMzChM5MjEzMTExODkyNDMzMzY1ODM4ChMyODc5NzI0Njg1NTk5NTgxNjU2ChM2Nzc4NjY0MTQxNzA0MTA2MTA2ChMxNzA4Nzk2MDQ2MTg1NTA1NDY3ChQxNjM4MTk1OTA0NDY5MzQzOTg2NQoTMzExMTI1OTM1MTAzNDE3NDIxOQoUMTEyMjkzNzkwOTYyNjAyMjE0ODQKEzk5NjkxMzY1MzE0ODM0MjQ2NzgaFQoTMzExMTI1OTM1MTAzNDE3NDIxOVoTMzExMTI1OTM1MTAzNDE3NDIxOWq1DxIBMBgAIkQaMAAKKWhoeG9pdXpncGRrZGNuamhoVUNTTjRPTnp0RnZYSEpVR1dtWi1DaVF3EgIAESoQwg8PGg8_E_QDggQkAYAEKyqLARABGniB9PT5_v0DAPv-DQT7Bv0CDP77CPf__wD07wD9-AL_AO39_AME_wAA8g74BvwAAAAB9gEE9v0BAAX5-wryAP8AEQQG-fgAAAAQEPr5_gEAAPn39_0D_wAABAj7CgAAAAD9DvD7_wAAAAQIAwQAAAAAC_7-AQAAAAAgAC3nmNw7OBNACUhOUAIqhAIQABrwAX_cHgHR_Oj_0PjaAOsZ-gG2Cxj_LTTk_8zrJQC0EdH_5AwCANX9AAAA4QwA0RL1AC3b1__y4Q__INvy_xvp8ADZFPYBEM4CABoFGQEVA_X_0wQZ__noDwAl5d0C8ALk__bkCAAA_-4A_-nRACD8KAH8FiH_6ecWAfDjJv758er9CfLcAB8o-wD69Pv7zv8bAQ3t5QEABgn73BQDBOfh-QPt5wj2Byja_hv05AUY7wcG2v7v_wLZ_AUZIQn74gf39PT4IQLN_wH2CtoHBPW4-wL2AO0C7trlBw8IB_4V4_v7-OoBAOkOAwfvAPkRBAz3AiAALf-5KTs4E0AJSGFQAipzEAAaYP0BACzlMfLs6g3xAeX1DdfQGM0M5-sA9PgAD_frChgd48H8AAAL6g7twAAAABkIAyoSAAlQ6-_RNQ8d8tXW7hQTf-0CEMTs_-7OAjIaASYdDdUGLwDi_McDOiHLMBEaLCAALWEjTjs4E0AJSG9QAiqvBhAMGqAGAADgwAAAGEIAAJDBAABAwAAAIEEAACDCAAAAAAAACMIAAMrCAADgwAAAYMEAADjCAABkwgAAuMEAAFhCAACQwQAAoEEAAKBBAACgQAAAAEEAALDCAABgwQAADEIAADBBAABUQgAAEEEAAMBAAABAwgAASEIAAIBAAAAUwgAA-EEAADzCAACoQQAAAMEAACBBAABgQQAA8EIAADDBAABgQQAArkIAAJDBAABwQgAAQMAAALDBAAAQwgAAgMEAAI7CAAAAQgAAUMEAADTCAABIQgAARMIAAKjBAABQQQAAAMAAAOLCAACgwAAAmMEAAERCAACAQQAAkEEAAKDAAACIwgAAPMIAAJbCAACAPwAAgEAAAIC_AACIQQAApkIAADRCAADowQAAIEIAAMDBAABMwgAAyMEAAMhBAADoQQAAkEEAABzCAACoQQAAEMEAAEDAAACgQQAA0MEAABhCAADoQQAASEIAAITCAABgwgAAfEIAAMDBAABswgAAhEIAAHTCAAAgQgAAFEIAAIBAAAAowgAAqMEAAEBBAAAgQgAASMIAAADBAAAIQgAAYMIAAKhBAAA8wgAAyMEAADDBAADYwQAANEIAAHzCAABAwAAAHEIAAMDAAAAowgAA0EEAAAAAAACewgAAQMAAAJDBAAAUwgAAQEAAAKBBAAC4wQAAIMIAAADCAACywgAAkEEAALpCAABQwQAAUEIAAHRCAAB0QgAAyEEAAMjBAACAPwAAqsIAAODAAABAwAAA4EEAAABBAAAwQgAAoEEAADzCAABsQgAAiEEAAExCAABQQQAAEEEAAEDAAACwwQAAoMAAAIBBAAD4QQAAhsIAACzCAADAQQAAAMIAACDCAACIwgAAAEAAABjCAACoQQAAREIAAFxCAAC4QQAAMEEAAOBAAABAwAAAoMAAAJDBAAAAQAAAoEAAAIDCAADAwQAAgL8AAChCAAAQwQAABMIAAIC_AAAAwQAA0EIAANhBAACQwgAAoEIAAATCAADgQAAAbMIAAHTCAAAMQgAA4MEAABTCAACGQgAAyMEAACDBAABUwgAANMIgADgTQAlIdVABKo8CEAAagAIAAJ6-AAAwvQAABD4AALg9AAA0PgAABz8AAMg9AAAdvwAAsr4AAEC8AAAkPgAALL4AADA9AABwPQAAiL0AABC9AACuPgAAcD0AAFA9AAD-PgAAfz8AAIA7AAA0PgAAmD0AALg9AAAwvQAAgDsAAFQ-AABQvQAABD4AAKY-AAB0vgAA4LwAAMg9AAC4PQAAgLsAAAQ-AADevgAA7r4AAFS-AAB0vgAAhr4AAPg9AAB0vgAAFD4AAAy-AAA8PgAALL4AACS-AAD2vgAAiL0AACS-AADoPQAAtj4AAIA7AACgvAAAXz8AAHA9AABEPgAAVD4AAAQ-AAC4PQAA4DwAALi9IAA4E0AJSHxQASqPAhABGoACAACWvgAA-D0AACS-AAA5vwAADL4AAEC8AAD-PgAAmL0AANi9AAAQPQAAfD4AAJq-AACAOwAAbL4AAAw-AACIvQAAcD0AADU_AACAOwAAkj4AAEQ-AABAvAAABD4AAMi9AACgvAAA4DwAAKi9AABkPgAAVD4AAEy-AACoPQAA4LwAAIK-AACCvgAATD4AACy-AAA8PgAAQLwAAIa-AABQvQAAdD4AAKC8AADgPAAAiD0AAIi9AACOPgAAf78AAFy-AAAUvgAABD4AAIg9AAA8PgAAqL0AAPg9AABEPgAAmD0AAIi9AACGPgAAFD4AABS-AAAcPgAA2D0AAHw-AADovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=wdrmLP50iYo","parent-reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3111259351034174219"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3325117796"}},"dups":{"1702872130846802702":{"videoId":"1702872130846802702","title":"\u0007[Mathematical\u0007] Physics","cleanTitle":"Mathematical Physics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vKQZj9kJO5c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vKQZj9kJO5c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdElsbDlya3ZhRG05N00wT25CQUswdw==","name":"Arthur's Science","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Arthur%27s+Science","origUrl":"http://www.youtube.com/@arthurs-science","a11yText":"Arthur's Science. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":126,"text":"2:06","a11yText":"Süre 2 dakika 6 saniye","shortText":"2 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"6 tem 2023","modifyTime":1688601600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vKQZj9kJO5c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vKQZj9kJO5c","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":126},"parentClipId":"1702872130846802702","href":"/preview/1702872130846802702?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/1702872130846802702?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18264675776589610782":{"videoId":"18264675776589610782","title":"Fundamentals of Mathematics | Part 3 | \u0007[mathematicaATD\u0007]","cleanTitle":"Fundamentals of Mathematics | Part 3 | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9m0Sq0rbrxA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9m0Sq0rbrxA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/user/atdhelp","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":672,"text":"11:12","a11yText":"Süre 11 dakika 12 saniye","shortText":"11 dk."},"views":{"text":"3,5bin","a11yText":"3,5 bin izleme"},"date":"12 şub 2018","modifyTime":1518406773000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9m0Sq0rbrxA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9m0Sq0rbrxA","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":672},"parentClipId":"18264675776589610782","href":"/preview/18264675776589610782?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/18264675776589610782?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2558130551869648317":{"videoId":"2558130551869648317","title":"Fundamentals of mathematics | Part 1 | \u0007[mathematicaATD\u0007]","cleanTitle":"Fundamentals of mathematics | Part 1 | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=6Zo8JnX2Y_o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/6Zo8JnX2Y_o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":979,"text":"16:19","a11yText":"Süre 16 dakika 19 saniye","shortText":"16 dk."},"views":{"text":"100bin","a11yText":"100 bin izleme"},"date":"1 şub 2018","modifyTime":1517443200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/6Zo8JnX2Y_o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=6Zo8JnX2Y_o","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":979},"parentClipId":"2558130551869648317","href":"/preview/2558130551869648317?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/2558130551869648317?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6933445347525557954":{"videoId":"6933445347525557954","title":"Taylor Series approximation of Polynomial Functions | \u0007[mathematicaATD\u0007]","cleanTitle":"Taylor Series approximation of Polynomial Functions | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=J5FIWM_Nofc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/J5FIWM_Nofc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":490,"text":"8:10","a11yText":"Süre 8 dakika 10 saniye","shortText":"8 dk."},"views":{"text":"10,9bin","a11yText":"10,9 bin izleme"},"date":"5 haz 2018","modifyTime":1528156800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/J5FIWM_Nofc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=J5FIWM_Nofc","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":490},"parentClipId":"6933445347525557954","href":"/preview/6933445347525557954?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/6933445347525557954?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17905638044613974876":{"videoId":"17905638044613974876","title":"Void, Universal and Identity Relations | \u0007[mathematicaATD\u0007]","cleanTitle":"Void, Universal and Identity Relations | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=F0ZrK04kyWE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/F0ZrK04kyWE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":484,"text":"8:04","a11yText":"Süre 8 dakika 4 saniye","shortText":"8 dk."},"views":{"text":"5,9bin","a11yText":"5,9 bin izleme"},"date":"3 mayıs 2018","modifyTime":1525305600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/F0ZrK04kyWE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=F0ZrK04kyWE","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":484},"parentClipId":"17905638044613974876","href":"/preview/17905638044613974876?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/17905638044613974876?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9198057119920364184":{"videoId":"9198057119920364184","title":"Equivalence Relation | Example | \u0007[mathematicaATD\u0007]","cleanTitle":"Equivalence Relation | Example | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=N_xgwOYs8jA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/N_xgwOYs8jA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":531,"text":"8:51","a11yText":"Süre 8 dakika 51 saniye","shortText":"8 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"8 mayıs 2018","modifyTime":1525737600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/N_xgwOYs8jA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=N_xgwOYs8jA","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":531},"parentClipId":"9198057119920364184","href":"/preview/9198057119920364184?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/9198057119920364184?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8967532193542987364":{"videoId":"8967532193542987364","title":"Pen Fight | A Relaxation Game | Mathematics | \u0007[mathematicaATD\u0007]","cleanTitle":"Pen Fight | A Relaxation Game | Mathematics | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=J22VipckDs4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/J22VipckDs4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":168,"text":"2:48","a11yText":"Süre 2 dakika 48 saniye","shortText":"2 dk."},"views":{"text":"24,3bin","a11yText":"24,3 bin izleme"},"date":"11 ağu 2018","modifyTime":1533945600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/J22VipckDs4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=J22VipckDs4","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":168},"parentClipId":"8967532193542987364","href":"/preview/8967532193542987364?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/8967532193542987364?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7996312336562252424":{"videoId":"7996312336562252424","title":"Fundamentals of mathematics | Comparison | Part 2 | \u0007[mathematicaATD\u0007]","cleanTitle":"Fundamentals of mathematics | Comparison | Part 2 | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rU2NwfvzdHE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rU2NwfvzdHE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":328,"text":"5:28","a11yText":"Süre 5 dakika 28 saniye","shortText":"5 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"1 şub 2018","modifyTime":1517443200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rU2NwfvzdHE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rU2NwfvzdHE","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":328},"parentClipId":"7996312336562252424","href":"/preview/7996312336562252424?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/7996312336562252424?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3717948618757045711":{"videoId":"3717948618757045711","title":"Types of Relations | Reflexive, Symmetric, Transitive and Anti-symmetric Relation | \u0007[mathematicaATD...","cleanTitle":"Types of Relations | Reflexive, Symmetric, Transitive and Anti-symmetric Relation | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ItfxKIvq1LI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ItfxKIvq1LI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":983,"text":"16:23","a11yText":"Süre 16 dakika 23 saniye","shortText":"16 dk."},"views":{"text":"141,3bin","a11yText":"141,3 bin izleme"},"date":"6 mayıs 2018","modifyTime":1525564800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ItfxKIvq1LI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ItfxKIvq1LI","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":983},"parentClipId":"3717948618757045711","href":"/preview/3717948618757045711?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/3717948618757045711?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1512634282590884988":{"videoId":"1512634282590884988","title":"A Problem Set on the Basics of \u0007[Mathematical\u0007] Logic","cleanTitle":"A Problem Set on the Basics of Mathematical Logic","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7sU_b5tdVow","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7sU_b5tdVow?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM21RSFNGckpvWTNWYkVHcUZVTGFjQQ==","name":"Mathematics Physics Mathematical Physics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+Physics+Mathematical+Physics","origUrl":"https://www.youtube.com/channel/UC3mQHSFrJoY3VbEGqFULacA","a11yText":"Mathematics Physics Mathematical Physics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":252,"text":"4:12","a11yText":"Süre 4 dakika 12 saniye","shortText":"4 dk."},"date":"20 tem 2022","modifyTime":1658282633000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7sU_b5tdVow?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7sU_b5tdVow","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":252},"parentClipId":"1512634282590884988","href":"/preview/1512634282590884988?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/1512634282590884988?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2980479139161156403":{"videoId":"2980479139161156403","title":"Binomial Theorem | Class 11 maths | \u0007[mathematicaATD\u0007]","cleanTitle":"Binomial Theorem | Class 11 maths | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=oHnWQL7pqxE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/oHnWQL7pqxE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1027,"text":"17:07","a11yText":"Süre 17 dakika 7 saniye","shortText":"17 dk."},"date":"18 nis 2019","modifyTime":1555545600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/oHnWQL7pqxE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=oHnWQL7pqxE","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":1027},"parentClipId":"2980479139161156403","href":"/preview/2980479139161156403?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/2980479139161156403?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12883977154621466833":{"videoId":"12883977154621466833","title":"Wavy Curve Method | You must know | \u0007[mathematicaATD\u0007]","cleanTitle":"Wavy Curve Method | You must know | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QCFQYkKBgjw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QCFQYkKBgjw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":671,"text":"11:11","a11yText":"Süre 11 dakika 11 saniye","shortText":"11 dk."},"views":{"text":"5,8bin","a11yText":"5,8 bin izleme"},"date":"31 ara 2017","modifyTime":1514678400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QCFQYkKBgjw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QCFQYkKBgjw","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":671},"parentClipId":"12883977154621466833","href":"/preview/12883977154621466833?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/12883977154621466833?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9213111892433365838":{"videoId":"9213111892433365838","title":"Power Series and Convergence | \u0007[mathematicaATD\u0007]","cleanTitle":"Power Series and Convergence | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kEFkjViimBg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kEFkjViimBg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":700,"text":"11:40","a11yText":"Süre 11 dakika 40 saniye","shortText":"11 dk."},"date":"9 haz 2018","modifyTime":1528502400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kEFkjViimBg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kEFkjViimBg","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":700},"parentClipId":"9213111892433365838","href":"/preview/9213111892433365838?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/9213111892433365838?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2879724685599581656":{"videoId":"2879724685599581656","title":"Taylor's and Maclaurin's Infinite Series | Two Examples | \u0007[mathematicaATD\u0007]","cleanTitle":"Taylor's and Maclaurin's Infinite Series | Two Examples | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FP9Dy3iVX9I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FP9Dy3iVX9I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":666,"text":"11:06","a11yText":"Süre 11 dakika 6 saniye","shortText":"11 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"5 haz 2018","modifyTime":1528156800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FP9Dy3iVX9I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FP9Dy3iVX9I","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":666},"parentClipId":"2879724685599581656","href":"/preview/2879724685599581656?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/2879724685599581656?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6778664141704106106":{"videoId":"6778664141704106106","title":"ONTO and INTO Functions | Difference between them | \u0007[mathematicaATD\u0007]","cleanTitle":"ONTO and INTO Functions | Difference between them | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=w9MOjX1fGmc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/w9MOjX1fGmc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":622,"text":"10:22","a11yText":"Süre 10 dakika 22 saniye","shortText":"10 dk."},"views":{"text":"12,1bin","a11yText":"12,1 bin izleme"},"date":"21 nis 2018","modifyTime":1524268800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/w9MOjX1fGmc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=w9MOjX1fGmc","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":622},"parentClipId":"6778664141704106106","href":"/preview/6778664141704106106?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/6778664141704106106?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1708796046185505467":{"videoId":"1708796046185505467","title":"Important Algebraic maths Formulae | For begineers | \u0007[mathematicaATD\u0007]","cleanTitle":"Important Algebraic maths Formulae | For begineers | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HdXN8nrZ5wM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HdXN8nrZ5wM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1081,"text":"18:01","a11yText":"Süre 18 dakika 1 saniye","shortText":"18 dk."},"date":"7 ara 2019","modifyTime":1575676800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HdXN8nrZ5wM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HdXN8nrZ5wM","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":1081},"parentClipId":"1708796046185505467","href":"/preview/1708796046185505467?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/1708796046185505467?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16381959044693439865":{"videoId":"16381959044693439865","title":"Relation between Beta and Gamma functions | \u0007[mathematicaATD\u0007]","cleanTitle":"Relation between Beta and Gamma functions | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Znrn75t-SaI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Znrn75t-SaI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":538,"text":"8:58","a11yText":"Süre 8 dakika 58 saniye","shortText":"8 dk."},"views":{"text":"6,3bin","a11yText":"6,3 bin izleme"},"date":"19 ara 2018","modifyTime":1545177600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Znrn75t-SaI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Znrn75t-SaI","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":538},"parentClipId":"16381959044693439865","href":"/preview/16381959044693439865?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/16381959044693439865?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3111259351034174219":{"videoId":"3111259351034174219","title":"One-One Onto function or Bijection | \u0007[mathematicaATD\u0007]","cleanTitle":"One-One Onto function or Bijection | mathematicaATD","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=wdrmLP50iYo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wdrmLP50iYo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU040T056dEZ2WEhKVUdXbVotQ2lRdw==","name":"mathematicaATD","isVerified":false,"subscribersCount":0,"url":"/video/search?text=mathematicaATD","origUrl":"http://www.youtube.com/@mathematicaATD","a11yText":"mathematicaATD. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":500,"text":"8:20","a11yText":"Süre 8 dakika 20 saniye","shortText":"8 dk."},"views":{"text":"2,5bin","a11yText":"2,5 bin izleme"},"date":"23 nis 2018","modifyTime":1524441600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wdrmLP50iYo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wdrmLP50iYo","reqid":"1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":500},"parentClipId":"3111259351034174219","href":"/preview/3111259351034174219?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","rawHref":"/video/preview/3111259351034174219?parent-reqid=1769685981689563-9060552669814134728-balancer-l7leveler-kubr-yp-sas-43-BAL&text=mathematicaATD","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9060552669814134728743","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"mathematicaATD","queryUriEscaped":"mathematicaATD","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}