{"pages":{"search":{"query":"quantpie","originalQuery":"quantpie","serpid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","parentReqid":"","serpItems":[{"id":"687300137480271364-0-0","type":"videoSnippet","props":{"videoId":"687300137480271364"},"curPage":0},{"id":"8845324172869863051-0-1","type":"videoSnippet","props":{"videoId":"8845324172869863051"},"curPage":0},{"id":"14046694311427017410-0-2","type":"videoSnippet","props":{"videoId":"14046694311427017410"},"curPage":0},{"id":"1438100981444138326-0-3","type":"videoSnippet","props":{"videoId":"1438100981444138326"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dHF1YW50cGllCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","ui":"desktop","yuid":"3807492031769431674"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"1968140085507531026-0-5","type":"videoSnippet","props":{"videoId":"1968140085507531026"},"curPage":0},{"id":"384506541404198940-0-6","type":"videoSnippet","props":{"videoId":"384506541404198940"},"curPage":0},{"id":"3703453636011752781-0-7","type":"videoSnippet","props":{"videoId":"3703453636011752781"},"curPage":0},{"id":"11851023749991531274-0-8","type":"videoSnippet","props":{"videoId":"11851023749991531274"},"curPage":0},{"id":"13620333320665619518-0-9","type":"videoSnippet","props":{"videoId":"13620333320665619518"},"curPage":0},{"id":"16583037678510348616-0-10","type":"videoSnippet","props":{"videoId":"16583037678510348616"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dHF1YW50cGllCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","ui":"desktop","yuid":"3807492031769431674"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"4732290549345255528-0-12","type":"videoSnippet","props":{"videoId":"4732290549345255528"},"curPage":0},{"id":"2266964054158548217-0-13","type":"videoSnippet","props":{"videoId":"2266964054158548217"},"curPage":0},{"id":"11264148236387297749-0-14","type":"videoSnippet","props":{"videoId":"11264148236387297749"},"curPage":0},{"id":"10307736433192947778-0-15","type":"videoSnippet","props":{"videoId":"10307736433192947778"},"curPage":0},{"id":"3099857959132532378-0-16","type":"videoSnippet","props":{"videoId":"3099857959132532378"},"curPage":0},{"id":"4047800673807318392-0-17","type":"videoSnippet","props":{"videoId":"4047800673807318392"},"curPage":0},{"id":"4785685722227646555-0-18","type":"videoSnippet","props":{"videoId":"4785685722227646555"},"curPage":0},{"id":"2879012092807094138-0-19","type":"videoSnippet","props":{"videoId":"2879012092807094138"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dHF1YW50cGllCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","ui":"desktop","yuid":"3807492031769431674"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dquantpie"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"5246628265778460597291","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472323,0,33;1472348,0,78;1466867,0,40;1457616,0,54;1433081,0,78;1450255,0,2;1460955,0,46;1460716,0,24;1464561,0,89;1459297,0,92;1152684,0,98;1459323,0,4;1471623,0,57;1461705,0,65;1469892,0,19;15353,0,46;50737,0,57;1464523,0,62;1455767,0,27;1466295,0,67;1465947,0,12;1470795,0,71;1466080,0,49;1452015,0,1;1466619,0,29;1470514,0,3;260564,0,28;132361,0,77;263460,0,49;255407,0,49;1466270,0,85;1470322,0,47;1228867,0,66;56261,0,97;151171,0,36;1281084,0,82;287509,0,78;1447467,0,91;1006734,0,16;1473596,0,19;1466396,0,98"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Ftwitter.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dquantpie","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://twitter.yandex.com.tr/video/search?text=quantpie","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","backUrl":"//ya.ru","url":"https://twitter.yandex.com.tr/video/search?text=quantpie","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"quantpie: Yandex'te 168 video bulundu","description":"Результаты поиска по запросу \"quantpie\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"quantpie — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y3aaf64bce16448cceda945f39af8302e","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472323,1472348,1466867,1457616,1433081,1450255,1460955,1460716,1464561,1459297,1152684,1459323,1471623,1461705,1469892,15353,50737,1464523,1455767,1466295,1465947,1470795,1466080,1452015,1466619,1470514,260564,132361,263460,255407,1466270,1470322,1228867,56261,151171,1281084,287509,1447467,1006734,1473596,1466396","queryText":"quantpie","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"3807492031769431674","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769431791","tz":"America/Louisville","to_iso":"2026-01-26T07:49:51-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472323,1472348,1466867,1457616,1433081,1450255,1460955,1460716,1464561,1459297,1152684,1459323,1471623,1461705,1469892,15353,50737,1464523,1455767,1466295,1465947,1470795,1466080,1452015,1466619,1470514,260564,132361,263460,255407,1466270,1470322,1228867,56261,151171,1281084,287509,1447467,1006734,1473596,1466396","queryText":"quantpie","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"3807492031769431674","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"5246628265778460597291","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":142,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"3807492031769431674","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"twitter.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"687300137480271364":{"videoId":"687300137480271364","docid":"34-2-16-Z4C31EC8FA29CCFDC","description":"quantpie: And here are the solutions of the first two questions from the yesterday quiz! https://www.youtube.com/watch?v=sABpgWOJXj8...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2445501/c6fc99672d417758d3fe8ac4ff96dfa1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/x58vGwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DsABpgWOJXj8","linkTemplate":"/video/preview/687300137480271364?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solutions to first two questions","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sABpgWOJXj8\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoUChI2ODczMDAxMzc0ODAyNzEzNjRaEjY4NzMwMDEzNzQ4MDI3MTM2NGq1DxIBMBgAIkQaMQAKKmhoeXhvaG5oZGxhZnFmaGRoaFVDV054MTdKdDZlVzRONGF5QUVpWGRFQRICABIqD8IPDxoPPxN4ggQkAYAEKyqLARABGniB_AkA_fsFAAbzBwIEB_0CDgzzBPUAAAD5_f4DBQL_APoFBwT5AQAA_Rf8BQMAAAD9AfMHAv4AAPwD-f37AAAACv4IBAMAAAACA_kABwAAAPz5AQj6AQAAB_oC_f8AAADtAgYCAgD_APwZAwQAAAAABv4F__v1_wAgAC2jC-E7OBNACUhOUAIqhAIQABrwAXDcEADbCRIB9vXpAOYK9QGB7Rz_FkL6ANPn7gHXFu8B2hoFAP3r-f_WCyQAvSX5_yPF6P8e7usAHeT__xLw_wD4De4AMs8OAT7yGwAHCAUA6BQG_g7tAP8V29cC6grw_AwQHv_a5tIBDf_ZAxboKAIdKhAFDPUOB_HcAAHQG_n_0ADf_QUH9wAC2f_65ywgAvnsCQTxGg350B3t_w_3AvsB8QwC4zn7AzIf_QIEG_wA0zLu_-oG6_4lGf4B7gD7__EQCAbnCBXx-NgOCC7V8QYI-QH1CNT5ARED7Prt6AD96fsC9-saAQD0ExkG8eAFASAALUFaJTs4E0AJSGFQAipzEAAaYEYJAAvvQs3y4TD5DtfgEOwDCudB0d7_9_v_8w_3Aegq3r7o7P9VqADqoQAAADb53igcAAZ_Fsf9UBcHCLe84Bv5euQbJ7TIC_LVCkI4IxpI_N3vXwDy5pYRA-bjSCkyQSAALcd1FTs4E0AJSG9QAiqvBhAMGqAGAACgQQAAuEEAAABAAAAAwQAAiEIAAAxCAACEQgAAAAAAAKTCAAAQwgAAqEEAADzCAAC4wQAAqMEAAMRCAAAgwQAAIEEAAJrCAAAgwQAARMIAAFBBAAAowgAAHMIAACBCAACAQQAAMMIAALrCAACcwgAA1kIAAHDBAAAAQAAAQEIAAMjCAADAwAAATMIAAEDAAAB8QgAA8kIAAIDAAACAQQAAHEIAALBBAABMQgAAkEEAAFRCAABowgAADMIAAFDBAAAMQgAAoEEAAJLCAAAwwQAACMIAABBBAAD4QQAAuEEAAADDAACIQQAA4MAAAEBAAABkQgAAoEAAALjBAACqwgAAmEEAAFDCAABQwgAAFMIAAGDBAADowQAAHEIAAMJCAAC4wQAAAEEAAATCAADwwQAAQMEAAIDBAAAQQgAAyMEAAMDCAABQQgAAMMEAAExCAADIwQAAMMEAABjCAACIQQAAlkIAAEDAAAD4QQAAkEEAAADAAAAgwgAABMIAAMDAAAAgwgAAwMEAAHRCAABQwgAAuMEAAIpCAABMQgAAuMEAAAhCAAAwwgAA4EAAAFBCAACIwQAAiEEAAIA_AACAPwAAAEEAABzCAAC4wQAAcEEAACTCAAAUwgAAqMEAAABCAADgwQAAZMIAACDCAAAcwgAAMEEAACRCAAAcwgAAiEEAAIDAAABMwgAAQMEAALDBAADgwQAAwEEAAIDCAADQwQAAHEIAAEBBAAAAwQAAGMIAALBBAADAQAAA4EEAACDBAAAkQgAAQEAAABTCAADgwAAAMEIAAETCAACgwQAAgD8AAABBAAAEQgAAAEEAAODBAAAYwgAAYMEAAETCAABwQQAAAMIAAODAAADIQQAABMIAAKDBAAAAwAAAsEEAAIC_AABAQAAAQEAAAKDAAAAsQgAADMIAAKBBAAAwQQAAgEAAAIhBAADgwAAAHEIAAIBBAADYwQAASMIAABBBAAAQQQAAvEIAAABBAADgwQAACEIAAChCAABMQgAAFMIAAEDCAABgQgAAAEAAALhBAADAQQAAOMIAAKDAAAAkwgAAoEAgADgTQAlIdVABKo8CEAAagAIAAI4-AABQvQAAiD0AAMg9AADYvQAAbD4AADC9AAAXvwAAMD0AAEA8AACePgAAML0AAIC7AACKPgAAhr4AAPi9AACePgAA-D0AAIg9AAAHPwAAfz8AAKC8AACovQAAij4AAJa-AACIvQAAgDsAAK6-AABEPgAAij4AAPg9AABwvQAA-L0AACw-AACgvAAAND4AAKC8AADYvQAA2r4AAMK-AAAcvgAAir4AADA9AACgvAAARL4AADC9AABMPgAAQLwAAMg9AAB8vgAA2D0AAPg9AAC2PgAAdD4AAFS-AADgvAAAZT8AABA9AADIPQAAQDwAAEy-AABAvAAAqD0AAHC9IAA4E0AJSHxQASqPAhABGoACAACIPQAAbL4AANg9AAAvvwAA2D0AAMg9AABcPgAAcL0AAOA8AAA8PgAA2D0AAIC7AAD4PQAA6L0AACQ-AACAuwAA6D0AAC8_AAAcvgAAxj4AANi9AABAPAAA4DwAAIi9AACIPQAAQLwAAEA8AACAOwAAQDwAANg9AACgPAAA-D0AAHA9AADIvQAAPD4AALg9AABAvAAAFD4AABy-AADIPQAAnj4AAEC8AABQvQAAEL0AAES-AADYvQAAf78AALg9AACgvAAAyL0AAIi9AABAPAAAPD4AAEC8AAAQvQAAuD0AAEA8AAAcvgAAmL0AAOi9AACAOwAAiL0AAKi9AAAkPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=sABpgWOJXj8","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["687300137480271364"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2675767271"},"8845324172869863051":{"videoId":"8845324172869863051","docid":"34-1-9-Z7ED4FD60087C6A9F","description":"Introduces HJM (Heath Jarrow Morton) and explain key concepts. Also derives the drift condition under the risk neutral measure, forward measure, and terminal forward. And discusses few...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1597833/388c1dd5253bfa022316442cc5adfa1c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/yKSyNAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dyws-_55aYIU","linkTemplate":"/video/preview/8845324172869863051?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"HJM Framework - Interest Rate Term Structure Models","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yws-_55aYIU\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoVChM4ODQ1MzI0MTcyODY5ODYzMDUxWhM4ODQ1MzI0MTcyODY5ODYzMDUxaogXEgEwGAAiRRoxAAoqaGh5eG9obmhkbGFmcWZoZGhoVUNXTngxN0p0NmVXNE40YXlBRWlYZEVBEgIAEioQwg8PGg8_E60JggQkAYAEKyqLARABGniB8BMAAAEAAPn0_wIEBf4BG_sG__UCAgAK9wX9BgL_AOv4Efz9_wAA_Qz8BQwAAAAG-gf0-_0BABML9fYEAAAAHe8CAfoAAAD7EPr__gEAAOzxBPQCAAAAGfsD9P8AAAAJAgj_AgAAAP4O_-8BAAAACfL5AgAAAAAgAC12UM47OBNACUhOUAIqhAIQABrwAWHxGQHtC_AB8v3-ANEgBwCBBQv__SbeAMP_AADYEOEADBj0Adru-QADAB3_zBMGADX56QAUDBMAH-EKABD-_QDjDBABKdgMATICEf_q-uwA9AkR__3sAQAI5O7_8BTr__YcCv3h69oACPDLBwv_LgEdGBkEFeQN_gDfBwQHCxAA6gLtAB8NAv37BgEC8RArAQD4AgUJHwX73wTsAhQF_vsF9f36Efvy_SD0BAX0BP376vgB-v0J_v4DBwkC2g_x_u0CEADZBwQE-t8MByDwBQT88goCBtv6AQkX7wD44gD97QUEAdgOAwH1-gUF9Oz2_iAALW4nSDs4E0AJSGFQAirPBxAAGsAHeNDkvqk8kTsMDd-89QoPPBo25ztVPU-9zKWXvXGq9Tw9PJU8n9ajPSHw9jxF9py8OGmKvtEMPTztrn08Ci9hPhdxsLxB08Y5Wi5bvuqPlTxuYpK8Meoqvrpw1jpBEhG9Xz_pPDfnmrsjrLy8oDTEPabVUL0R_9Y5soJfvfQIpLx5fJa80_nPOvYqjTwIYSS81-rBPTfwlL0J6R88YOcmPg3TDb3xHvG8WG7OPH8bHDvY1WQ8Xi4ivk2PnDxYnaY84Z-tPJ_a6jx5qM-4t63SvHaM67yUXmU8SQv8PJkHVT1Juqg7jX-fO6GOfT3_CS687mURPefZkTwKVzS7bazkvaYRLj2UTsE79fX8PZyiCD3rK1m8erZdvWlAOD2PmsS7f2VKPb_R87z_zKC8MbEZPqn1Izw7SJk8UqXcPEFxNrzEfgu8Qo89PRnnirzsQGc8jxjdPfP7gz0OJo-8H8QpvAnK6bqSy2K7JwetvRdWYLz0-368Q4omPa7CgTz1rFq8iFcoPaWNmTx8Z82632bGPTm1872HHxg83M26uyD0Z71JslS76I2Lu5rfGj04eZ279gWpPcG80bxvfPG7k64UvSieLr0QYt-7Dj4DPec6yL0vM2w8CC8LvasgK7y5QeU6RKdCPbiG47zfgD-7pBeYu2LqV7vqd4K73MaVPE8BtLo4izQ73rs8PO-UiT2Zi-y7k6X7POj4aD0e5xG7aeTTPcnSvbxSsAa4m9zUvPNNJL3-XBc71u4LvBUb6Tk2eiw6lEC0PeDNZL3ih2o5i3YrPSCXWD32qF-4JB-FvOqv1zzDhle5FdeCPYlNWr0565M4kvNUvSc2ir2fqgm5QLgnveN9pjzcgSI6EWpLvZjDSTyxZZk5IvBRvAjX0ryzcqs3TqixPAUgJLx7Y6O5dai7PZPyhL1bT185HAbYPNvHBb02V2k55qULO1O7Nb193MI4AjJPvSOC0T11t7w4CilkvOtDbb2kWfM2rUA-PPwFlrto8pk47O0gPWqI6LsLDkO4ZJXSuzc4kbzvNwc4w9PrPGcm-L0iJCS4q6xyPbkbwDv_rNG4uOQovtF_hbyd-Bq5_PGsO7UKEbyjdpq4m69tPTPinbxX5ps3WYdDvfaz2Lz2V2E4sRUEPsb_-Dsy2VO4732wvWSKQ70ULkG4k2tPPfzujL1tIg03VMKovRqAV7wRhMI3HZcMPUkPQ75UMU25yvRwPSLhKz7xy4o4YJqYPFua-z2Erf245yOfvTfAcTztZJe3VB9ovQgTMD09HIw4IAA4E0AJSG1QASpzEAAaYCb0AAzwFPz1KT7x3dfkOOzNBtEepxj_FL7_9ibzGxAd1cIf9wA51SrdoQAAAA3d-fL7AN5_6LX3MOAo_tmi-gw4aBEXX9MFJysh0jfn4wcQTfAhPQAr6qsmbevVEycn_SAALUoQGTs4E0AJSG9QAiqvBhAMGqAGAABcQgAAUMEAAKBCAAC4wQAAIEIAAIhBAACGQgAAEEEAABDCAADAwAAAHEIAAFzCAACIQQAAQEAAAKhBAAAQwQAAMEIAACDCAAAgQgAALMIAACBBAACIQQAAoMIAAMDAAACkwgAAEMIAAPDBAADYwQAA2EEAAEzCAACYwQAArEIAAITCAABgwQAAmMIAALhBAADgQQAAOEIAACDBAACgQAAAgsIAALLCAAAwwQAAgL8AAAzCAADowQAAQMAAAABBAADgwAAATEIAAFDCAACoQQAA4MAAAMBBAAC4QQAAjkIAAMbCAAAAwQAAnkIAADxCAAAAAAAAKMIAAIDAAAAgwgAADEIAAIbCAADIwQAADMIAABDCAADAwAAAikIAAMhBAABAwQAAXEIAAFzCAAAMwgAAQEEAAIDBAADIwQAAAMIAAJDBAAAUQgAAeMIAABBBAAAAwQAAgEIAAIBAAABAwQAAQMEAAAAAAABAwAAApkIAAKDCAABQQgAAZEIAAKDBAACIwQAAcMEAAHDBAAAQwQAA4EAAAFDBAACIQQAAgEAAAEDCAABAQAAAJEIAAODAAABcwgAA4MAAANBBAADIwQAA6MEAAFDCAABAwgAAwkIAAMBBAAAAQAAAsMEAAGDBAACwwQAAkMEAAKBBAAAowgAAiEEAAIC_AAAQQQAAOEIAAMhBAADQQQAA4MEAAJ7CAAAgwgAA4EEAAFBBAACUQgAAkEEAADRCAAAoQgAAmsIAAEBAAABgQQAAAMAAAETCAADoQQAAoEIAAODBAABUQgAAEMEAAK5CAACoQQAAcMEAAADAAACAwQAA4MAAAABBAAAkwgAAgL8AACTCAAAswgAAaMIAAEjCAAAkwgAAAEEAAEDBAACAQQAAjMIAAKxCAABUQgAAUMEAAOBAAAAwQQAAEMEAAKDAAABMwgAAAAAAAIDBAAA8wgAA2EEAAHhCAABkwgAAgMIAAEDBAAA4wgAAoMEAAOBBAAAswgAAuMEAAADBAACYQQAAgL8AAAxCAACYQQAATEIAAIA_AAC2QgAAQMAAAIDAAAAUwgAAqMEgADgTQAlIdVABKo8CEAAagAIAAHS-AABsPgAAmj4AALg9AACgvAAAyD0AACQ-AAAHvwAAPL4AABA9AACAuwAAQLwAAHw-AACYPQAAUL0AAHS-AACIPQAAgDsAAPg9AAAPPwAAfz8AAIA7AAAUPgAAyD0AAEA8AACYPQAA4DwAAFC9AAC4vQAApj4AANg9AACIvQAAyL0AAPg9AAAkPgAAEL0AAFQ-AABkvgAAsr4AADy-AADYvQAAUD0AALY-AABQPQAAEL0AAFA9AAAkPgAALL4AACS-AAAQvQAAuL0AAFC9AABUPgAAsj4AAAw-AABQPQAAKT8AAEA8AABwvQAAcD0AAFC9AACIPQAAuD0AAAS-IAA4E0AJSHxQASqPAhABGoACAAC4vQAADD4AAJq-AAARvwAAQDwAAKg9AACYPQAAgDsAADS-AABcPgAADD4AAGy-AAAkvgAAxr4AABA9AAAQvQAAcD0AACc_AABwvQAAqj4AAJY-AAAkPgAAHD4AABC9AABwvQAAcD0AAGS-AAAsPgAAML0AAPi9AAA0PgAA4LwAAJg9AACovQAAcD0AAEy-AAC4PQAA2D0AAHy-AACoPQAAqj4AAIA7AAAwPQAAHL4AAFC9AACOPgAAf78AABS-AACIvQAAgDsAAKA8AABAPAAAUD0AADA9AACKPgAAED0AAHC9AAD4PQAAgLsAAIA7AABMvgAATD4AANg9AAC4PSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=yws-_55aYIU","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8845324172869863051"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1314758195"},"14046694311427017410":{"videoId":"14046694311427017410","docid":"34-0-2-Z2C5CEF093CB36210","description":"Introduces the metapopulation framework for the modelling of infectious diseases, by outlining the various types of metapopulation framework, such as cross-coupled and mobility models, which can...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4407993/6cb962c6088c2abeb96c08e10777c9d3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/k1mwEgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DGRuPAgR-Guc","linkTemplate":"/video/preview/14046694311427017410?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Stochastic spatial model for Coronavirus spread","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GRuPAgR-Guc\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoWChQxNDA0NjY5NDMxMTQyNzAxNzQxMFoUMTQwNDY2OTQzMTE0MjcwMTc0MTBqtg8SATAYACJFGjEACipoaHl4b2huaGRsYWZxZmhkaGhVQ1dOeDE3SnQ2ZVc0TjRheUFFaVhkRUESAgASKhDCDw8aDz8T6wuCBCQBgAQrKosBEAEaeIED-v0C-wUA_QIFAvoF_gETCfz99gICAPkEC_oDA_8A-_0G7_0AAAAFA_wJCQAAAPwECPP7_gEAFgoCDAQAAAAL-P_wAAAAAAACAfz-AQAAAf__A-4EAAH7B__9_wAAAPYOAQMBAAAA-gIDBwAAAAD68gIFAAAAACAALVlC4js4E0AJSE5QAiqEAhAAGvABcB_3_8j75P_p7ccB0RG8AIEKLf82Pt__vfsiALgD4ADiExX_3eke_-EfE_-xK_j__PjJ_hMH8v9J8_j_BwAXAMsOMABZxvUBMB8GABjo7f7rGfgACg0d_zAJ7AEbFwf_FgAu_Qn61wEQ_9IDCiA3AyExEgX_BB8F3xQIAtUYNAECEuP-3w0LBAww7ADWBSQCEw7qAQ4F8fnyUeUID_MKB-_Z_P4d4uIGTA3i_gIYAfET1A4IIhPvB_LtHQEMEOr-8igE9QTZ8PkBCQXzHd3-AQzn8wYFAvENAdjz_urkAPwV-wYHsx4M-R3gAf4l9fL_IAAtUCMNOzgTQAlIYVACKnMQABpgK_8AMuUi6xEuVPjiCtMS7-gX4w7iHP_y7P_vNP4QHBIG2OQC_xi3PuWmAAAAItbsI8QA5Hnt0dYU0jkWwuX2Hht_1A9avs0z9s31JvLcCxHvABNDANTPqhVGJ-lGHP8OIAAtEAMhOzgTQAlIb1ACKq8GEAwaoAYAAKRCAAAEQgAAmkIAACjCAAAUQgAAgMAAAIpCAACCwgAACMIAAIBBAACYQQAAgL8AAODAAADYQQAAAMEAANhBAADKQgAAeMIAAFBBAADgQAAA8EEAALDBAACQwQAAcEEAAADBAACYwQAAQMIAAGBBAABUQgAAiMEAAFBBAACCQgAA6MEAABDCAABUwgAAMEEAAI5CAACwQgAAiEEAAABBAABgQQAAQEIAAKBAAABAwQAAuEEAAAjCAACgQQAAAEAAAFRCAABAQAAANMIAANhBAABQQQAAVEIAAIC_AACgQQAAmMIAALhBAADYQQAAwEEAAIBAAAAowgAA4MEAAETCAABEQgAA4MEAAIzCAAA0wgAAOEIAAPDBAACAQQAAJEIAAIjBAAAAQQAAJMIAAHDBAACYwQAAMMEAAMjBAAB0QgAAGMIAAJ5CAABQwQAACEIAAFBBAAAMQgAAcEEAAJBBAAAgQgAA0MEAAKDBAADSQgAA4MEAAGhCAAA4QgAApMIAAHjCAADIwQAAgEEAAIhBAABYwgAAQEEAAABCAADwwQAAGMIAAOBBAABAwgAAwMAAAMDBAADIQQAAcEIAAODAAAAgwgAA4EEAAJLCAADgwAAAikIAAEBAAAAQwQAA8EEAAEjCAAAgwgAAFEIAAAjCAAAwwQAAmsIAAPhBAACwQQAADEIAAKBAAACIQQAAlsIAAATCAACYwQAALMIAAJRCAADQwQAAUMEAAIDBAADgwAAAMMEAAJhBAAAEQgAAsMEAAGBCAAB8QgAAHEIAACBBAAAAQgAAREIAAHzCAACIQgAAAMEAALhBAAAkQgAAgEAAAHDCAABAwAAAjMIAAPjBAACGwgAAwEAAAIBBAAAIwgAAgMAAABDCAACGwgAAxEIAAEDAAAAgwQAAHEIAADDBAACAvwAAAEAAAIBBAABAwgAAQMAAABBBAAAAQQAAQMAAANbCAAAowgAAFMIAAJhBAACCQgAAWMIAAIA_AAAAwAAA4MEAAGBBAADwQQAAwMAAAIpCAABcwgAAQMEAADBCAAAAAAAAqEEAAADAAAD4QSAAOBNACUh1UAEqjwIQABqAAgAARL4AAAQ-AACAOwAAoLwAABC9AACoPQAAqD0AANK-AABsvgAAEL0AAMi9AACYPQAAuD0AAHA9AAAMvgAATL4AAIo-AACAuwAAgDsAALI-AAB_PwAAEL0AAOC8AACYvQAAcL0AAKA8AACIvQAAdL4AAMK-AABkPgAAiD0AAHA9AACgPAAAuD0AADC9AADgvAAAPD4AABS-AACGvgAAdL4AAJi9AAD4PQAADD4AAHQ-AADIPQAAbL4AAEC8AACevgAAbL4AAOi9AACgvAAAHD4AAIY-AABQPQAAiL0AAEC8AACSPgAAPD4AACQ-AACSPgAANL4AADA9AACgPAAAuL0gADgTQAlIfFABKo8CEAEagAIAAPg9AAB0PgAApr4AAB-_AADovQAAgj4AAEQ-AAB0PgAAqD0AAKA8AACIvQAAdL4AAJg9AABcvgAAmL0AAOA8AADYvQAADz8AAKq-AACaPgAAEL0AAKC8AAB8PgAAfL4AAOC8AAAEPgAAfL4AAHA9AABwvQAARL4AADA9AAAsPgAAyr4AAAy-AAC6vgAAdL4AAEQ-AAAwPQAALL4AAIa-AAAQPQAAUL0AAPi9AACAuwAA2D0AAGQ-AAB_vwAAHL4AAIA7AAB8PgAAED0AAAQ-AAAkvgAAnj4AAJg9AACYPQAAqL0AAAy-AABQPQAAHD4AALg9AAA0vgAAqD0AAIa-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=GRuPAgR-Guc","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14046694311427017410"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1438100981444138326":{"videoId":"1438100981444138326","docid":"34-11-16-Z5385FDBA0B86BA34","description":"Is an option less risky than the underlying? Maybe it is because it limits the amount of losses?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4282970/5bd0b838cb1f7c9294cd2a906b9708bd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/yHRPLAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcdlaqniaJuA","linkTemplate":"/video/preview/1438100981444138326?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Which one is riskier: option or stock?","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cdlaqniaJuA\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoVChMxNDM4MTAwOTgxNDQ0MTM4MzI2WhMxNDM4MTAwOTgxNDQ0MTM4MzI2arYPEgEwGAAiRRoxAAoqaGh5eG9obmhkbGFmcWZoZGhoVUNXTngxN0p0NmVXNE40YXlBRWlYZEVBEgIAEioQwg8PGg8_E4sCggQkAYAEKyqLARABGniB9_78AP4DAPkHCwb5Bv0CEwn8_PUCAgD4_f4DBQL_AN8IEAAC_wAA_QUICfkAAAACAfLz_f4BAAYFBfsEAAAAEwAFBPwAAAAB-fb__wEAAPXy_wED_wAADwb5D_8AAAAABAP3_P8AAP_8AwoAAAAA-_kHCgAAAAAgAC0AU9s7OBNACUhOUAIqhAIQABrwAVT4I__L-fT_AujxANwg6AGBFfD_KjDm_8U1BQDoIc8B8fbrAMTwGf_2Cv8A2AwgABL16f80_gP_--oZAAsG8wD8-AcALewQAEf9_AEe-fkAARwk_wAL9f8M7BsAAvTuARIZEP3t5_n9-QH4BggZKwISDQUCFwL8Ae_o9wELFAP_5_Tz_hb5_v79Mu0A7QYfAQ8L7wEMKw0C1vXk_ici_v8D9fEBEO_8_BP-9gIj6gEDABXx9yP7-_v46OcD-RkB_wYN-QUCMQYB7xsIAzDiAPklBAH2CA3w-jL69Aj26_by0wQM9d8aDPzwBwkFBPILCCAALVH0NTs4E0AJSGFQAipzEAAaYC4FABzuFtz2Ty7l87zTEd_-I-SOyvf_NMr_7xTKGe7zCrv5Av88JfgTngAAACofvBPoADl_4ssFCagB7brTvxEpYeP8FtP_FvsEEjYC9ALW8gxQagDsz-cpL_H_TVMk_yAALWwDGDs4E0AJSG9QAiqvBhAMGqAGAAAgwgAAQMEAADBBAABAwQAA4MAAAIhBAAAsQgAAdEIAAILCAAAYwgAAlEIAADDCAADgwAAATMIAAIhBAAAEQgAAMMEAALzCAAAMwgAAOMIAAPBBAAAEwgAAmMEAAMDBAAAswgAAkMEAAI7CAACIwQAAHEIAACzCAACoQQAAzkIAAKbCAACYwgAAcEEAALhBAADIQQAAzkIAAJhBAABYQgAAuMIAAARCAADoQQAAoEEAAJBBAACAPwAAIMIAAOjBAACGQgAAaEIAACTCAADowQAAosIAAGBBAABEQgAAAEEAANLCAADIwQAAiMEAAIRCAADwQQAAFEIAAGDCAACCwgAAQMEAAGzCAACCwgAAWMIAAIDAAABgwgAAgL8AAKBBAADgwQAAoMAAAABAAABAQAAAJEIAAFRCAAAkQgAAgMIAACjCAACoQQAAAEIAADBBAADAwAAAQMEAAMhBAABkQgAA8EEAALjBAACwQQAAoEAAAKjBAAB0wgAAYMEAAIrCAACqwgAAEEEAANhBAACQwQAADMIAABDBAACgQAAAQEAAAFTCAACgwQAAgL8AAEDAAABAwAAAuEEAAOjBAAAAAAAAbMIAAIC_AACYQQAAeEIAAFDBAAAAQAAAQEAAAFjCAAD4QQAAjMIAADjCAADIwQAAiEEAAGBBAAAEQgAAoMAAAETCAABQwQAAuMEAAJDCAAAgwgAAEMEAACBCAACwwQAAMEIAACRCAAAUwgAARMIAAAxCAAAQQQAAYMEAAIxCAAAwQQAAUEIAAOjBAADIQQAAGEIAAPhBAADIwQAAoEEAAADBAAAAQgAAgEAAAOjBAABwwgAA4MAAAPhBAAAcQgAAsEEAAJhBAACgwQAABMIAAJrCAACgQAAAFEIAAKhCAACAwQAAmMEAAEDBAACIQQAAisIAAPjBAADgwAAA4MEAAAzCAAAAQAAA4MAAAAAAAADIwQAABEIAADDCAACAwAAAOEIAAKhBAAAkwgAAeEIAAIBAAABAwgAAUMEAAOBAAAAIQgAAuEEAACBCAADIQQAA0MEAAAAAAACgQAAAgMEgADgTQAlIdVABKo8CEAAagAIAADQ-AABAvAAAiD0AADQ-AABsvgAAiD0AAOg9AADKvgAAHL4AANg9AAAsPgAAyL0AAII-AADoPQAAqL0AAHS-AACSPgAAHD4AAIo-AADWPgAAfz8AADC9AAAMPgAAqj4AAJq-AACAOwAAJD4AACw-AACYvQAAmD0AAEw-AAAsvgAAhr4AAEA8AAAMPgAAiL0AAOC8AAAUvgAAqr4AAGy-AADgvAAAfL4AAAQ-AACCvgAAHD4AAJi9AABwPQAApr4AAKC8AADIvQAAoDwAAHQ-AABMPgAA-D0AAEw-AACgvAAAPT8AAKA8AAAQPQAALD4AAOg9AAAQPQAAED0AAIK-IAA4E0AJSHxQASqPAhABGoACAAD4vQAAiD0AAIg9AABrvwAAUL0AABy-AAArPwAAXL4AAPi9AADYPQAARD4AAPi9AAAQvQAAgr4AABQ-AADgvAAAmr4AAE8_AABsPgAArj4AAFQ-AAAcvgAAoDwAAIi9AAAsvgAAsr4AAJK-AAC4PQAA-D0AAEy-AAAQvQAAqL0AAOg9AADuvgAAJD4AAOi9AABAvAAAlr4AAES-AABUPgAAPD4AABA9AADgPAAAmL0AAIA7AACKPgAAf78AAJ6-AACSPgAAVL4AAOA8AACGPgAALD4AAIi9AACgPAAAyD0AABS-AAD4vQAAgj4AAGS-AADoPQAAHD4AAIi9AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=cdlaqniaJuA","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1438100981444138326"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1491656416"},"1968140085507531026":{"videoId":"1968140085507531026","docid":"34-5-8-ZADDDB4FB1D81CB80","description":"Derives the drift function of Ho-Lee and Hull-White Extended Vasicek using HJM framework. Include the Hull White extended CIR as an exercise, which you should be able to derive easily once you...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4427444/2c6851745454235fbd5dd6c355306137/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Xlg0JwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQJ94iXRFwTs","linkTemplate":"/video/preview/1968140085507531026?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Ho-Lee and Hull-White Extended Vasicek/CIR: Derivation of the Drifts using HJM","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QJ94iXRFwTs\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoVChMxOTY4MTQwMDg1NTA3NTMxMDI2WhMxOTY4MTQwMDg1NTA3NTMxMDI2arYPEgEwGAAiRRoxAAoqaGh5eG9obmhkbGFmcWZoZGhoVUNXTngxN0p0NmVXNE40YXlBRWlYZEVBEgIAEioQwg8PGg8_E4UHggQkAYAEKyqLARABGniB-fcHAwT7APgHDAf4B_0C-QkTBPn9_QDx-vz7BwH_APL79AUMAAAA__0RDQQAAADyBP4C-QAAACDx_QYCAAAADfYJAvoAAAAGBAAD9vv9A_YEAvcCAAAACxz9AP8AAAAIG_v__wAAAPHy_fwAAAAAA-8ABgABAAAgAC38mcc7OBNACUhOUAIqhAIQABrwAXTu_wO_CgP9E_DyAPET7gCBBQv_Ejf7ANoMAv_YEOEA4PMHAOT59AADAvIA2foNABvx4v8U_AAADuIEABv0BgD-BAMAPtf4AT4P9gAJFP3-AikSAAX6-_8P1Az_BP72AA0IBADcweECAOLz_xv8IgEW-w_-EfcZAu77BwLuDvUEzv_1_ggA-AcJIvIA8BQTABkB_fsJHwX77f7oAxoMCQMF9f36APb6_yYb7v0PAP0F9gr--RH_APz68wYH6Av0Av_6AP77If0E_AQHACECBwkaBAoD_-z8-h8O-QoI6Aj96woN-eYCFf3aDQ78CfkB_SAALW4nSDs4E0AJSGFQAipzEAAaYEoLAB76E_zy-vsBCuK89dwQGvrmsw3_MMEA7xnkIxn13bwS9f9C2O73qAAAABsM3OoPABNwFrsa0sjb_ci5CyQRfxcMGbYEMvX99i7rCdDwABU2UAAI6ds0ONTrORc4FCAALd4aKDs4E0AJSG9QAiqvBhAMGqAGAABQQgAAwMEAAI5CAABcwgAAGEIAAFBBAACeQgAA4MAAAMDBAADgQQAAQEEAAGzCAAAEwgAAwMEAABBCAAAgQQAAuEEAAIDCAADYQQAAEMIAAHDBAAAQwQAATMIAAIC_AADowQAAsMEAAMDAAAAMwgAA-EEAAEDBAACAwgAAREIAAIbCAADwwQAA1sIAAKhBAAAIQgAAmkIAAADBAACYQQAAIEEAAAAAAABwQQAAQMAAABxCAACOwgAAGMIAAERCAABgQQAALEIAANjBAAAQwQAAZMIAABBBAADwQQAAHEIAAADDAAAAQgAAcEEAAGBCAAAkQgAAfMIAAIA_AAC-wgAAFEIAAKLCAACawgAAhsIAAEBAAABswgAAwEEAAAhCAAAwwgAAHEIAALLCAACAwQAA-MEAAJDBAACgwQAAwMEAAAzCAABkQgAAwMAAADRCAACAQAAAIEEAAIDAAABAQQAAYEEAABjCAAAQwQAA7EIAACBBAACAvwAAAEIAAODBAACgwQAAYMEAAKBCAAAMQgAAbMIAANhBAAAYQgAAEMEAAGTCAADgQQAAUEEAAKDBAADAQAAACEIAAJBBAACAQAAALMIAAKBBAAA8wgAAkkIAABBBAACowQAAoMIAAMjBAABQwQAALMIAAODAAAAAAAAAmMEAAEBAAABwQQAAuEEAAJBBAACAQQAAhMIAADjCAAAwwQAAmEEAANBBAAA8QgAAGEIAAChCAAAwwQAA6MEAAIDBAAAwwQAAYEIAABDCAABgQgAABEIAAPDBAACAwAAA6EEAAIhBAABwwQAAgEEAANhBAAAAwAAABEIAAIBAAAA4wgAAZMIAAAzCAACAwQAAJMIAAOBBAADowQAAfMIAAJDBAAC4QQAANMIAAMpCAABUQgAAoMAAADDBAACYQQAAGMIAAEjCAACIwgAAGMIAAAhCAAAgwgAANEIAAEBAAACKwgAAIMIAACzCAABwQQAAHEIAAODAAADowQAAgMIAAABBAAAQQQAAgEEAAIDAAAAEQgAAoMAAAEBAAACgQQAAuMEAAMBAAAAAwAAAMMEgADgTQAlIdVABKo8CEAAagAIAAES-AAB0PgAAVD4AAKg9AABwvQAAyj4AAEy-AAApvwAAPL4AAKg9AAAcPgAAmD0AAI4-AAA0PgAADD4AAKa-AACgvAAABD4AAEQ-AADePgAAfz8AAMI-AADIPQAAHD4AAOA8AAD4vQAAqL0AAES-AADovQAAJD4AAIA7AAD4PQAA4LwAADQ-AAAUPgAAFL4AABy-AABAvAAA2r4AAO6-AAC4vQAAmD0AAIg9AADYvQAAML0AADy-AAAMvgAAiD0AAJi9AACCvgAAhj4AABA9AAA8PgAAlj4AALa-AAAwvQAAST8AALI-AACovQAA2D0AAGw-AAC4vQAAyD0AAFy-IAA4E0AJSHxQASqPAhABGoACAAAkvgAAiD0AABC9AAANvwAAHL4AAFC9AAC4vQAARD4AAOi9AADgPAAAFL4AAKq-AAAUPgAAir4AABC9AABQvQAAZD4AADc_AACYvQAAVD4AANg9AAAwvQAAJD4AAES-AACAOwAATD4AABC9AACYPQAA6D0AAMg9AAC4PQAAED0AAIq-AADgPAAAmD0AABA9AABsPgAALD4AAEy-AAAQvQAAJD4AAAS-AABwPQAAiD0AABy-AABcPgAAf78AANi9AAAxvwAAPD4AAIC7AADYPQAAgj4AAHQ-AACovQAAQLwAADC9AACGPgAAyL0AANi9AABAPAAAgDsAAPg9AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=QJ94iXRFwTs","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1968140085507531026"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"336114647"},"384506541404198940":{"videoId":"384506541404198940","docid":"34-4-12-ZFF0112E1CC54E197","description":"Using a discrete state space, roulette!, explains the concept of change of probability measure, and various related concepts such as Risk neutral valuation, stochastic discount factor, and Radon...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2805978/19fa695a390e9d6a08ec697e1c06ce05/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/L6EIaAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWKj_G8N1ckE","linkTemplate":"/video/preview/384506541404198940?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simplified: Change of Probability Measure, and Risk Neutral Valuation","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WKj_G8N1ckE\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoUChIzODQ1MDY1NDE0MDQxOTg5NDBaEjM4NDUwNjU0MTQwNDE5ODk0MGqvDRIBMBgAIkUaMQAKKmhoeXhvaG5oZGxhZnFmaGRoaFVDV054MTdKdDZlVzRONGF5QUVpWGRFQRICABIqEMIPDxoPPxPsDIIEJAGABCsqiwEQARp4gQfu-gEB_wD1_goMAgb8ARAIAwv2AQEA9Qb1_fUC_wDwCwL7-QAAAAkIBhABAAAA-PQHAfr-AAAWBPQA9QAAAAn3AAf9AAAADAELAAn_AQDy8_j1AgAAACX3_fn_AAAABgX79v7_AAD9DQD5AAAAAA359wUAAAAAIAAtjBzSOzgTQAlITlACKnMQABpgGRIAGjgL_-gTI-D17Nz9KBEb69XaAAD93AD6HxTQ_fb4w_MU_yPoKfPEAAAABgToGAcA8kwj4dAM_vkEwPHrDhJ_DxAF9QT_8b8V3h0H8BP4JUEgAAjvBBcJ2uctCjQDIAAtcs5ZOzgTQAlIb1ACKq8GEAwaoAYAAGBCAAAAAAAA2EEAAHDCAAAQwgAAbEIAAJ5CAADAQAAA-MEAANjBAAAAQgAAyEEAAJjBAAAwwQAASEIAAOBBAABEQgAAcMEAAKBAAABgwQAAkEIAAODBAACAPwAAQEAAACDCAAAgQQAALEIAAKDBAACYQQAAiMEAAABAAACgQQAAqsIAAJBBAACowQAAkEEAAODBAABcQgAASEIAABBBAACAQQAAQEIAAMBBAABAQAAA6MEAADzCAACYQQAAgEEAAIhBAABAwAAAnMIAAARCAABIwgAAaEIAAMBAAAAwQgAAaMIAAOhBAABoQgAAmEEAABBBAACIwQAAgL8AAMjBAABoQgAApMIAAIA_AABgwQAAyMEAAEDAAACIQgAAoEAAAGTCAABQQgAA4MAAAABBAACAwgAAgMAAAIBBAABEQgAAqMEAAGRCAADwwQAAmEEAAFDBAAC0QgAAhEIAAMDAAAC4QQAARMIAALjCAACUQgAA0MEAAKjBAACIQQAAAMMAADDBAAB8QgAAhkIAAJBBAAC4wQAAEEEAAIA_AAAAwAAAtsIAABxCAAAcQgAAgkIAAIA_AABAQgAAIEIAAADBAACcwgAAUEEAAPDBAAAUwgAAgEEAADBBAACYQQAAIMIAANjBAAAowgAAPEIAADDBAABwwgAAMMIAAPjBAAAwwQAAUMEAAJBBAAAEwgAAkMIAADTCAABwQQAAVMIAAJpCAAAAwQAAtkIAAAjCAAAwQQAAFEIAAPhBAAAwQQAAoMEAABRCAAAcQgAAiEEAAIDAAAAAQAAAQEIAABjCAAAIQgAAEEEAAKBBAACCQgAAgMAAAKzCAABgwQAASMIAACDCAABwwQAAqEEAAIBAAAAswgAA4MAAAIjBAAAEwgAAsEEAAIBAAADowQAAAAAAAARCAAAIwgAAsMEAAODBAACywgAA4MEAAFDBAAAUQgAAUEEAAILCAABgQQAAeMIAABBCAAAUQgAAgMAAAGDBAABgwQAA4EEAABhCAAAUQgAA4EEAAHRCAAAQQQAAFMIAAGBBAACgwAAA6EEAABBCAAAAQCAAOBNACUh1UAEqjwIQABqAAgAAqL0AAAQ-AAAEPgAA2D0AANi9AABQPQAA6D0AABW_AAAcvgAAqD0AABy-AADYPQAAyL0AAIg9AADIvQAAiL0AAFA9AADgvAAAmL0AALY-AAB_PwAA4LwAAOg9AAAkPgAAmL0AAMg9AADgvAAAgLsAABQ-AACgPAAAED0AAJi9AAAcvgAAHD4AADA9AAAQvQAAcD0AACy-AACCvgAAmr4AABy-AACYPQAAPD4AABA9AAAUvgAAJL4AANg9AAAMvgAAML0AAAS-AAAQPQAAHD4AAIg9AAAsPgAADL4AABC9AAD-PgAAPD4AALi9AAAUPgAABD4AALg9AABsPgAAUL0gADgTQAlIfFABKo8CEAEagAIAADC9AAC4vQAAgDsAAD-_AACgPAAAoLwAAFQ-AACCvgAANL4AAEQ-AAA8vgAAmL0AAIA7AAB0vgAADD4AAJi9AAAwPQAAHT8AAJg9AADOPgAAcD0AAOA8AACAOwAAMD0AAKC8AAAwvQAAUL0AAKg9AACgvAAAcD0AAIC7AADoPQAAmD0AALq-AAAMvgAA6D0AAFQ-AAAUPgAAHL4AAIA7AAD4PQAAiD0AAKC8AABQPQAAHD4AAKA8AAB_vwAAgr4AAEC8AABsPgAAFD4AAHC9AAAUPgAAED0AADy-AACIPQAA4LwAAOA8AACIvQAAgLsAAFw-AADKPgAAmD0AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=WKj_G8N1ckE","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["384506541404198940"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2912133389"},"3703453636011752781":{"videoId":"3703453636011752781","docid":"34-2-9-ZA2E3D4A097AE3AC0","description":"Part 2 of the series shows by simple examples how to perform algebraic manipulations in Sympy, which is a python library for symbolic calculations. These include simplify and expand...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4726535/0dec0b9de1bd1b00c8bde011e4d46218/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LxEPLAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7w6MwFmZGPI","linkTemplate":"/video/preview/3703453636011752781?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Algebraic Manipulations in Python's Sympy","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7w6MwFmZGPI\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoVChMzNzAzNDUzNjM2MDExNzUyNzgxWhMzNzAzNDUzNjM2MDExNzUyNzgxarYPEgEwGAAiRRoxAAoqaGh5eG9obmhkbGFmcWZoZGhoVUNXTngxN0p0NmVXNE40YXlBRWlYZEVBEgIAEioQwg8PGg8_E9cFggQkAYAEKyqLARABGniBCQX6_AAAAPf2AQn4Bv4CAfz2_Pj9_QDmDv34CP0BAAD4-AIMAAAAE_77BQAAAADtBgMF8QEBACABBAcDAAAAGAT8Cv8AAAAU_f38_gEAAPj39_0D_wAAEvgMDAAAAAAGBfv2_v8AAAMA-v8AAAAAAQQG_v8AAAAgAC0YBNU7OBNACUhOUAIqhAIQABrwAXAf9_8I7eQEwhThALAD-gCBCi3_KxbiAK8YAQHTD7cBydvkAPXxBgDr8NsAtO3rARHczAAWIAoADfcAAAbpBQDl7PcAP9f9AS4Q5QH-FQ7_-hpLAgj-PwAn5vMAJeYoAQMV-vvTxesA1vPSABD-QQEfDh4BLgIN_vT3A_vrMQj-xwDa_PEXEQPh9B783PsT-Q4S2P8pGfr24hX7Bi8E8Pzv2fz-GfcI_CX_CP_g5vn19frvESUQ9_fnDSYE9DgYA-kg_wv98e_5Dh0PACnJ__0A6AX6ItfnAiEb_wLsBP76xQUP8ttICQLd-x7l9v8E-CAALVAjDTs4E0AJSGFQAipzEAAaYA0OACAAJPsaTDHXzP_2B8zsStAiq-P_Eub_RCgSIuoat6IqFP8r7AblpQAAABUU_Pr7AOx_xfolGdwaE9bU3Sb-b68R_sv9BBWSJEAZGBMp7g8BZgDuHKYEX9cOOekrUSAALe12FDs4E0AJSG9QAiqvBhAMGqAGAAAowgAADEIAAIxCAABwQQAAgEEAAJhBAAA0QgAAWEIAAHzCAAAwwQAAUEIAAHzCAACQwgAAQEAAALhBAAAgQQAAGMIAALLCAAAYwgAA6MEAACBBAACowQAADEIAAKjBAAAkQgAAEMEAAFDCAACYwQAAhkIAAFTCAAA0wgAAhEIAAObCAAAswgAACEIAAEBAAABQwQAAMEEAABBBAABwQgAACMIAAIhBAAAEwgAAgL8AAHDBAABAwQAAAMIAABBBAABoQgAAcEEAANrCAACAwAAATMIAAMBBAADSQgAAEEEAANbCAACAPwAAQMEAAGhCAACgQQAAgEAAAIjBAADGwgAAEEIAAKjBAAAAwgAAQMEAAEDAAABQwQAANEIAAHBCAACgwQAA6MEAAHDBAADQwQAAQMAAANBBAADoQQAAuMEAAFTCAADAQQAAoMAAAIBBAABIwgAALMIAAAxCAAAwQgAAoEIAACzCAACAQQAAPEIAAJDBAAD4wQAANMIAAEzCAACewgAAwEEAALhBAAA8wgAAEMIAAFDBAABgwQAAQEEAAIjBAAAQQQAA4EAAAIA_AAAgQgAAPEIAABzCAABIwgAAoMAAABxCAACIwQAAsEEAAIC_AADQwQAADMIAACDBAABAQgAAPMIAAFDBAACCwgAAcEEAAIA_AABIwgAAMMEAAOjBAAA4wgAAQMIAAIDBAACYwQAAQMIAAHDBAAAoQgAALEIAAFxCAADIQQAAgMIAAARCAACAwQAAGEIAAJhBAAAYQgAAAMAAAJTCAAAYQgAAcMEAAHBBAADAwAAAFMIAAAhCAABAwQAABEIAAJDCAADYwQAAMMEAAEDAAAAQQgAAsEEAAJ5CAAAkwgAADMIAAKLCAABAQAAAMEIAAKJCAAAgwQAAyMEAAKjBAABoQgAAgMIAAIC_AAAwQQAAgEEAAABCAADwwQAAgkIAAFBCAAA0wgAAgMEAAEDBAACAQAAAgMEAAADBAAAMwgAAokIAAJhBAAA0wgAAqMEAAABBAADIQQAAwEEAAOBAAAAAQQAApsIAAFDBAACoQQAAUMIgADgTQAlIdVABKo8CEAAagAIAACS-AAAwvQAARD4AADw-AAAkvgAAuD0AAPg9AAAvvwAADL4AAKA8AABwvQAAmL0AAAQ-AAB8PgAAcL0AALK-AAA8PgAAMD0AABw-AAD2PgAAfz8AALg9AADgvAAAbD4AAAS-AAB8vgAAJD4AAAS-AADIvQAAMD0AALg9AABsvgAAHL4AAJg9AAAQPQAA6L0AANg9AADovQAAjr4AADC9AACyvgAApj4AABw-AADYvQAAiL0AAFA9AACKPgAA-L0AADC9AABkvgAAEL0AAKA8AACWPgAAJD4AAOi9AACovQAAbz8AABC9AACovQAA6D0AAIg9AAAkPgAAED0AAPi9IAA4E0AJSHxQASqPAhABGoACAACovQAAfD4AAJg9AAA1vwAALL4AADA9AACCPgAAiD0AAMi9AAABPwAA2D0AAKi9AACgPAAAyL0AABC9AAC4vQAAiL0AAEE_AACgPAAAtj4AANg9AABQvQAA6D0AAAy-AAD4vQAAuL0AABS-AAA8PgAAQDwAAIg9AABAPAAAgLsAAFC9AAB0vgAAJD4AABy-AACiPgAA4DwAAGS-AACoPQAAcD0AAEC8AAA8vgAAoDwAAIg9AAA8PgAAf78AADA9AACAuwAARD4AAAQ-AABEPgAAPD4AAFw-AAAkPgAAED0AADC9AADovQAADD4AAMi9AAAUPgAAjj4AAGQ-AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7w6MwFmZGPI","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3703453636011752781"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11851023749991531274":{"videoId":"11851023749991531274","docid":"34-4-10-ZC018644090B2E953","description":"Derives the closed form expression for the price of European Call option under the Heston Stochastic Volatility model. This also involves derivation of the characteristic function and the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/947172/1cc2ff86b5cab0c42a6385ac98736c33/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1xgY-AAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEipBuIx-vQU","linkTemplate":"/video/preview/11851023749991531274?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Heston European Option Closed Form Formula","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EipBuIx-vQU\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoWChQxMTg1MTAyMzc0OTk5MTUzMTI3NFoUMTE4NTEwMjM3NDk5OTE1MzEyNzRqiBcSATAYACJFGjEACipoaHl4b2huaGRsYWZxZmhkaGhVQ1dOeDE3SnQ2ZVc0TjRheUFFaVhkRUESAgASKhDCDw8aDz8T4Q6CBCQBgAQrKosBEAEaeIEA_f_-_gMA7PwC_foAAQATCfz89QICAPwF-f0GBP4A8_oHAgQAAAAEAggFAgAAAO4CAPH_AQAAFAP7BgQAAAAZAv0A-AAAAPEEAP3_AQAA-fj-BgP_AAAUBBICAAAAAPf4DPMAAAAA__wDCgAAAAAG_Q0BAAAAACAALVL32js4E0AJSE5QAiqEAhAAGvABXPf_APP_-QD7CPMAuBbv_4EFC_8GJPUAw_8AANn_8QH5CfwA6e_3APoWEQDIHvoAJuDd_xT8AAAb4fT_I-_6AOwhHgE76QoBRAUWAPQD4wADExH_D-wKABzu9wD-A-wA9BASAOLr7wPyAtIBC_8uAQojBAIg6gsB_tz7_f0JDv7qAu0AAgcK-wwA_QDxECsBF_XuA-wc-PrbJegDBgj7___Z__YVFOn-LAv_CAAG9_zvDvACBgztAhAYGv_mHOz_8vj-BeEC-__j8REAIPAFBPr-CgX96fYHJwXs_v_pAgQBAwoE2BoMBvcOBQL4AvkAIAAtbidIOzgTQAlIYVACKs8HEAAawAe37Ni-XXepPLHUxLygFHK927oAPfPu_rwN_v69Ug6mPIhdgDz-Ddo9Xy1SPJz047yhSHe-c1a6PKQ2Mb39vXQ-klRLvQOx7DzZQ0u-Q5J2Oyl_gr31oWu-hNMHPXQ1w7si5Jc9qqB9vYQAyzsdAPE99dUVvfmeMb0hsrO9TTutu6sxV7xD5_W9f7YfvVoiAb3X6sE9N_CUvQnpHzwg6wk-xW3ZvKqZNbz1JUA8h7-mvKBsirxrEbG9x8jIPB8R07zJIm09RYTaOyUzKDxKuIu9rTLTvEdQAry82dE7osaOPP33vzv3JuE8XYaUPfC18bxdTi49MQP6vK13rDsmNfS9fgMuPau6Aj3dtBk-PRbRPANg-rsUmwq9XTVPPfglUTzRJK27Xgp0vWFuN73PfKM9uDJSPafQVDyJF5o91QIevCEUpbq4P9c8HvKBuyqRRDzPpK09YGQ4PObilLyyA3g866O4vA3PgbxZJFe9--Z-vP2FgTuGuok9BqTYO9fVC7yEHAg8w7YqPYIKHDxFXKU8c7j2veQENzx1-FW9wf4rvRcqf7yCDqm8MlK1Oqp_0jsiiuk9_fsnvcH-a7xqoF694m9AvQcPLjwOPgM95zrIvS8zbDwPSCK99thxPF0YIrpo9u88syodvfo0XbwOT688gzXpPAP4-jvAh4w9_4SZvYQPY7uquoc8cRLUPCKi3rv7m2s99gtWPQ4rJ7rxaGM99m5ivcG3KboqWSm8m1RUvW8d0jtflIW88LRGvGzIX7htA9c9taPYvQyfrzm3qUs9LVoFPbniYjkkH4W86q_XPMOGV7mnh1I9OblfvaxBhrhcVAu9nBXxvdyedTk7uEW9RJWQPRzovjg0B9K8C7gCPedeSjoS9UK9IhjnvXga6jd067W8Vbm1vJ25HrkWjbA9m5KHvJ58mTj-sEo8xCAVvemxBzeh5a-8VE0VvbUYMbj1Vei8j4lZPdYxQTgKKWS860NtvaRZ8zZzGAY8TpY_PdbckzfrDx68-mP1PA4yNrfPxgU93EygPIf2J7iLFoA9RCrBvX0qIzg1gII9V7CNPOXzq7ZodTK-ZKQoPRfKTLf1Fiq97OO6OxLLkLd84YQ8N_ywumzM1DYz_Fc6dooVvb3kMDiSXRk-2U9QvazCP7m5n629wzO8vIaGELcrTB89nSSivb9r5TcyC7O9Ev5APbJytjdhBnk98zoSvkvnqbjK9HA9IuErPvHLijiYk2U7gAvSPZjkD7noVbO9FiTsPM24ITh8JLq9OYm3PFxsCrcgADgTQAlIbVABKnMQABpgK_8A9uEE7wgqVvfczMEZ0dgY3trU7_8i6_8OEOw8PwmsrvvzADC-M8ybAAAAG-zpHJ0A53_Yuz8b_wXzwfH0MBtrI-dX4O78_v3bNiHU3QPjKyRSAPDcv0xMAsc_8VQlIAAtlUAROzgTQAlIb1ACKq8GEAwaoAYAAEBBAAB4wgAAhkIAAJLCAAAoQgAA8MEAAGBCAAA8QgAA4MEAAADBAAAAQgAAYMEAAMDAAACgwAAAAEEAAExCAADIQQAAiMEAAJDBAADAQAAAQEEAACTCAACCwgAAgD8AAKzCAACwwQAAkEEAACDCAAAIQgAAwMEAAADCAAAkQgAAfMIAAJDBAADmwgAAUEIAAARCAABoQgAAyMEAANDBAACAwAAAIMEAAMDBAAAQQQAAmEIAAKDBAABAQAAAjkIAAIBAAADIQQAAkMEAAADCAABwwgAAHEIAAKBBAABUQgAAtMIAAKBBAABUQgAAHEIAAFhCAAB0wgAAGMIAALTCAACgQAAA1MIAAIjBAAAwwgAAAAAAAIDBAADQQQAAqEEAAOjBAAAYQgAAGMIAAFDCAABAQAAAgL8AADjCAAAwQQAA8EEAAL5CAADgQAAAiMEAAKDBAACOQgAAsEEAALjBAACIQQAAoMAAACBBAACWQgAAPMIAABxCAADQQQAAoEAAAGDCAADAQAAAwEEAAKpCAADowQAAAMEAACxCAADAQQAAJMIAAODAAAAoQgAAcMEAAGBBAACUQgAACEIAAKhBAAC4wQAAgMEAAJDBAACiQgAAREIAAJjBAACgwgAAQMIAAABAAABIwgAAQMEAAODAAAAQwgAAqMEAAIBAAACQwQAA2EEAADBCAABEwgAATMIAAPDBAAB0QgAAAMEAAFBCAADwQQAAkkIAAKDBAABkwgAAAEAAABRCAABQQQAAdMIAAKBBAACIQgAAkMEAANhBAACIwQAA2EEAACBBAADwQQAAgMEAAFBBAAAwQQAAAAAAABjCAABQwQAAgMIAAKjBAABAwgAAgL8AAHDBAACQQQAAUMEAAGhCAADgwQAAokIAAIhCAACAPwAAAMIAAJBBAAA0wgAALMIAAJLCAACAQAAA4MEAAHDBAAAwQQAAQEIAAGzCAABcwgAAVMIAAATCAAAQQgAAgMAAAHDBAABwwQAAYEEAADDBAADAQAAAQMAAACBBAADQwQAAwMEAAJRCAABAQAAAUMEAAIhBAABAwCAAOBNACUh1UAEqjwIQABqAAgAAgDsAACy-AACePgAALD4AAHS-AACAuwAAfD4AADu_AAAcvgAAgLsAAIC7AACAOwAABD4AAJo-AACAOwAA-L0AAL4-AAAQPQAAfD4AAPo-AAB3PwAAiD0AAMI-AABAPAAAFL4AANi9AAAkPgAAMD0AAKK-AABcvgAAJD4AAOi9AAA8vgAAcL0AAFC9AABUvgAAVD4AAGy-AACivgAAMD0AAIC7AACAuwAATD4AACQ-AACgvAAALD4AAFQ-AACavgAAyL0AAJ6-AAAUvgAAgj4AAFC9AABUPgAAFD4AABA9AAB_PwAAEL0AALi9AAAwPQAAbD4AADC9AACYvQAAkr4gADgTQAlIfFABKo8CEAEagAIAAIi9AAAsPgAAmL0AAC-_AABwPQAA-L0AABA9AAAEvgAALL4AAKY-AAA0PgAADL4AAIC7AACGvgAAuL0AABC9AACCvgAAQT8AAFQ-AACKPgAAoj4AAJg9AABUPgAA6L0AAES-AABwvQAAFL4AADQ-AACAOwAAcD0AABQ-AABQPQAAJL4AAIC7AACovQAAjr4AAHw-AAAsvgAAyr4AAEA8AAAwPQAA2D0AAAS-AACgPAAAoDwAANI-AAB_vwAAPL4AAFQ-AADYvQAA6L0AAIC7AABAvAAABD4AAII-AAC4PQAA4LwAAKi9AAAMPgAAQDwAAMi9AABAPAAAML0AADS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=EipBuIx-vQU","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11851023749991531274"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2735008492"},"13620333320665619518":{"videoId":"13620333320665619518","docid":"34-6-10-Z3B27CB3D2FC9697C","description":"Part 4 of the series shows by examples how to perform calculus in Sympy including how to calculate limit, derivative, and solve differential equations (dsolve). Also covers how to solve algebraic...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2707115/a02845efb217778aed7ff5b207a6d421/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RVd-KwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dm01p-1RSLs0","linkTemplate":"/video/preview/13620333320665619518?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Some Calculus in Python's Sympy","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=m01p-1RSLs0\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoWChQxMzYyMDMzMzMyMDY2NTYxOTUxOFoUMTM2MjAzMzMzMjA2NjU2MTk1MThqtg8SATAYACJFGjEACipoaHl4b2huaGRsYWZxZmhkaGhVQ1dOeDE3SnQ2ZVc0TjRheUFFaVhkRUESAgASKhDCDw8aDz8TvQaCBCQBgAQrKosBEAEaeIEA_f_-_gMA-_z_DwEJ-wL6A_8B-f39APECCPIDAQAABwn89_sBAAAGBf37AAAAAO8FCQcBAQAAGfT_9gMAAAAZ9vUI_QAAAAv6-AH_AQAACP_2CgT_AAAS9QIBAAAAAAH99Qb9_wAB8vz4AAAAAAAC_AUAAAAAACAALVL32js4E0AJSE5QAiqEAhAAGvABbRHv_gQA7AOsBtcAyRkEAIH6Ef84Qd3_tgb8ANAPtAHG2eMA9PAHANr-zgCm_eUC_PfH_iUtDgAZ6xH_Fe0VAPzx9gBX3g8CMRHkAf4WDv_qTSv9E_gi_y30_QAn5SkBBgT-_7TK8wXU89AAEf5EAScVEAIxFR0C5fgKBOozCf6t69X-8QgWDN_0H_vhCQ_8CyPn_ioa-vbxCPwEJhL5DOjXEQEM9BL7EAfwB8v6CPn0-e4SGgLyAeYOKATzOhoD6CH_CwDt_gQAIxYBHtzr8wL9Av8ms_oKBA_xA-MHFQWn9wn2vj4L99v7H-P2_wT3IAAtxv0GOzgTQAlIYVACKnMQABpgLAwAMf0U2SInUuT_6TAbvvkkFLmW5v8_2AD1Kdgw7TieuCoP_ygY_e2fAAAAGvD6D-MABH-syCP8zgz57dKyIvA8vwH_0eH0LrTmVyDc4Art9zEtAMrvwRJV2Pc_3vgmIAAtkaQVOzgTQAlIb1ACKq8GEAwaoAYAACzCAAAwQQAAoEIAAIBAAAD4QQAAEEEAAIhCAACAQgAAcMIAAKjBAABMQgAAWMIAAGTCAAAAwAAAAMAAAGBBAAAAwgAA3sIAAPjBAAD4wQAAQMAAADDBAADgwAAA4MAAAGBBAAAowgAARMIAADDBAABwQgAAIMIAAADCAACIQgAA7MIAAOjBAACAvwAAgEAAAKBAAAAAQAAAUEEAAIhCAAA8wgAAYMEAAADCAACwwQAAYMEAAKDAAACwwQAAAEEAAExCAAAEQgAA0sIAAABAAABUwgAAsEEAAK5CAAAIQgAA-MIAABDBAAAAwAAAikIAAGBBAAAAwQAA0MEAAKrCAAAoQgAAIMIAALDBAADIwQAAwMEAALDBAABEQgAAHEIAAADCAADgQAAAAMEAANjBAABQwQAAoEEAALhBAADgwAAASMIAANBBAABwwQAAUEEAACDCAABwwQAAHEIAAPhBAACEQgAAPMIAAPhBAACiQgAAWMIAAGDBAAD4wQAANMIAAJbCAADgQQAADEIAADzCAAD4wQAAEMEAAIjBAAAwwQAAwMEAAEBBAACIQQAAwMAAAIhBAACCQgAAEMEAAGjCAAAAQAAAJEIAADTCAAA0QgAAgEEAAABAAABIwgAAQMIAABBCAADgwQAAgD8AAIbCAAC4QQAAQMEAACzCAAAgwQAADMIAAODBAAAkwgAAMMIAAJjBAADAwQAAwMAAAHBCAAD4QQAAZEIAADBBAABowgAA2EEAAEDAAADQQQAAgEEAAChCAABQwQAAZMIAANhBAABwwQAAmEEAAMDAAADAwQAASEIAAIDAAADIQQAAlMIAAPjBAACgQAAAGMIAAHBBAABQwQAAhkIAALjBAAAgwgAASMIAAODAAAAMQgAAxkIAAMjBAAD4wQAAAMAAAHRCAABUwgAAgEAAAFDBAABAwQAAIEIAACTCAAA4QgAAgEIAAITCAADQwQAAMMEAADDBAAAwwQAAoMEAAPDBAABUQgAAQEAAABzCAADAQAAAAEEAABRCAABIQgAAgEAAABhCAAA8wgAAsEEAAEBBAAB0wiAAOBNACUh1UAEqjwIQABqAAgAAFL4AABA9AAB8PgAAUD0AAOC8AAC4PQAABD4AAC2_AAA0vgAAUL0AAJi9AACYvQAApj4AAKI-AAD4vQAAor4AALI-AAAEPgAAFD4AACE_AAB_PwAANL4AANg9AACGPgAAoLwAABA9AAAMPgAAgLsAAIg9AABQPQAAiD0AAJa-AADgvAAAEL0AAHC9AADgvAAAEL0AAJ6-AAAsvgAANL4AAJK-AACWPgAAbD4AABy-AAAwvQAAMD0AABQ-AAAsvgAAZL4AAEA8AABwvQAAMD0AAIY-AABEPgAAgr4AAOC8AABxPwAAQDwAAKA8AAAwPQAA2L0AAAQ-AACgPAAA-L0gADgTQAlIfFABKo8CEAEagAIAAOC8AAAsPgAAQDwAADm_AABcvgAABD4AALo-AABwPQAAQLwAAFQ-AACgPAAAiL0AAOA8AADgPAAA2D0AAHC9AADgPAAA_j4AAKi9AADaPgAAQLwAAIA7AACIvQAAiL0AALi9AABkvgAAcL0AAEA8AABwvQAA2D0AAIA7AADYPQAADL4AACS-AACAOwAAuL0AAEQ-AAAQPQAAXL4AADA9AAAsvgAAED0AAMi9AAAsPgAA-D0AAHA9AAB_vwAALD4AAPg9AAA0PgAAHD4AAEQ-AADgPAAAkj4AAEC8AAAUPgAAgLsAANi9AAA0PgAA4DwAAGw-AAAUPgAAXD4AALi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=m01p-1RSLs0","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13620333320665619518"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16583037678510348616":{"videoId":"16583037678510348616","docid":"34-4-16-Z60AD72E1E7709E6D","description":"Discusses the vertical structure of the atmosphere (density/pressure, temperature) and the distribution of radiation from the Sun and the Earth, and a simplified explanation of how the two...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4342588/6f492b3dba80c2f4d26f41272aa19784/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ILc0SAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhrHpPq3CZeI","linkTemplate":"/video/preview/16583037678510348616?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Climate Modelling 2: The atmosphere and the radiation, a combination that makes the magic happen","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hrHpPq3CZeI\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoWChQxNjU4MzAzNzY3ODUxMDM0ODYxNloUMTY1ODMwMzc2Nzg1MTAzNDg2MTZqiBcSATAYACJFGjEACipoaHl4b2huaGRsYWZxZmhkaGhVQ1dOeDE3SnQ2ZVc0TjRheUFFaVhkRUESAgASKhDCDw8aDz8ThgaCBCQBgAQrKosBEAEaeIHwEwAAAQAA6vwD_foAAQABCf4I9_7-AOr4-_MC_wEAAg0PBgQBAAAGFPUA_gAAAP4D_xH3_gEAGfz5AAMAAAAN_QT6BwAAAAMLAvr-AQAA9AwE__cBAAEF-gv7_wAAAOv__wP9AP8A9wsJ_QAAAAAN-fcGAAAAACAALXZQzjs4E0AJSE5QAiqEAhAAGvABfwtXAKz7Af3HAucBEtPbAMM3xQAsF-EAtefx_9EH3QH4ACcA1No6_TXvLACq2DT_-Ajm_zkjMgEaxxf_zv8YAOHeAgEeAwIDJDT4APkS8_8fLwP_3PAR_uvc8AD8F_oA8K0o_v4O6gHe9uEGPw4xAAf69QMH0vcF6CgRBOozCf4W8wgADP_0Cu0ZBvr84Bv9Cx8BByEL8frSFfL84hoWAgnuGfXX3Rb95PTfAM059QTk3BP39BXxCOriC_kbI9wCyccF_wKmBffvr_cH8f8F_x_lCAQR1ggDC_XaAQLW-PHuMg8RBOEB7Rs4-AYSvPcNIAAteD0IOzgTQAlIYVACKs8HEAAawAcpIM2-nYwAPYpCBr2cau09fm90u0kJBr08izm9chsIPceBHjrP29g9yOSJvdYvYr23DPi9jfjEvCMyJz2mQjw-ZWE5vTx8Qz0OMQ6-TQaRPEfoQrzRXIe9jz5eO6Bu4rqXfwO9MpqbvS3mLL1vmyk9cbtBvc7QLjzRhDw91XZzPV8AS73cahk69RFYvRN8WL24Pxc-_kcmvZoonbyj0M87uVUOvInC3bwVPra8JK6IvOhXKT0BFV6-C7yLOjB1Ibwv4tY8ztyoPTDHoTx6L5O9hnaevT-z2jxDbuu8OSy4PZ3JiDw_c9Y9Z4I8vXL6ejxik6k7cSrIvchqqbw59oc9RJwYPNcDXrhHUve874TIPXtGxzxPPVK-twiBPX_tS7tQ6oE9BQJ4PJN0qDwOTuQ9WvoLvSt2ajv-WqM98FJqvaWqv7oIm_C8_2McPRcNmTyT6xy9TPs2PhZWVrqeEV-7ER8zvCkmyjzW2do8KkWhvFYPmDx9W_C8SZSHPURSprzP7Uq9E-oOPeJbM7xE87U92NTZvTpxILwxBYA9QXj-ukPiIrx3xoy6Z0tRvQcOgzzw-WE9FF8NvneEEbt-8wy92HrrvCqyMTxrRFC9KiFTPVC5MjtVdJq9m1R0Pdo-Hjz8ZUG8hezZu4dCOrzt2wE8IlU0vXYmxDtqNWI7QayYPe1QPDpXXrK8I3eiPGKz6bt2D5q9yKUgvfWKRbpwFmU94eMdPRKywbpq2dq9I0PYvGyXozkHLgc8ocIMvcTJgbtPIx0-lbgOvQ170jj9lR-9LpNcPb5Yp7hXWSE7dn-GvTMo4LfyfAY9z5uvvX0Z4DjaAjK-xYM3ve8yijfsGog8s4KavVVDGbm8TLO9MhRBvNfZ7jghH4S92dmWPT71jLkI05Y9V4dNvYB5Cbm4pxQ8D-cKPO5cn7jO2ek6wEhjPdJLsTgrVzO9vS9YPb735ji_IDO8rBvPPUkMNDXfxyy9HMxLPG5jkLkHXIw9q4EhPfvHpzgXhXg9J7zkPeiOMrcFmwQ7G3ubveeWbra-UAA-bZDJPIqkGri6jby8S48LvYqWnDhr8em9edYkvO4vYDZZeiO9VWiwvQzoMbjIXzo-3JXCPM2vSzgysh897iEBvTT9XLh3PWI8HRFCvao9qLlOwZC9P75OvVNOZTcMhKO9GTxsPYn6BbhMY7U93zywvd5-3DWJL-48y3YvPYa1vLj8BdQ62GZjPAfcCziyL7Q9Xdg_PZYpMLgySXa9pCPvvApbLbjveVk8BliFPRCIqDYgADgTQAlIbVABKnMQABpgEf8AKwEFyBUaPPjO8M4T7-Xf1gLUEf_0-QDoHAn-IQ_Jx-gJADjmKQOzAAAA-eH7N_wA5F8Sxf8tEwoB2Lj-Ee1_Nx_rugkPFc4O7xsU5i82JfseAAD01wMtMvssEy9bIAAtJVY1OzgTQAlIb1ACKq8GEAwaoAYAAEDAAABAwAAAmEEAAPBBAAAAwQAAAMAAAOpCAACgwAAAAMIAAPhBAACSQgAABEIAABDCAAAkQgAAgEEAANBBAAAAwAAAMMEAAAjCAADAwQAALEIAADBBAAB0QgAA2MEAABTCAACeQgAAAAAAAAhCAAB0wgAA8EEAANDBAABAwAAAZMIAAFTCAACgwAAArsIAAKhBAACoQgAAyEEAAKDAAAAAQQAAwEAAAFBCAACAwAAAKEIAAKjBAACAwAAAuEEAACBBAABwwgAAGMIAABBBAAB0wgAApsIAABDBAAC-QgAAyMIAAFDBAAC4QQAAEEIAALBBAABMwgAAUEEAACzCAACAPwAAuEEAAEBBAADIwQAAbEIAAIBBAAAwQQAAuMEAAHTCAAAEQgAAqEEAAHBBAACKwgAAIEIAAPjBAADIQQAAgD8AAIBCAABgwgAAjMIAADBBAAAgwQAADEIAAIBCAAAkQgAAIEIAABBBAAA8QgAAcMEAAFhCAABgQQAA3MIAAKhBAAAQwQAAsEEAAIDBAABwwgAAMMEAAAxCAABgwQAADMIAADBCAABwwgAAsEEAAPhBAACeQgAAwEEAAEDBAADAwQAAuEEAABzCAAAMwgAAVMIAADTCAACQwQAAHMIAAGDBAACAwQAAqEEAABDBAAA4wgAAmMEAALBBAAA8wgAAcMIAAP5CAACAQAAAoMEAAADCAACaQgAAokIAAADAAACEQgAAwEAAANDBAADwwQAAAEIAAPBBAADIQQAAmEEAAJ5CAACwwQAAkkIAACBBAAAoQgAAfEIAACBBAACAvwAAAMAAAIhBAACCQgAASEIAANDBAADAwAAAZMIAAADAAACwQQAAiEEAANDBAAAUwgAAQEAAADBBAAAAAAAA-EEAAJhBAACAPwAAgEIAAMBAAAAUwgAAWMIAAKDAAABEQgAAwMAAAAjCAAAYwgAA-EEAAKjBAADgwAAAGMIAADDBAAD4QQAA2EEAAADAAABwQQAAYEEAAIBCAAAAAAAAtkIAAIjBAABQwQAA4EAAALDBAAA0QgAAoEAAAPBBAACgwSAAOBNACUh1UAEqjwIQABqAAgAAXL4AAL6-AAAMPgAAED0AAIi9AACavgAAcL0AAC2_AAD4vQAALL4AAIA7AAC4vQAAiL0AAEQ-AABwPQAA4DwAAHQ-AACAuwAAgDsAAIY-AAB_PwAAhj4AAGQ-AABsPgAAyL0AAPi9AABwPQAAkr4AAEw-AABQPQAAPD4AAM4-AABQvQAAED0AANg9AABsPgAAkj4AAKi9AAB8vgAAyL0AAES-AABQvQAAcD0AAFA9AADOvgAA-L0AABw-AACAOwAAyD0AADy-AACKPgAAmr4AAKg9AADqPgAAdD4AABC9AABJPwAAQLwAALK-AAB8PgAAMD0AAHC9AABMPgAAuD0gADgTQAlIfFABKo8CEAEagAIAACS-AACgvAAA4LwAAGG_AACIvQAABL4AAEQ-AACgPAAA-L0AAJI-AADIPQAAHL4AAJi9AAA8vgAAyL0AAPi9AAAMvgAAGT8AADw-AACqPgAAQDwAAEA8AACgPAAALL4AAFA9AAAkvgAAcD0AABw-AAD4PQAAUL0AAEC8AAAQPQAAgDsAACy-AACovQAAnr4AADw-AACGPgAANL4AAFQ-AACWPgAAgr4AAAy-AACgPAAAoDwAADA9AAB_vwAA4DwAAIA7AACSPgAAmD0AAOC8AADYPQAAqL0AAKC8AAAQPQAAiL0AAOg9AAD4PQAAXL4AAKg9AACgPAAATL4AADA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=hrHpPq3CZeI","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["16583037678510348616"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"28452331"},"4732290549345255528":{"videoId":"4732290549345255528","docid":"34-10-12-Z8D3BD1009599A5D3","description":"Some simple illustration to help understand the shape of the log-normal distribution, or the one-dimensional distribution of the Geometric Brownian Motion.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3578229/11132c4e8810451f8054d394683322c2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DY5oKwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNuoim89ncJw","linkTemplate":"/video/preview/4732290549345255528?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"the Shape of the Geometric Brownian Motion’s distribution","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Nuoim89ncJw\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoVChM0NzMyMjkwNTQ5MzQ1MjU1NTI4WhM0NzMyMjkwNTQ5MzQ1MjU1NTI4aogXEgEwGAAiRRoxAAoqaGh5eG9obmhkbGFmcWZoZGhoVUNXTngxN0p0NmVXNE40YXlBRWlYZEVBEgIAEioQwg8PGg8_E_4CggQkAYAEKyqLARABGniB7gX8BQH_APgHDAf4B_0C_wcJ__j-_gD1APT0AwL_AAb0-wT4AQAABgT-Cv4AAAD6C_r_-_4AAB8A9gwCAAAADAEMBPUAAAAU_P38_gEAAO3-8_kCAAAACPkC_P8AAAD7BAT9AAAAAPcLCf0AAAAAHv4ICgABAAAgAC1qLM87OBNACUhOUAIqhAIQABrwAX8ECQGxBNT9Id8BAQsSAQCgBPUAQAnjALf_AADu_t4A6crtAPcN_f8L4hb_qCYdAPAMC__k4jIAHugiAPHr8gDr9AsAKAYjAjIkFgAv4Rb_5SP7_-3uKgEQ7PwA7gX8AQn0EfoL6eAA9RPdAfIDFwE68PP-4PrkA_AY9P_v9w0G8Rvt_f3x8AQS6-7-8wgYCwwQ3_8VK9r_9joYARjYFQHrJBAAEvbhAP4k3PwK9fAGDPkO9x7j6AIP5vsG1f7wBAsG_fsJ-fb99QL5_vTzC_8PIxH6-wsH__YE7_4hAPcC0xf8CuLjB_nOIgUAFPT_BCAALc0dJzs4E0AJSGFQAirPBxAAGsAHhzT6voRikD0f01-9DmkEPqbv9by7V1e9wsqXPHF2RjwrDSa9_yPTPcFSXTyaC5w8-zw2viOxEbysEIA96iDvPfN4NTyRprA8huMJvt8g9TysASq98YTevYAfnzy3QQ48lZnHvaLZEL1Bmxw87xEbPcHEv70IkAG9VhCzPQfqFDuzvEG9L5tKPbdKK73WaCK8uRd9PbeXNLx3HWA8-I51PM6luDwUDU29x1UdvELqFr2ox7Y82xkWvq99ATzCxzu9uJNIvXjoAD2fhGM8z9kCvQkrALsGt1o82Ww2PdwAojw2Etc7WPMtvHURNT164U68eSqGPUUHKb0KkBe9_2eDPOz9sT1b2K68toBQvLhb0j2b7gy8OpM2vgSVTDxfiIu8lBWzPdmBrr3vsjo8uYnaPQnrFT2uC4U7XPOZPRntJ7z9Ws28bh6ivXNYC71ZE4s8u9bJPdVV6LsiaHE81AoYvcpnHjyj7wk9cQyHPTWgWT0dkW87smCHvZHSnD35Tgo7V-T8PKJinLudiJm8cArrPEXvub32R-W51-o8vMIcGL3kRa47S3ZsPQ3twj055qM7wIXrPKUEo7290kc7jQuVOUUwub2I9s47OVkPvcGpz72ngww8zxmsvFupoT0sVXW76QthvdnOt7xk4r27ofwYPdF8ST12Kio8QJ5CPaIlj7yCNZQ7RVOsPEuvDT7ZeoY6ixCYPRGfxTz-TPK5ElDBPcF4Qb1h0wq6O_IxvXYKmD1LV304QGmoO5Nx7D0SRDq5jzfZPZ1pbbrhBgm5e_oYvlxJoTw1w785jgqXvVrxETup0I04aDpAvaZC_Lz1yo859ZZXvVJmnrzndwO60-xrPbD-L73g2Xc4uhCbvZUnwL0O0R85TBjNOljdsLv-F9W4vLS8O94EPz3wrKU5yHSNPMebPL3EoJC440w4PD8XMjzi_gG6oeWvvFRNFb21GDG4yC9yPJeonj2EkAe45Zk3PZKy5T2jmoM4y6wUPZPFPT6tjkO5dOgZu8mwJT2kwxE4sLSCPWMIID4L5EA5NEYQPQ4a1bwG6to3v_PrPawucbxVzFI4zfIrvOoDTr3tLZs4EylNPC_-Eb10l9u2liSfPZmQYD21baM3HBjKPSPZI7xLjiq21EP0PVZgTT2Ui125xpPTPMd0Er2np_u3dfX0vFnd6r0NI_E1NTm2vfNdhDo4DVw3L0UDvavpWr0tMPS3qRqIPWGeG7wMOm84-PzQvRRIZL3Ic0s4zoZhvdDs-j3AEpY4HZMkO_dQR7zBSMQ3IAA4E0AJSG1QASpzEAAaYCECAA7XEdvvJh3nz-TlHwEK-eYP1NwA7u8ADyv3IzIbAcIH9wAZ5ev6wgAAAA0dAzMNAPNLAd44CAH0-N3o3DX3fx0i--IDAyrU-hwPERIQHPg0HQAb9_AGPOQSIwwYIiAALW9qVjs4E0AJSG9QAiqvBhAMGqAGAABIwgAAqEEAAPBBAAAswgAA4EEAABhCAAD-QgAAmMEAACzCAABUwgAAykIAAADAAAAkwgAAoMEAAIA_AAAQQgAA4EAAAAjCAABQwQAA4MAAAPBBAAD4wQAAHMIAAEhCAAAwwgAAgMEAAABBAACAQAAAQEEAAODAAACIwQAAqMEAADjCAAAAQAAAQEAAAKBAAABcQgAAfEIAAAhCAACYwQAAqEEAAMBAAAA0QgAALMIAADDBAACAvwAAAMIAAOhBAAD4wQAAisIAAPDBAABMwgAAisIAAEBAAABwQQAAZEIAAOjCAACWwgAA0MEAACxCAADwQQAAcMEAAABBAACIwgAAwMAAAIrCAACIwQAAqMEAADzCAACowQAAgEAAAMDAAACMwgAAFEIAANBBAAAAAAAAAEEAAGhCAABAwQAA0EEAALhBAADAQQAAoMEAAKDAAAAAwAAAbEIAAOBAAABcQgAAkEEAAIBBAACYwQAArEIAADjCAACAQQAAkEEAAHzCAAAUwgAAyMEAAHBBAAAkQgAAKMIAAKBBAACIQQAAJMIAAMLCAAAAQgAA2MEAAHxCAACAPwAA0EEAAEhCAADwwQAAgMAAALjBAAAEQgAAIEIAABxCAABQwgAA2EEAAJBBAAAAAAAAAEAAAKDBAABgQQAAYMEAAABCAAC4QQAAoMAAACjCAAB0QgAAAMEAADDCAADowQAAvkIAAHRCAADgQAAAaEIAAHjCAABcwgAAUMIAAADAAAAoQgAAoEEAABBCAAAwQgAAgL8AAJpCAACYQQAAQEAAAABCAAAQQQAA6EEAAEDBAABAwAAAcEIAABDBAACYwQAAAEEAAMjBAAAUwgAAIMEAAPhBAAAAAAAAAMAAAATCAACAwAAAsMEAAKBAAAC4wQAAMEEAAADCAADCQgAALMIAAIjBAAB8wgAAqEIAAGBBAADIwQAAWMIAAIxCAADGwgAAeMIAAK7CAACgwQAAOEIAAFBBAABUwgAA2EEAAGBBAADAwAAAyEEAADBBAAAwwQAAAMEAAEDAAACOQgAAVEIAACRCAACAPwAAMMEgADgTQAlIdVABKo8CEAAagAIAALg9AADgvAAA3j4AAIY-AAAMPgAAij4AAIi9AAADvwAARL4AAFQ-AACgPAAAML0AAOg9AACGPgAAtr4AADA9AAAEPgAAQDwAAEA8AAC-PgAAfz8AAMi9AABMvgAAkj4AABw-AAAMvgAATD4AAFS-AABkPgAAZD4AAFC9AAAwvQAANL4AAMg9AACIvQAANL4AACw-AABkvgAAwr4AAGy-AADovQAAXL4AAEw-AABAPAAAbL4AAOi9AAAcPgAAoDwAAKg9AADYvQAAND4AAOi9AABQPQAAmD0AAJK-AAAQvQAAJz8AAFA9AACIvQAAsj4AAOA8AAC4vQAAyD0AAPg9IAA4E0AJSHxQASqPAhABGoACAAD4vQAATL4AAI4-AABHvwAAHD4AAIC7AAAUvgAAoDwAAFS-AABEPgAAXL4AAKi9AABkPgAA-L0AAIC7AABwvQAA6D0AAGk_AABEPgAAmj4AADy-AACgPAAARD4AAIi9AABwvQAAoLwAAPg9AABAvAAAND4AAFw-AADgvAAAiD0AAOg9AABUvgAAoLwAAFA9AABAvAAAcD0AAHC9AAD4PQAAyD0AADC9AAAsvgAAgDsAAJK-AACAuwAAf78AADy-AABUvgAAZD4AANg9AACYvQAAgj4AABQ-AABQvQAAQLwAAEA8AABwPQAAHL4AAFS-AAAsPgAA2D0AAJi9AACKviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Nuoim89ncJw","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4732290549345255528"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1477029245"},"2266964054158548217":{"videoId":"2266964054158548217","docid":"34-2-13-Z71FFDBA9E22D6315","description":"Explains the Libor market model. Contains a step by step derivation of the drift under the forward and the spot measure, and also shows how the multi-dimensional Libor market model can be...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4072539/50d67bc2c048959c86b716fb2e470303/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/OQGosQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dvbtkyczmy60","linkTemplate":"/video/preview/2266964054158548217?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Libor Market Model","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vbtkyczmy60\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoVChMyMjY2OTY0MDU0MTU4NTQ4MjE3WhMyMjY2OTY0MDU0MTU4NTQ4MjE3aogXEgEwGAAiRRoxAAoqaGh5eG9obmhkbGFmcWZoZGhoVUNXTngxN0p0NmVXNE40YXlBRWlYZEVBEgIAEioQwg8PGg8_E88KggQkAYAEKyqLARABGniB_v4BCPsFAPnuCAgGB_wBAAP_-Pn-_gDyAgfzAwEAAP0EAP0FAAAAAv0A-QIAAADzA_4B-gAAAA8EAfL0AAAAAgAD_gIAAAD4BvoA_wEAAP8EBfn4AQAAEAX3_QAAAAD5Bf74_gAAAP79_v0AAAAA9fX7_wAAAAAgAC15oOI7OBNACUhOUAIqhAIQABrwAXzg-gHAG-T_Eb_6AQAP4QGB7Rz_ORzkAKYQ-QHZDMIBCQn4AM768v8QBPsAw_QBABT05__8-OwAOQwF_y7lBwHYIxUBR-UMARIIDQDyBN3_6BQG_vMBDAIJ3ur_9ArzAwoy-QDz9vcA19vMBSH8KQEMKwUDM-72_-cG9P__DyYAyyvr_T0ADAPuIwcC7ywKAwIU8wX8Mu3-9P329w4HDAcY5A8BAPT5_yb99Qb6I_T4-_369gcB__sTHR__A_3u-w328Azp8Az8CusO_Rf0DQcL8AYH8O_7CQHx8wsMzgoEvwzxAeLiB_noH_0GH_b0_yAALUFaJTs4E0AJSGFQAirPBxAAGsAHeNDkvqk8kTsMDd-8yXeEutU15Dz78c28S9O2vZbLKz2s7ge9dhoJPlsAPz2kDdG8WcBUvgSMjDkqz9c8Ci9hPhdxsLxB08Y5Wi5bvuqPlTxuYpK8FAdQvpN2fjyKmh69QFwoPLhub7z9BIa70R8qPuqwIr1Qwsy8taXOvTlCCjyhcAy9DUHEPB5wGL3f_ly8BcP5PTGLWr0LiB89vw78PdrQCD0rrRW9QsFWPdeEGb3VUeG7l5AvvrY_4TvBF0u8hFkSPbjnWT1iIBk8SXQlvQhcEr3-XHq7D6mzPI94CTzYUvY7jX-fO6GOfT3_CS68bRwxPAhs97p2Y4s8CrXLvGY37bsFvZw8qPwLPqWDlT0kjoa8fNyivb9g9zxMRC68fIDOPX5MNbx_-o-8l-YmPiX8Nz3SywM7s_tfPZDwYryRcO86uD_XPB7ygbsqkUQ83Ws3PYycqj0EfoO8O27bu3iCmLxddKo7VcmGvQKJwby8Ria8bY4zPVX6PTqki827ggT_O6zR4TztLUC8xTVDPfhRDb4Jbyy76wHzPH11erygg9O7LJEVPERcTz0jNAA8SBgGPm7JZb3t1QW8CtvPvCpwFbxPfNK7G2czPduJ8r3Zqmq7IYZnvTpoBDxdjJ67zpedPdRcM70v1-i7BCj8PEw2Hr1bXZC7qMwoPf_-HLv_4Ko7RTG3u48Y3T1Nn3c6FMgxPR7ykD23kOK5yCOtPd4R3zwIVU27HhOOvHsfPb1Rlqm77KkwPecuMjse5g464luYPbokmLwdn3s5FcpCPMqxaz2bzOo5XGx_PFPjSjzjc785icjVPH0_hb1HWoU5ppf4vfOrqb2qNHU4OJ0pPfl2XDyERDG4Kcz7vErfNbyFYNE5Cih5vBxeDrzkS1O5LKhevB_Ojbs31wS6yESKPSfYP73qhfw3NfBDPeTZCLy28NO4oPvyPOcqZ70ZrWc4vyAzvKwbzz1JDDQ1F1YAvb-GG72Cgh-4cHsfPIsqDT3noKS46E82PRIvETyTBTK43gKJvLot0bz1FzE3h0VWPdNlpr2_KPQ2q6xyPbkbwDv_rNG4uOQovtF_hbyd-Bq5ePq3vHu80Dxyqpo3m69tPTPinbxX5ps3DqY8PDoC2bviNkE4tSWxPetQ8jx6vEi5ZoKRvXqVC71U1IS31TuBPO89h73Nk783cfSCvZgLRr3PQ6I2HZcMPUkPQ75UMU25ipZXPRBY-T2NF0A4YJqYPFua-z2Erf246FWzvRYk7DzNuCE4aewBvQxN4zw_aZM4IAA4E0AJSG1QASpzEAAaYAoIACveBtQKBxLq_wjONdrvEtcYukT_LA__BSny7AMRCo7czf_r8RbipgAAABbSEeoPANl37M8CLMsYCpmVFAUVf_MxNdXj-hgNCBHv-sv_Jur6YQAgDKgXbgQA8x0WGCAALXXHHDs4E0AJSG9QAiqvBhAMGqAGAAB8QgAAkMEAAOBCAAAMwgAA8EEAAODAAABsQgAAyEEAAAjCAACAwQAAwEEAACTCAADAQAAAAEEAAJhBAAAQQgAAEEIAANjBAACoQQAA4MAAAOBBAADwQQAAhsIAAABBAACWwgAARMIAADDBAADowQAAREIAAATCAAAkwgAA0EEAAJzCAAAAwgAAmsIAADRCAAAgQQAA4EEAAABBAACgQQAAFMIAAPjBAAAAwAAAYMEAAOBBAAAQwgAAIMEAADBBAABAwAAAAEIAAGDCAACAvwAAuMEAAAhCAAAAQgAAiEIAANjCAAAQQQAAaEIAAFxCAADwQQAAZMIAAPjBAABMwgAAMEIAAJLCAABgwQAAIMEAAJjBAACQwQAA-EEAAMBAAABYwgAAiEIAAFzCAABAQQAAqEEAAADBAACowQAAqMEAAMhBAADwQQAAMMIAAMBAAAD4wQAAKEIAAEBAAAAwwQAAQEEAAJDBAACYQQAAskIAABjCAADgQQAAmEIAAJDBAAAMwgAAAMAAAKDAAAAUQgAAuMEAANjBAAA0QgAA6EEAAJjCAADgQAAAiEEAAIDBAABAwAAACEIAABRCAABgQQAAAMEAADzCAAA8wgAAykIAAABCAACIwQAAKMIAAEzCAABQQQAA6MEAAABBAADIwQAAoMAAAEBAAAAEQgAAsEEAAAAAAADgQQAAwMEAAFTCAADQwQAAaEIAABBCAADYQgAAMEIAAERCAACAQAAANMIAAADBAAAAAAAAQEEAAGTCAADgQQAAmkIAAABBAADIQQAAwMEAABxCAADgwQAAYEEAAHBBAABQQQAAgEEAABBBAAA8wgAAYMEAAMjBAAAwwgAApsIAAADBAABAwQAAgMAAAAAAAAAIQgAAosIAAIRCAAAoQgAAIMEAAIA_AACAQQAAuMEAAJDCAAAswgAAQEEAAIDAAABAwgAAmEEAAMhBAACYwgAAmMIAAADCAACCwgAA2EEAAEDBAADwwQAAjMIAAABAAAAQQgAAmEEAAAxCAAAUQgAAiEEAAEBAAADKQgAAgMAAACTCAACgwQAAOMIgADgTQAlIdVABKo8CEAAagAIAAAy-AAAQvQAAXL4AAEQ-AAAwvQAAcL0AAMg9AADWvgAAqD0AAFA9AACGPgAAqL0AABQ-AABAvAAAXL4AAEy-AABQvQAA6D0AANY-AABMPgAAfz8AANg9AACIPQAA6D0AADC9AACgPAAAfL4AAKg9AACGvgAAED0AAEQ-AAAEvgAAgLsAABw-AAC4PQAAUD0AAMg9AAB8vgAAB78AAOC8AAAcvgAAUD0AABA9AACAOwAA6D0AABy-AADgPAAATL4AADC9AADYPQAAMD0AABQ-AACGPgAA4DwAAKi9AABAvAAAvj4AAEw-AABQPQAAQDwAAAS-AABAvAAAuL0AAJa-IAA4E0AJSHxQASqPAhABGoACAAB8vgAAjj4AAIK-AAAjvwAAZL4AAPI-AAABPwAATD4AACw-AAAMvgAAJL4AALK-AACIPQAAcL0AAOg9AAAwPQAAoLwAAEU_AACGvgAA5j4AAJI-AACSvgAA3j4AANi9AAAsvgAADL4AAJa-AACKPgAAJD4AAPK-AABwPQAAgLsAADC9AACWvgAAHD4AACy-AAC2PgAAuL0AADC9AADgPAAAhj4AAGy-AAAcPgAAVL4AAOg9AAAFPwAAf78AAFy-AAAMvgAAtj4AABQ-AAB0PgAADL4AAOI-AADoPQAAVD4AABy-AABQPQAA5j4AABw-AABkPgAAqL0AANg9AACIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vbtkyczmy60","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2266964054158548217"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"520090048"},"11264148236387297749":{"videoId":"11264148236387297749","docid":"34-0-13-ZF0BA09D14BCC0217","description":"Discusses the change of probability measure for the Poisson process, and related concepts such as Radon-Nikodym derivative, and change of drift.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2746243/a6fab539017de3a97da5a41ba1f61d85/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3BT8LAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0y56uUcPxvo","linkTemplate":"/video/preview/11264148236387297749?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Change of probability measure for Poisson process","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0y56uUcPxvo\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoWChQxMTI2NDE0ODIzNjM4NzI5Nzc0OVoUMTEyNjQxNDgyMzYzODcyOTc3NDlqiBcSATAYACJFGjEACipoaHl4b2huaGRsYWZxZmhkaGhVQ1dOeDE3SnQ2ZVc0TjRheUFFaVhkRUESAgASKhDCDw8aDz8T3AWCBCQBgAQrKosBEAEaeIH49vv4BPsABP4L-v0D_wEtBvkHCwUGAPL8AfT1AQAA7Aj1AvsAAAD3_wEO_QAAAPQBA_vy_wEAGRn9-gQAAAAHBP0I_AAAAAcKAgr-AQAA_wLy_QP_AAAfBQgJAAAAAPsD_-wAAAAAB_wN_wAAAAAO-fYGAAAAACAALUEexjs4E0AJSE5QAiqEAhAAGvABfwgIAeTuzgHTLdEA1__2AYcKK_8OCL3_rf4AALwD4QAQIO8B7tvR_-n9GQK6GQgAHAHDAAoPDP896Oj_L-n4ANcH6QAU2wQCXiEt_f8OAP7N7zIACdr7_wTq2gAIC9H-CvIT-Rb04gAK6rgJD_4-AfgBJgYjDgT-9rz0A_EHCQAW4_YAJBDzBQzyFP7g9TAHG-j-AQ8FCPT2LPIEAQ0L-9jqCgEHAuD6K_3zByAS_vay1A3_5P8PCw74HfzfDu8D1_IuBtAfDvYAIBQBMvb1BtQQ_AD38uwDFA33AA3d-wP1-uv_wAz5BtAd9w4RKPH9IAAtjbsTOzgTQAlIYVACKs8HEAAawAfqsOq-2tI8u_iXEz0IaI079Ix9vbvPdr3O3Ai9VWWEOl8OFr2fWzg-5xN-vdgKP7yELOu9JOYjPIwrrjy14ZA-uhE2vRqJMD1xPVq-5xa_PYVMqLxWnLq9o7V9vKzk4zx5Ey47YBrtu331J71-eXw9GcWyvBaePDzJV8K85gwAPULuAr30Hy09P7m3vZ4_Er2lmv47lcm6vHjl4btWbKc9_wjDPNVSyrxcEGA9AJdWvY5RqLykbQy-ZR60PZjLHL3w58o7H4NVPeKPhzz9Wr29ggNWO9eefrzBZV88LdOOO3eU1DyNf587oY59Pf8JLryfEdc7-bV6vfZOnrsMdw6-TdoWO5ZhFz0bKps9WJ1GPd9ML7smusi9Tz6cO8WIqzsr3sg8fJf3vKTDQzw_5sM806TUPW2mZ7yJF5o91QIevCEUpboFiJK96EMhvO-YcDzeC8I97VagPFPuGTo_fRo9vMbTPLhAgjsnB629F1ZgvPT7fryJMxW9kKuXPYXy-DvPE8-7tBlMPGbEfTsFI6U91gI7vknlmjrO8ga9kDiKvZzLQ7x0fso8aiRzPYXEqLtO8M09ZjPnvf9XADxp5ua7WF2ivCNTmTs5WQ-9wanPvaeDDDx_mbm7XEJ5vbOuF7yhcRe9uI-MvYKbHLsSjjQ8Jso5PdBy6rs0_hO9OOJEvUu-BjuB0gs9A2mFPZMbEbqQg9I9RpRbPdUcFLibprQ8tyS3vWsAQrvJ2lC9IN90vUjZIbkRkO-8HWyLveBCHTmqgqE9GhiZvUdKoDh6oxs9nD6hPeBT4DkniPq92qcEPHXweLkiiPM8tZ6rvLLGFDlcVAu9nBXxvdyedTnnfnu7mMjgPGWWC7lyMZa9xR4aPSwgljk866K7VSlCvdM4vjg3U6G8s68VOf0yNTmFzUU9YZuevHLf0jdXlf09fcv_Okxx0TgPFgS9XHgaPMyuXbhcomQ91wZdvO7jIDlar4M9AY_DvabRWjkRHsi7kX1QPe8djDZSPLg8X8tQvRitEbgXH7A8S6CHPTgzx7gVFJA8c-WCvY_pfDjhhKg9c5X4vKBCdbi9j-O9OGXOPThzkTi81hg8MbOPPLpFtTi3xFu9iFLWvM8y4bh5JDk9U0FFPJGYPbYfnwA-pOSQvRXoOrmTjJy8JrGqvfcB27h_iYO9Dtj1vQvRErhVMRO8TplbPQ2vyzdTZU48e1yVvV51vLdVGKY9bQvFPYPH5zhxfGO9-iUCPqmBLLl-J8y9LLyLPckpwTgaM5m9X4TfPGMYMbcgADgTQAlIbVABKnMQABpgIRIAQSsm5uAFPN7v1NkNAQ8o0vLpEv_wxwAaBgzODgXerzAI_x3vOtmvAAAAD_zf-h4ACGsPydb6zgcduNDVKSt_7BcT5hAZBOEELQTuBBL_DUVWAP0G0Dwl-7pFAUsEIAAt74IpOzgTQAlIb1ACKq8GEAwaoAYAAFRCAAA4wgAAlkIAAGjCAAD4QQAAiMEAAJxCAACgQQAAHMIAADBBAADYQQAAQMAAANhBAADYwQAAoEAAAOBBAAC4QQAAiEEAAGDBAABAQQAAgD8AAEDBAACowgAAEEIAALTCAABAwQAAcEEAAAAAAAAgQgAAgMAAAEjCAAAAwQAAvsIAADDBAACSwgAAZEIAAHBBAACoQgAAgMAAAJBBAAAwQQAAqMEAAIDAAACAQAAAPEIAACDBAAAMQgAAQEIAAEhCAAD4QQAAqMEAACzCAACwwQAAgMAAAKDAAACgQAAAjsIAABxCAACWQgAAFEIAAEBCAABswgAA0MEAAKzCAAD4wQAAAMMAAKjBAADIwQAAgEAAAAzCAAAcQgAA4EAAAJLCAABQQgAAJMIAAADCAACCwgAAAEIAALDBAACoQQAAHEIAAIxCAADIwQAAmMEAABTCAAAsQgAATEIAAEDAAACAQAAAXEIAAPjBAAAsQgAAiMEAAABBAAAoQgAAcEEAAHDBAACIQQAAiEEAAIhCAACCwgAAYMEAAExCAAAsQgAA4MEAAMjBAACIQQAAMEEAAMBBAACEQgAAlkIAADxCAACAQAAAIMEAAMjBAAB4QgAAgEIAADDBAAAAAAAAJMIAAIDAAABwwgAAoEAAAAAAAAAcwgAAIMIAAIDBAAAQwQAAUMEAABBCAADQwQAAgMEAAFBBAABYQgAA4EAAABBCAACoQQAANEIAAIjBAAAwwgAAFMIAAIBCAACMQgAAbMIAAHBCAACYQgAAcMEAAKBBAABwwQAAoEAAAIDBAADAwAAAgMAAAGDBAACYQQAAIMEAAAjCAABAwAAArMIAADDCAABMwgAA4MAAAHDBAAAwwQAAIEEAABhCAADwwQAAdEIAAJpCAAAwQQAAgEAAAABAAACIwQAAZMIAAFTCAACgQAAAAMAAAEBAAADAwAAAKEIAAKTCAABYwgAA6MEAAHTCAAAUQgAA4MEAAFDBAACAPwAAgEAAAABCAAAkQgAAgEAAAEBAAAAAwQAAiMEAAGRCAACgwAAAEMIAAARCAACAwSAAOBNACUh1UAEqjwIQABqAAgAAUL0AAIC7AACmPgAA2D0AAIA7AACIvQAAQLwAAA2_AAAsvgAAND4AAII-AAAkPgAAuD0AANg9AACIvQAABL4AADA9AACgPAAADL4AAIo-AAB_PwAAND4AADS-AADGPgAAoDwAAKA8AADoPQAA2L0AAEA8AACgPAAAML0AAOA8AABUvgAAiD0AAEw-AAD4vQAAUD0AADS-AAAEvgAA2L0AAFS-AADYvQAAND4AAIg9AACGvgAAVL4AAHA9AACYvQAAMD0AAHC9AABsPgAAXD4AAOg9AAC4PQAAlr4AAOi9AAAXPwAAuD0AAKg9AABAPAAAmD0AAKC8AAA0PgAAQDwgADgTQAlIfFABKo8CEAEagAIAAHC9AACovQAAML0AADG_AAC4vQAAqL0AADC9AAAwvQAAXL4AAGQ-AABcvgAATL4AABA9AABsvgAAuD0AAOi9AABAvAAAKz8AACw-AACKPgAAgDsAAFA9AAAwPQAAmD0AAEC8AABQPQAAoDwAAIC7AAAcPgAA4DwAAKi9AADIPQAAiD0AAIa-AAB0vgAAED0AAII-AAD4PQAA-L0AABC9AACAOwAA-D0AAMi9AABQPQAAFD4AAEA8AAB_vwAALL4AABC9AABcPgAAuD0AAFy-AAAsPgAAqD0AAPi9AABAPAAA4DwAAOg9AAAcvgAAoDwAAII-AACGPgAAQLwAAFy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0y56uUcPxvo","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11264148236387297749"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3476253854"},"10307736433192947778":{"videoId":"10307736433192947778","docid":"34-4-10-Z0D432303E7773920","description":"Outlines the different ways ODEs and PDEs are represented: General, Normal, and Operator forms...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4565060/5a875d656cf75771e90a5174bf6cd960/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eOLNEgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHeG7g9iPxdA","linkTemplate":"/video/preview/10307736433192947778?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What are different ways to represent ODEs and PDEs? (General, normal, operator forms)","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HeG7g9iPxdA\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoWChQxMDMwNzczNjQzMzE5Mjk0Nzc3OFoUMTAzMDc3MzY0MzMxOTI5NDc3Nzhqtg8SATAYACJFGjEACipoaHl4b2huaGRsYWZxZmhkaGhVQ1dOeDE3SnQ2ZVc0TjRheUFFaVhkRUESAgASKhDCDw8aDz8TtAOCBCQBgAQrKosBEAEaeIEKAAAEAf8A8A0P-wcC_wEIAwoJ-P__AO0E_PgFAAAAAPz4CP8BAAABAwf9_wAAAOYB8AD5AgAADgD9A_sAAAAU-Qr9AQAAABER-vj-AQAABgH59_gCAAEFCQHy_wAAAPwIAQH8_wAA_gr5CwAAAAD_7wcBAAAAACAALZuq0Ts4E0AJSE5QAiqEAhAAGvABf-gOAOsD3gHL8fgAxvzsAcEhMv8dJuEAy-ERAdrw2ADfHOwA9fIGAMP7DAHLFPQAHAHFAPz36wE63fwADeHzAP0JHQEU3BgBXCAs_fkQ9ADrCiYA-N_t_vfy9gEOGBD_8_oo_B_x-_wP_9UDJPstAfoBAgAr_CQB4K8kAObN8QX3-94ADx3pAgvgDvjk1yUDAtz0Ag71_vrWE_P9-er4ABucFfv6OuX6Pf4RAjEG_wja9_4G9_wFDQIYBw_qF_X04cklBtb7CfflFAUNG9_-AfUA6wMG8OADI-gJDPP6HQQH0O3xyxIEAvUO-Az8HPH6IAAt0UIXOzgTQAlIYVACKnMQABpgAv8AQRon9xvm7ODZ9AIL5a815PzH-v8RwgDcMcfwFRy6wPkBAE0FUdqfAAAAQ8wT_6IA7HzX-Qw95j_ewa31KgN_8f9AxqxL7tbNCT8Bxv0kHyNNAOcfxTQy76wv_t0TIAAtVwYPOzgTQAlIb1ACKq8GEAwaoAYAAJBBAACIwQAAhkIAAGjCAACYQgAAYEEAAIJCAAAAQQAAuMEAAABBAABoQgAAVMIAAJjBAACgwQAAgEEAAABCAABQQQAAYMIAAGBBAAAwwQAAqEEAAIDBAACGwgAAQMAAADTCAABIwgAAAAAAAFzCAAAYQgAAwMEAABDCAACuQgAAlsIAADTCAACowgAAuEEAABxCAACUQgAAsMEAAKBAAACQQQAAEMEAAABAAACowQAAUEIAAADCAADwwQAA4EEAANhBAABAQgAAFMIAAADAAABwwQAAQEEAANBBAABwQgAA-sIAAPBBAABQQgAASEIAALhBAAAkwgAAgMEAAJzCAADAQQAA4MIAABzCAACIwgAAQMEAABTCAAAwQgAAJEIAADjCAACAQQAAcMIAACDCAADgwAAAEMEAAFDBAADgwQAAyMEAAJBCAACgwAAAkEEAANDBAACQQQAACEIAAMBBAADIQQAAgMIAAEBBAAC6QgAAjsIAADxCAACAQQAAUMEAABTCAADIwQAAqEEAAABBAAA0wgAAAMAAAChCAABwQQAA6MEAANBBAACIQQAAFMIAAJDBAAB4QgAACEIAAAjCAACIwQAAwEAAAHDCAADSQgAATEIAAGBBAACMwgAAFMIAABzCAABQwgAAgD8AAFDBAACIQQAAgEAAAAxCAABAwAAA-EEAADRCAADIwQAATMIAACDBAAA0QgAAyEEAAGhCAADoQQAAPEIAAIBAAAAMwgAAMMEAAEDAAAAQQQAALMIAAEhCAACAQgAAhMIAAOBBAACgwAAAAMEAAHBBAACQQQAAkEEAAJhBAADQQQAAoMAAALjBAADYwQAAQMIAAIjBAACOwgAAoMAAAJjBAACwwQAAoEEAABBBAABcwgAAuEIAAHBCAADgQAAAAEEAANhBAABQwQAAPMIAAGzCAACgwQAA4EAAAJbCAAAIQgAAMMEAAETCAAAcwgAAkMEAAEDBAABkQgAAAMIAACjCAABwwgAAAMAAAABBAACwQQAAoEAAAOhBAACoQQAAQEAAAMhBAACYwQAAQMEAAOBAAACowSAAOBNACUh1UAEqjwIQABqAAgAAcL0AACQ-AAB8PgAAZD4AAPi9AADoPQAAFL4AAP6-AAA8vgAAED0AAKi9AABwvQAAqD0AAGw-AAAcvgAAML0AACQ-AACIPQAA6D0AAL4-AAB_PwAADL4AAFA9AAD4PQAANL4AAOC8AADIvQAAmL0AAEC8AACgPAAAcD0AAFC9AACgvAAAmL0AABA9AADIPQAAND4AABy-AAAUvgAAJL4AAHC9AADovQAAiD0AAEC8AABwvQAAmL0AADQ-AAAkvgAAQLwAAAS-AADYPQAAEL0AADw-AAAcPgAARL4AAOA8AAAFPwAAiL0AAEA8AAAkPgAAFL4AAKg9AAAUPgAAgDsgADgTQAlIfFABKo8CEAEagAIAAHC9AAAcPgAAgLsAADG_AABwPQAARL4AACQ-AAA8vgAAUL0AAFQ-AADoPQAA-L0AAEA8AABcvgAAUD0AADC9AACIvQAAJT8AAFA9AACCPgAAcL0AAPi9AAAwPQAA-L0AAFC9AADIPQAA2L0AAIC7AABwPQAAiD0AAOC8AADoPQAATL4AAKA8AAD4vQAAML0AAIC7AADIvQAADL4AAOi9AAAQPQAAmD0AAOi9AADYPQAAPL4AACw-AAB_vwAAHL4AABA9AADgvAAAgLsAAKC8AACAOwAAuD0AAKi9AAAQPQAAQLwAAOi9AAAQvQAAEL0AAKi9AAAsvgAAmL0AANi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=HeG7g9iPxdA","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10307736433192947778"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3099857959132532378":{"videoId":"3099857959132532378","docid":"34-5-8-ZCE59F776BC9105CD","description":"Explains the approaches for the mathematical modelling of the spread of infectious diseases such as Coronavirus (COVD-19, SARS-CoV-2). This video explains the classic compartmental models in the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4820779/2d4e6e3966585ac26250e348de4cadd1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/n86YCQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVcRcthopGTo","linkTemplate":"/video/preview/3099857959132532378?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathematical Modelling of Coronavirus spread","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VcRcthopGTo\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoVChMzMDk5ODU3OTU5MTMyNTMyMzc4WhMzMDk5ODU3OTU5MTMyNTMyMzc4apMXEgEwGAAiRRoxAAoqaGh5eG9obmhkbGFmcWZoZGhoVUNXTngxN0p0NmVXNE40YXlBRWlYZEVBEgIAEioQwg8PGg8_E4QLggQkAYAEKyqLARABGniB-wAB-v8CAAT1EAT7CPwCFAr8_PUCAgD2B_v-_wL_APv5CvoBAAAAAwTtAAYAAAAABAr_-_4BABUE9AD1AAAAFvD39_0AAAAMCQf3_wEAAAL2Cgb1AgAB_g0T_wAAAAD8A_gC_wAAAAQIBAQAAAAA8_gEBQAAAAAgAC1ZJtc7OBNACUhOUAIqhAIQABrwAXPwAADGBw7-MP3jAO0X-wGBFfD_Ngf6AMkE_QDUEt4A8BX4APHwIAD7ABD_zgPf_x7v4P87BvIADAsJ_x3zBgAKEwQAXuIPATQL8QD8_P__CgsH_xDqCwAx9xEACwAA_SsKEwDt3en_5vjpBOn5HgIaJg4EK_MUAQII_f4IDBIA5fwX_QL8-vnlBPb5DiYICA4T-vwSD-wB8P8J-wwh7woA8wsCIQLqAi4c_QL3A-n5Ah0H_SYg8AUDCAoC-RkB_-_o9fkA8v4D6fkGACPuBgUT_BoA-ucQCA8D7vv55w39_w0J99QcDQYO8AsILej1_yAALVH0NTs4E0AJSGFQAirPBxAAGsAHbcjfvnP31Dz-AaA8AxVEvQCJSz1Upyi7XyV_vRSvMjwZopK7S2fxPMeSAzuy2VG9l8eqvhPH7Du-EZ28UTAzPvqAmzuR50Q9K2Ccvbse1rxOXkS99aFrvoTTBz10NcO70kiVPf4izbwe7Qk99bsAPkMVsz0FrsY8-icIvpATZj2fPh28aIh0vB0hA70pJ7U8KqhIPrgG07v-KoA8IOsJPsVt2byqmTW89uGqvAdRTb2sOUC9l1JXvp-jwDq2v848lxrGPV4EFz1ZqNC8SriLva0y07xHUAK8D6mzPI94CTzYUvY7CmUBvvMjuT2RdZ28PsX7vCJYML3TN0Q8qNBvvf40Gjpgma-7ZjBmPQvKmT3zgZO820wKPfwi_DyM07U8Q3m6PLdSOb2soDO834iuPQSJEjxOGCC8PD0lPCM9e7zqo766dmH1PGXbjrxZP6q7U3nbPdbxDj0NRja8hVhCvWSzHr0paIs71GN7vWK_p73KPbi8O8UKPlaDK71f8OU7hC_nvOk9vz0bnyg7c4oJvZgDszxfPn68yF2EPI2Ugj02yCS85inGPOMH3TwI2H08h9BSPCkCoT30Vjg8lvjSPEF2CL0isfa6NSllPaGBuL1qUA872fWxvUhHKbojMBm6nMULPel0qr1BDb46VsGDPLm0krt2eB28aRizPfIzRD25iT07KhwgPFjnuD1fULa75mYNPGspID2gN3Q7bYaAPGpDL73Q4E64zwSUPDR6j70nmQi66DzZPMuyr7uT5kk7XdWCO5ouurwQFym7i3YrPSCXWD32qF-4DMKmPULNcL2WJSw54-LovBVYi716S7I3HAWpOhDQWDzoyga6T8kJvvm9zT36u_g5NplsvRLzUT3PR2456ZwfPIjJZTzaSP05P_qbPdVBnjxb9ZG4T6IQuwl8z7xor8w4lNHQur0tgr3Q6AA4CgahPN7fRbzey_Q5KLx_veW9Bb3wNye4cAorvXE5nrzLPoW4doIivX7UcL1SnNA4B5bEO1qv8bq2S7G3hPIAPKB62jxO72m3vlCAPOurK7zCsg62YMOYPZ9-lr3GwII4IvsAvsZfJD0XmGU4LkEBPUP2Cz1IvQ04gtWSPXME-rwL3zu2zEouPZtSQ71atku4JvunvJ5z3DwnFjC4YJB0vfVdmzyUpBi4Sf_BPWVihDyEoAe4rbQ2vQ_-tLyoSrC39nR6PeAP370_mZu36htBu6apxD3sQZc4h9VJPUAv_D23qge5p1oLvsyaGL0Kl3S4wHJpvfg7r7xQuLS3IAA4E0AJSG1QASpzEAAaYBcSABvZLeMDKWD_t-zVCRABEdgP5yL_EOf__R0DBSNDv7ABQ_8pzRrcnwAAAAbX5gzwAMR_37nCKOAiEcnLEy_1a_8TV6baAwbp7xPR0-L8Cw7vEgDv06MkVzXDLDwLOCAALTuHFzs4E0AJSG9QAiqvBhAMGqAGAACQQQAAEMEAAIhCAABswgAAyEEAAMDAAACoQgAA0EEAAMBAAADgQAAAiEEAAEBAAACgwAAAAAAAAEDBAADgQQAANEIAAIA_AACIwQAAiEEAAIxCAADowQAAGMIAAAxCAABAwAAA4EAAAADBAAAEwgAAMMEAAAhCAADQwQAAoEEAAAxCAACgQQAAFMIAABxCAAA0QgAAnkIAAMDAAAAIQgAA4MAAAABCAACAPwAAQEAAAChCAAB8wgAAwMEAAGhCAADIQQAA8MEAAIzCAACAvwAAsMEAAJhBAAAwQQAAaEIAAJTCAAA0QgAAMEIAAGBCAACgQAAAAMIAAMDBAAAwwgAAsEEAAGzCAABcwgAAuMEAACDBAADIwQAAfEIAAAzCAACAwgAA4EEAAPDBAACgQAAALMIAANhBAADYwQAAgD8AAHDCAACIQgAAgMAAAARCAAAAwQAAjEIAADRCAADgwQAAUMEAAMBBAACgQAAAhEIAAIC_AAAwQQAAQMAAAJrCAAB4wgAAVMIAAChCAACSQgAApsIAALjBAAD4QQAAAMIAAJbCAAAAQgAAiEEAAABAAAAIQgAAlEIAAHhCAAD4wQAAUMIAAGhCAACWwgAAiMEAACRCAAAQQQAA4MEAAJbCAAAYwgAAAMEAAERCAACwwQAAtMIAAKLCAACIwQAA0MEAACRCAABgQgAAEMEAAGTCAABcwgAA0EEAACDBAACWQgAAAEIAAOBBAABwQQAAiEEAAMDBAAAEQgAAmEEAAKbCAABAQAAAMEIAAEhCAACYQQAABEIAAIC_AAAAwgAAQEEAAJjCAABAQQAAMEIAAFBBAACIwQAA4EAAAGzCAAAMwgAAEEEAAHBBAAAkwgAAGMIAAGBBAACAQAAAJMIAAL5CAAAUQgAAAEAAABRCAADQQQAAAMEAAHDBAADwwQAAZMIAAIhBAABQQQAAiEEAAJxCAABQwgAAiMEAAIC_AAAAwQAAUEEAAFDCAAAwwQAAMEEAADDBAADQQQAAaEIAAEBAAABcQgAAisIAAODBAABgQQAA-EEAADDCAABMQgAAgMAgADgTQAlIdVABKo8CEAAagAIAAPi9AACYPQAAcD0AAIg9AAC4PQAAFD4AACQ-AAALvwAARL4AAMg9AAAwPQAA-L0AAKC8AAAsPgAAmL0AAOC8AACuPgAA4DwAADA9AACOPgAAfz8AAPg9AAC4PQAAqD0AAGS-AAAcvgAAMD0AAAy-AAAEvgAA6D0AADQ-AAA0vgAAgDsAAJi9AACAuwAAoDwAAFA9AABEvgAAmr4AANi9AACWvgAAgLsAAJY-AAAcPgAARL4AADS-AAD4PQAAbL4AAJi9AADYvQAAmD0AAOA8AAAMPgAAbD4AAKA8AACIvQAACz8AAKg9AACAOwAAoDwAAKC8AACIPQAAND4AAOC8IAA4E0AJSHxQASqPAhABGoACAACAOwAAFD4AAPi9AAAhvwAAlr4AADy-AABQPQAAyD0AAJg9AAAQvQAA2L0AAI6-AADIPQAATL4AAIC7AACgvAAAUL0AAPo-AABQvQAApj4AAII-AAAwPQAA4DwAAHy-AACAOwAAQLwAACS-AACIPQAA4DwAAEA8AACAuwAALD4AAHC9AACKvgAATL4AADC9AABcPgAABD4AAAS-AAAQPQAAFD4AAKi9AAAMvgAAMD0AAPg9AACoPQAAf78AAFC9AACovQAA-D0AAAw-AACAuwAAFL4AADQ-AADIPQAA6D0AAMi9AAAQvQAAUL0AAHA9AAAQPQAAyL0AAIg9AAAEviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=VcRcthopGTo","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3099857959132532378"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2908525652"},"4047800673807318392":{"videoId":"4047800673807318392","docid":"34-8-8-Z08AFD920E131E53B","description":"Part 2 of the series explains the stochastic modelling framework for the modelling of the spread of infectious diseases such as Coronavirus. It explains the discrete and continuous state in...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3809767/1de6eb546f97e47bf0381c73b4bb177a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/bHWXCQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPsoL8-Q-Grk","linkTemplate":"/video/preview/4047800673807318392?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Stochastic Modelling of Coronavirus spread","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PsoL8-Q-Grk\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoVChM0MDQ3ODAwNjczODA3MzE4MzkyWhM0MDQ3ODAwNjczODA3MzE4MzkyapMXEgEwGAAiRRoxAAoqaGh5eG9obmhkbGFmcWZoZGhoVUNXTngxN0p0NmVXNE40YXlBRWlYZEVBEgIAEioQwg8PGg8_E5YNggQkAYAEKyqLARABGniBAQACBv8CAAP-Cvv9A_8BAgwA__f__wD4BQz6AwP-APv9Bu_9AAAABgP8CgkAAAD8BAjy-_4BABcKAg0EAAAAC_f_7wAAAAAGAwT6_wEAAAL2Cgb1AgAB9wUK_v8AAADwCAIG_gAAAPL6AQIAAAAA-fECBgAAAAAgAC1etdg7OBNACUhOUAIqhAIQABrwAXHj-wG99O3-Fe_xAO0K3gGBFfD_OwjlAMb0CQDF-NIA9hgHAOXuF__5GRMAxgYBAPb48f46K_cA-vwf_zP8AAABFhABQecLARH87AEJCfX_Agr9_yYNKv8w8gEBBgrx_y0bJfvf-OgA9hHgAecXHwAsNQUACwMSAQ0gAgLuBRL9Af0HAQQTCwPzEPsC-hwWBBoF_QbyHOsE9Qb9AwYJ-v_23_X6I-nd_i39AQP8CQL-AxcX_SoU6_v9A_4CDS0TAfABBfsb-fkG4Q4L9yPuBgUT_BoA-PQQ-gX68v3q9vz3-_4E9d8aDPwNAP0MDODu_CAALVH0NTs4E0AJSGFQAirPBxAAGsAHdcsCv4RVKz2YQQa9a3InPbmRLT2SOTs84OLXvHi0EDzYkwa7VNebPc-SkTyvuPY7tw2TvhtUEzwbtBy9Z2KaPk46m7wa71g8ehcvvgg8MD0pn9S8FAdQvpN2fjyKmh69z78dPd7JJz1Idjs98zsNPnYUzLyGS1g8AZzFu33-wbugkm69Twh8O3LSRb3fikS81-rBPTfwlL0J6R88IAe6PYKRN72Ispy8PAThOpicQTvo4SG7qUs2vtRWtrzV5I48hNjZPdT1nzx3nTc6wE6gPNXIEz0MiNq8DCMdPTg9ubxvOY28QQsJPb7sSD0RSqm8-MwoPfQ7KDwbcqI8xipvvLedMT3H49g8_c-7PXi5iD2rJoi8xmGqvatbnT3u1Jo7I2x0uxDfsjpQOpG8fROZPQ9wFLtKP6M733URO3gMLz3VDwA9oZFZPf47rLzJ1xS8gIA1PNzxBj0lB6q7llmpPKIBhjzAPbI72wESvSiWAL3qRBu6ImWlPTE2Pr1o5zQ81SPNPYK8aLy2WJs8r6SmPSvRY72n3PG6vjCZPMcXxDqU1oS8AmcEPShPNDwiQB87G9aUPavt5jwNmHa88W6bvcnLmr1ebQG8NSllPaGBuL1qUA87qOIEuwlZF7qWMjo8s_4iPHN1Ub1XB4C8OXhLvLpn3Ttvk906vxE4vJzslbwBVG27tGBYPc_56TzEL6s69ahOvaEnijzixSm7bHt7PU3gsTyripk6ZKuwvJbnhr2I5Ni60PFRPO_LtD2uGYM4B9FaPQ9MCb2zhYC6DRazPAh8iT3cqfg4mzKcPDswpby1biS5fzadPWglyLxGpvq450JbvdEWoTzWfQu6EUOhPHyInbt1NHo6EWpLvZjDSTyxZZk5POedPNZPA7woCkS5gf3hvMAoHLw1arE3yESKPSfYP73qhfw3IvqlPWETnr2hhEY3M1a2vGid5zxIbJ84eH1GPbnmpzsGNQA3wrS5vEyKn70GYHY4QU0Ivd-HpDv2flU4IMjqO1Bhq72pHI-4L2uku3uqeb15UDq3mgcQPd44yb0INPs29Oi8PEOjJT2MF9u3yuEDvhDXHjyX_U43ExGJvf9XIr03hyA4ziULPLtlYryBvJm2n9iUvbrEbL3yUhQ4x6JIu6nCH73NSDc4XvIBPIGkGTw0zfY2OFpEPCPuVjw8Xo436ORbvdbwI71JIjC19nR6PeAP370_mZu3ITK2PDs54z0EGwY5ADv3PKx0Nz43fR65fYmCvbTeND1FYT04m9e3vaud_LwddAu3IAA4E0AJSG1QASpzEAAaYDcEABO-H9wAOXT4vhTZHRjvBfz--SX_EuT_3SoRHxf65qrzBgAkwBDvoQAAAA3G7y_NAPB_-bbbKLYuAbboFwgIYvwEYsDgDf_nAxja3_jiDSUSTQD0x6shQyrxMzMBDCAALZJaGzs4E0AJSG9QAiqvBhAMGqAGAACoQQAA8MEAAKRCAABwwgAAGEIAAMBAAACqQgAAgD8AAIDAAAAoQgAAcEEAAKDBAAAwwgAAEMEAAHBBAAAAwAAAAEAAAHDCAACoQQAAQMAAAMDBAABkwgAAlMIAAMBAAABwwQAAkMEAAABCAAAcwgAAuEEAABBBAAAgwgAAkkIAABzCAACYwQAAzsIAANhBAABQQgAAQEIAANjBAADIQQAAsEEAAJBBAADAwQAAYEEAADBCAACMwgAAAMEAAIxCAADoQQAAoEEAABjCAACwwQAA8MEAAFhCAADIQQAAFEIAANTCAAAsQgAAMEEAABBCAAAAQgAADMIAABTCAAAcwgAA4EEAAKLCAACKwgAA3sIAAIA_AAA8wgAASEIAAGBBAAA8wgAAYEEAACzCAACowQAA0MEAAABBAACIwQAAAAAAAHzCAACwQgAA4MAAAPhBAADYQQAAfEIAAOBBAAC4wQAAgL8AAGDBAABAwAAAwEIAAMDBAAAwQgAA6EEAAPDBAAAkwgAA0MEAAFxCAABcQgAAwMEAADzCAABgQgAAiMEAADjCAACYQQAAgEEAAODBAACgQAAAtkIAACBCAAAQQgAATMIAAGBBAACGwgAAcEIAACRCAABwwQAAiMIAAPDBAACQwQAAuMEAABhCAAAowgAAGMIAAMDBAACoQQAAcMEAAARCAACIQgAAkMEAAFTCAACowQAAQEIAAAAAAABUQgAAoMEAAHxCAADQwQAAHMIAAEDBAADAQAAAFEIAAKrCAABQQQAALEIAAMBAAACAPwAAQEAAABBBAABAwQAADEIAADDBAADYQQAAEEEAAIjBAACAwAAAIMEAAEzCAAA8wgAAMMIAAKBAAADwwQAAqMEAALBBAABwwQAALMIAANBCAAAYQgAAuEEAAIBBAACAQQAA4MAAAADCAABIwgAAFMIAAIhBAACAwQAANEIAAPhBAACkwgAAwMEAALjBAACYwQAASEIAAPjBAAAYwgAA4MEAAKhBAAAQQQAATEIAAEDBAAAgQQAANMIAAEDBAADoQQAAcMEAAJjBAAAcQgAAFEIgADgTQAlIdVABKo8CEAAagAIAAKi9AAAUPgAAUL0AAOA8AAAwPQAAQDwAAIg9AAAJvwAAir4AANg9AAD4vQAAML0AADC9AABkPgAAyL0AAPi9AACCPgAAED0AALi9AACWPgAAfz8AADA9AAAwvQAAML0AACy-AAD4vQAAmD0AAFS-AACOvgAAUD0AANg9AAAwvQAAUL0AAMi9AAC4PQAA-L0AADw-AAAcvgAAPL4AADy-AABUvgAAED0AAKg9AAAMPgAAcL0AADS-AAD4PQAAJL4AAJi9AABwvQAABD4AAIA7AAAEPgAAHD4AAKC8AAAwvQAABT8AAIC7AAAUPgAAcD0AACS-AADIPQAADD4AAKi9IAA4E0AJSHxQASqPAhABGoACAACYPQAAgj4AAFy-AAAnvwAAJL4AADS-AABwvQAAED0AAIC7AABAPAAAcL0AAJa-AACYPQAArr4AAKg9AAAQvQAAiL0AAPY-AAAkvgAAdD4AALg9AADYPQAAJD4AAFS-AADgvAAAcL0AANq-AACgPAAAQLwAAFy-AACAuwAAbD4AAJi9AAA0vgAAXL4AAJi9AAB8PgAAHD4AALi9AAAsvgAAMD0AAEC8AADavgAAUL0AAKg9AAA8PgAAf78AAAy-AAAQvQAAcD0AACw-AACovQAAcL0AAKI-AAA8vgAA2D0AAKi9AAAMvgAAUL0AAFA9AACIvQAAqL0AAJg9AAA0viAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=PsoL8-Q-Grk","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4047800673807318392"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4244998256"},"4785685722227646555":{"videoId":"4785685722227646555","docid":"34-10-15-ZC49F386031D65515","description":"This is part 1 of the techniques for fitting or calibrating the infectious disease models (Covid-19 type diseases). This video introduces the calibration approaches, and primarily focusses on the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3377821/be920d71993cc9419b5b89722c29e7fe/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZLPFDgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPl-4D-H3ftU","linkTemplate":"/video/preview/4785685722227646555?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Social Contacts Matrix (Waifm) Estimation through surveys for infectious disease (Covid-19) models","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Pl-4D-H3ftU\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoVChM0Nzg1Njg1NzIyMjI3NjQ2NTU1WhM0Nzg1Njg1NzIyMjI3NjQ2NTU1arYPEgEwGAAiRRoxAAoqaGh5eG9obmhkbGFmcWZoZGhoVUNXTngxN0p0NmVXNE40YXlBRWlYZEVBEgIAEioQwg8PGg8_E-INggQkAYAEKyqLARABGniBBwH-Av4CAAT1EAT7CPwCCwD7-vcAAAD2B_z-_wL_AO_8APT5AAAA-wX1_P8AAAD6-_j6Av4AAAQG-wf5AAAAGQL9APgAAAD9Cvr3_wEAAP8F-_8D_wAADP79AQAAAAD8AQMG_v8AAPwICAUAAAAAAvwFAAAAAAAgAC1usto7OBNACUhOUAIqhAIQABrwAWX7AwLpAgUBBfflANcZ-gCBBQv_DRDeAMcRAQG_Dtj_5xXxAOT59AADAB3_yyAVASj17P8O8wkBCfoAABwFDADv9gkAPtf4ARv8BQEE-fQA8AccAA36F_8c7vcAFBTmAAj7GAHh69oA8gLSAQv_LgEWChUBJPcHAgvxAgD9CAAE-fznAAQG-AD_9fD_6fgjBQT08v8BEAL73wTsAhr-7ALv7QAFJQ3sASwL_wj19vr5Agj7AP0J_v4CBhQCAw_8_PoEDAHu7v8C8_YQAybc9AUJ8wUGCOv-_hkC7QT-2Af57vIIANgaDAbmAf4GFev7_SAALW4nSDs4E0AJSGFQAipzEAAaYB4FABQPJ-je_Dj-6gfZEurf-O4X1gD_9N8ADyHp6gsXxqcVBv8l2BHhsQAAACn5CgoMAPNp3-HaHuYF-b27-R4wf_QlM7PbEe7o-REZ9_0GAdkQMAAGBaMbVADZPhpACCAALdBNMjs4E0AJSG9QAiqvBhAMGqAGAACAQQAAsMEAAAzCAACoQQAAgMAAALhBAACIQgAAIEEAABjCAAAowgAAiEEAADjCAAAQwgAAEMIAAJBBAAAowgAAwEEAAJrCAADAQAAA4MEAAARCAADgQAAA0MEAADRCAAC4QQAAwEEAALDBAACKwgAAQEEAAKBAAAAEQgAArEIAAAjCAACSwgAAdMIAAPBBAACAwAAAlkIAAIBAAAAQQQAAfMIAADxCAADQQQAAQEAAACBBAACAPwAAAMEAAJDBAACyQgAAgL8AAAAAAAAAwQAA2sIAAAAAAABAQAAAQEEAANTCAADQwQAAMMEAAExCAACsQgAAMMEAAEBAAADOwgAA-EEAAEDCAAAcwgAAtMIAANDBAADowQAAYEEAAExCAADAwAAAgEAAAOBAAACgwQAAwMAAALpCAAAkQgAATEIAADTCAAAEQgAAKMIAALBBAABsQgAAMMEAAIA_AACuQgAA4EEAAFBBAACQwQAAkEIAAGTCAACAvwAAXMIAAFDCAAAAQAAAqEEAAM5CAAA0wgAAFEIAAEBBAACAQAAAQEAAAIC_AAA0wgAAwEAAAIBAAABwwQAA-EEAAKDBAACowQAAYEEAAPDBAAAAAAAAAMEAAOhBAACAvwAAqEEAAMDBAACUwgAAmMIAAADBAAAQwgAAKEIAALBBAAAQQgAA4MAAAADBAAC4wQAAKMIAALLCAACQwQAAAEIAAJBBAABgQgAAAMAAADRCAAAYwgAAoMAAABhCAAAMQgAAAAAAAOBAAAD4QQAAYEIAACDCAADYQQAAdEIAAARCAAAEwgAA4EAAADDCAAAAwAAAmEEAAHjCAAAAwgAAMMIAAKDAAAAcQgAAlEIAALDBAADYQQAA2MEAAPjBAAAUwgAAFEIAAChCAACSwgAAYMEAAODAAADAwQAAgsIAAOjBAACgQQAAoEAAAMDBAAAcwgAAcEEAALBBAACAvwAABEIAAJTCAABAwgAAEEIAANjBAABAQAAAuEEAAABCAACoQQAA-MEAABBCAAAwQQAAoMEAAERCAADIQQAAQMIAAABBAABowgAA4EAgADgTQAlIdVABKo8CEAAagAIAABS-AACIvQAAMD0AALi9AACYvQAADD4AADQ-AAA5vwAAZL4AAOi9AABAPAAAMD0AAJo-AAA8PgAAHD4AALq-AACAuwAA-D0AACQ-AAADPwAAfz8AADA9AABcPgAALD4AAEy-AAD4PQAAPD4AAFy-AACAOwAAiD0AAAQ-AADovQAAFL4AAIC7AAA0PgAAJD4AAKA8AACgPAAAVL4AABS-AAA0vgAALD4AAKA8AAAQPQAAFD4AAFA9AABEPgAA1r4AAPi9AADevgAAHL4AAK4-AACuPgAAND4AABy-AACAuwAABT8AAOg9AABwPQAApj4AADw-AACoPQAAcD0AAKa-IAA4E0AJSHxQASqPAhABGoACAABEPgAAkj4AADA9AAD2vgAAgr4AAJg9AAB8PgAAqD0AALg9AACiPgAAoLwAAL6-AADoPQAAwr4AABQ-AACgvAAAFD4AAB0_AAD4vQAAnj4AAFw-AADIvQAAED0AABA9AAC4PQAAdD4AAIa-AAA8PgAAFL4AALi9AACYvQAAiD0AAOC8AADYvQAAUL0AAKg9AACWPgAAuD0AAEy-AACYvQAA6D0AABw-AAC4PQAADL4AACw-AADoPQAAf78AABQ-AACSvgAADL4AABS-AABQPQAAQDwAAPg9AACovQAABD4AAHC9AAAEvgAAFL4AAAQ-AADgvAAAuL0AAEQ-AABkPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Pl-4D-H3ftU","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4785685722227646555"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2879012092807094138":{"videoId":"2879012092807094138","docid":"34-1-8-Z86803FFEB55EC5F0","description":"Explains the calculation of R0, which is the dominant eigenvalue of the NGM (next generation matrix), in a simple case in which we have two homogeneous groups of infectives.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4382582/7694f19ada90ffc7d6e79e5f1c407023/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3bLrDwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DxJ5mizenTII","linkTemplate":"/video/preview/2879012092807094138?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculating R0 from NGM","related_orig_text":"quantpie","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"quantpie\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xJ5mizenTII\",\"src\":\"serp\",\"rvb\":\"EqgDChI2ODczMDAxMzc0ODAyNzEzNjQKEzg4NDUzMjQxNzI4Njk4NjMwNTEKFDE0MDQ2Njk0MzExNDI3MDE3NDEwChMxNDM4MTAwOTgxNDQ0MTM4MzI2ChMxOTY4MTQwMDg1NTA3NTMxMDI2ChIzODQ1MDY1NDE0MDQxOTg5NDAKEzM3MDM0NTM2MzYwMTE3NTI3ODEKFDExODUxMDIzNzQ5OTkxNTMxMjc0ChQxMzYyMDMzMzMyMDY2NTYxOTUxOAoUMTY1ODMwMzc2Nzg1MTAzNDg2MTYKEzQ3MzIyOTA1NDkzNDUyNTU1MjgKEzIyNjY5NjQwNTQxNTg1NDgyMTcKFDExMjY0MTQ4MjM2Mzg3Mjk3NzQ5ChQxMDMwNzczNjQzMzE5Mjk0Nzc3OAoTMzA5OTg1Nzk1OTEzMjUzMjM3OAoTNDA0NzgwMDY3MzgwNzMxODM5MgoTNDc4NTY4NTcyMjIyNzY0NjU1NQoTMjg3OTAxMjA5MjgwNzA5NDEzOAoUMTE2MDExMzUxMjMzNzgzMzA3OTcKEjU5OTc3OTIwMjgyNzg0MjY5ORoVChMyODc5MDEyMDkyODA3MDk0MTM4WhMyODc5MDEyMDkyODA3MDk0MTM4arYPEgEwGAAiRRoxAAoqaGh5eG9obmhkbGFmcWZoZGhoVUNXTngxN0p0NmVXNE40YXlBRWlYZEVBEgIAEioQwg8PGg8_E7IBggQkAYAEKyqLARABGniB__n8-_wFAAP2-wgGCPwCCwv2-PYAAAAA_gMDBwX-AP8CBfn_AQAA9xAH9AAAAADnBfsL_wMAAAz3A_EDAAAADvT5AwMAAAAMAfkCCP8BAQAO_QAD_wAAB_sGC_8AAAD4AAABBvr_AAn_AgsAAAAA_fUA-_z1_gAgAC1bBuE7OBNACUhOUAIqhAIQABrwAX_iDvzOCO8BzA0M_x7kswL-9kb_X1gkAM7W_ADDIeYBxicIACsyKP6ez9MAswHo__v1uv7s5q8AULTc_7oG-P8FNwsBG84hAT0oBwATHiX_6SopAB3Gxf8W8OQABQ0O_xIYLv4J6-X_5gSsAhT9VAJHGAcHtt0IAv2-9_rduesGx-oC_fvp6AZTwRsA4AozAiT49AHMBQ33zTzwAx213P4FngX_-FDb-Ewu-wM7MN7-xB3hBtAR8BAGR-wV9xfpBSZfFgEACAv_E-TTAxLeC_wb1-r45cXWCyYC7u7o9Az-y9n94-JTBuTuOxYCFBzx6yAALZ7v2jo4E0AJSGFQAipzEAAaYAcKAEnpKyblBQ7fGusOIuvdBuj21wP_Ifr_UgoRA_H2uts8-f9FETGinwAAAEIH3jUNAPt_3w7sI_kg89TQx1EWSwgVUPvvE8a51Uz0uewgAAD9VADT8eVDPQDoSytBKSAALYKKGzs4E0AJSG9QAiqvBhAMGqAGAACwQQAAFMIAADRCAACAwgAAukIAAABAAAB0QgAA-EEAABjCAABgwQAAgkIAACDCAABwwQAADMIAANBBAABQQgAAgMAAAFzCAACAQAAAwMEAAOBBAAAYwgAAdMIAAIBAAABkwgAAcMEAAEDBAADUwgAAAEAAAPjBAADIwQAAnkIAAOjBAAA4wgAAwMIAABhCAACoQQAAjkIAAHDBAAAEwgAAAEEAAIDAAAAQQQAAIEEAAJJCAADQwQAAiMEAABhCAAAYQgAAwEEAAFTCAAAAAAAA2MEAAKBBAACQQQAAOEIAALzCAADQQQAAgEIAAIpCAABQQgAAlsIAAKDAAADMwgAAXEIAAMjCAACowQAAAMIAAJDBAAAowgAA2EEAACRCAACAwAAAyEEAAADCAACiwgAAkMEAAEBAAAAwwgAAoEAAAMBBAACKQgAAqMEAAADCAABAQAAAOEIAAPhBAAAgQQAA2EEAABzCAAAAQAAAukIAADDCAAAQQgAAwMAAAABAAADowQAAgMAAAGhCAAC4QQAARMIAALhBAADQQQAAIEIAAMjBAABAwAAAoEAAAODAAACgQAAABEIAADBCAADgwQAAgL8AACBBAAAAwgAAeEIAAOhBAAAAAAAATMIAAIjBAAAQwQAATMIAAKjBAAC4wQAAUMEAAADCAACAQAAA4EEAANBBAABgwQAAeMIAAKzCAAAgwQAAoEEAAGDBAAAwQgAANEIAADBBAAA8QgAAhsIAAKBAAAAQQQAAJEIAAFDCAAAcQgAAiEIAAIbCAABcQgAAoMAAABRCAACgwQAAoEAAANDBAAAAwAAAqEEAAMDAAAD4wQAAyMEAAHDCAACYwQAAoMAAAODBAACYwQAAYEEAAADCAAC4QQAASMIAALJCAAAkQgAAgEAAAMBAAACgQQAAwMEAADTCAABUwgAAAMEAAIhBAAB8wgAAEEIAAOBAAABgwgAA-MEAAATCAAAAQAAAGEIAADzCAACIwQAAqMEAAMBAAAAAwAAAAEAAAKDBAACGQgAAYEEAAKDBAACyQgAAuMEAAOhBAAAQQQAAIMEgADgTQAlIdVABKo8CEAAagAIAAKi9AADIPQAA-D0AAKg9AAAkvgAALD4AAEQ-AADevgAAQDwAAKC8AACgvAAAuL0AAIC7AAA0PgAAPL4AAIi9AABcPgAA2D0AAAw-AAAFPwAAfz8AAEC8AAC4vQAAHD4AAKi9AABQvQAAQDwAAIi9AABQPQAAhj4AAJg9AACOvgAAmL0AAKA8AAAQPQAAoDwAAKg9AABUvgAAlr4AAL6-AADIvQAAuL0AADw-AABQvQAAuL0AABC9AADIPQAA2L0AACy-AAAwPQAAgLsAACQ-AABEPgAAmD0AACy-AABAPAAANT8AABA9AAAUPgAARD4AAHC9AAB0PgAAuD0AAMi9IAA4E0AJSHxQASqPAhABGoACAADgvAAAbD4AAIi9AAA3vwAANL4AAHC9AACyPgAABL4AAIC7AACyPgAAXD4AAAy-AABAPAAALL4AAEC8AACIvQAAoLwAAAU_AAAUvgAAoj4AALi9AACoPQAAUL0AAAy-AACIvQAA4DwAAAS-AAC4PQAAQLwAABC9AABQPQAAyD0AAAy-AAAkvgAAML0AAIi9AACGPgAATD4AAFy-AADIvQAAqD0AAIC7AABUvgAAqD0AAIi9AACYPQAAf78AAFA9AACAOwAAXD4AACw-AAAMPgAADD4AABw-AACAuwAAMD0AAFC9AAAwvQAAQLwAAJi9AAAEPgAAiD0AADw-AAAQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=xJ5mizenTII","parent-reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2879012092807094138"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1234976908"}},"dups":{"687300137480271364":{"videoId":"687300137480271364","title":"Solutions to first two questions","cleanTitle":"Solutions to first two questions","host":{"title":"YouTube","href":"http://www.youtube.com/post/UgwMHv4hmPMHo-qls-R4AaABCQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sABpgWOJXj8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":120,"text":"2:00","a11yText":"Süre 2 dakika","shortText":"2 dk."},"date":"14 mayıs 2020","modifyTime":1589414400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sABpgWOJXj8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sABpgWOJXj8","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":120},"parentClipId":"687300137480271364","href":"/preview/687300137480271364?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/687300137480271364?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8845324172869863051":{"videoId":"8845324172869863051","title":"HJM Framework - Interest Rate Term Structure Models","cleanTitle":"HJM Framework - Interest Rate Term Structure Models","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yws-_55aYIU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yws-_55aYIU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1197,"text":"19:57","a11yText":"Süre 19 dakika 57 saniye","shortText":"19 dk."},"views":{"text":"26,8bin","a11yText":"26,8 bin izleme"},"date":"19 mayıs 2019","modifyTime":1558224000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yws-_55aYIU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yws-_55aYIU","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":1197},"parentClipId":"8845324172869863051","href":"/preview/8845324172869863051?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/8845324172869863051?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14046694311427017410":{"videoId":"14046694311427017410","title":"Stochastic spatial model for Coronavirus spread","cleanTitle":"Stochastic spatial model for Coronavirus spread","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GRuPAgR-Guc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GRuPAgR-Guc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/channel/UCWNx17Jt6eW4N4ayAEiXdEA","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1515,"text":"25:15","a11yText":"Süre 25 dakika 15 saniye","shortText":"25 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"23 mayıs 2020","modifyTime":1590192000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GRuPAgR-Guc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GRuPAgR-Guc","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":1515},"parentClipId":"14046694311427017410","href":"/preview/14046694311427017410?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/14046694311427017410?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1438100981444138326":{"videoId":"1438100981444138326","title":"Which one is riskier: option or stock?","cleanTitle":"Which one is riskier: option or stock?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cdlaqniaJuA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cdlaqniaJuA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":267,"text":"4:27","a11yText":"Süre 4 dakika 27 saniye","shortText":"4 dk."},"views":{"text":"5bin","a11yText":"5 bin izleme"},"date":"21 tem 2020","modifyTime":1595289600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cdlaqniaJuA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cdlaqniaJuA","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":267},"parentClipId":"1438100981444138326","href":"/preview/1438100981444138326?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/1438100981444138326?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1968140085507531026":{"videoId":"1968140085507531026","title":"Ho-Lee and Hull-White Extended Vasicek/CIR: Derivation of the Drifts using HJM","cleanTitle":"Ho-Lee and Hull-White Extended Vasicek/CIR: Derivation of the Drifts using HJM","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QJ94iXRFwTs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QJ94iXRFwTs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":901,"text":"15:01","a11yText":"Süre 15 dakika 1 saniye","shortText":"15 dk."},"views":{"text":"19bin","a11yText":"19 bin izleme"},"date":"26 mayıs 2019","modifyTime":1558878547000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QJ94iXRFwTs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QJ94iXRFwTs","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":901},"parentClipId":"1968140085507531026","href":"/preview/1968140085507531026?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/1968140085507531026?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"384506541404198940":{"videoId":"384506541404198940","title":"Simplified: Change of Probability Measure, and Risk Neutral Valuation","cleanTitle":"Simplified: Change of Probability Measure, and Risk Neutral Valuation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WKj_G8N1ckE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WKj_G8N1ckE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1644,"text":"27:24","a11yText":"Süre 27 dakika 24 saniye","shortText":"27 dk."},"views":{"text":"17,2bin","a11yText":"17,2 bin izleme"},"date":"24 eyl 2020","modifyTime":1600905600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WKj_G8N1ckE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WKj_G8N1ckE","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":1644},"parentClipId":"384506541404198940","href":"/preview/384506541404198940?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/384506541404198940?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3703453636011752781":{"videoId":"3703453636011752781","title":"Algebraic Manipulations in Python's Sympy","cleanTitle":"Algebraic Manipulations in Python's Sympy","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7w6MwFmZGPI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7w6MwFmZGPI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":727,"text":"12:07","a11yText":"Süre 12 dakika 7 saniye","shortText":"12 dk."},"views":{"text":"3,3bin","a11yText":"3,3 bin izleme"},"date":"18 tem 2020","modifyTime":1595030400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7w6MwFmZGPI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7w6MwFmZGPI","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":727},"parentClipId":"3703453636011752781","href":"/preview/3703453636011752781?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/3703453636011752781?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11851023749991531274":{"videoId":"11851023749991531274","title":"Heston European Option Closed Form Formula","cleanTitle":"Heston European Option Closed Form Formula","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=EipBuIx-vQU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EipBuIx-vQU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1889,"text":"31:29","a11yText":"Süre 31 dakika 29 saniye","shortText":"31 dk."},"views":{"text":"10,8bin","a11yText":"10,8 bin izleme"},"date":"21 şub 2020","modifyTime":1582243200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EipBuIx-vQU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EipBuIx-vQU","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":1889},"parentClipId":"11851023749991531274","href":"/preview/11851023749991531274?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/11851023749991531274?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13620333320665619518":{"videoId":"13620333320665619518","title":"Some Calculus in Python's Sympy","cleanTitle":"Some Calculus in Python's Sympy","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=m01p-1RSLs0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/m01p-1RSLs0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":829,"text":"13:49","a11yText":"Süre 13 dakika 49 saniye","shortText":"13 dk."},"views":{"text":"4,7bin","a11yText":"4,7 bin izleme"},"date":"24 tem 2020","modifyTime":1595548800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/m01p-1RSLs0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=m01p-1RSLs0","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":829},"parentClipId":"13620333320665619518","href":"/preview/13620333320665619518?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/13620333320665619518?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16583037678510348616":{"videoId":"16583037678510348616","title":"Climate Modelling 2: The atmosphere and the radiation, a combination that makes the magic happen","cleanTitle":"Climate Modelling 2: The atmosphere and the radiation, a combination that makes the magic happen","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hrHpPq3CZeI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hrHpPq3CZeI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":774,"text":"12:54","a11yText":"Süre 12 dakika 54 saniye","shortText":"12 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"16 kas 2021","modifyTime":1637096340000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hrHpPq3CZeI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hrHpPq3CZeI","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":774},"parentClipId":"16583037678510348616","href":"/preview/16583037678510348616?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/16583037678510348616?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4732290549345255528":{"videoId":"4732290549345255528","title":"the Shape of the Geometric Brownian Motion’s distribution","cleanTitle":"the Shape of the Geometric Brownian Motion’s distribution","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Nuoim89ncJw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Nuoim89ncJw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":382,"text":"6:22","a11yText":"Süre 6 dakika 22 saniye","shortText":"6 dk."},"views":{"text":"4,3bin","a11yText":"4,3 bin izleme"},"date":"28 nis 2021","modifyTime":1619568000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Nuoim89ncJw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Nuoim89ncJw","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":382},"parentClipId":"4732290549345255528","href":"/preview/4732290549345255528?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/4732290549345255528?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2266964054158548217":{"videoId":"2266964054158548217","title":"Libor Market Model","cleanTitle":"Libor Market Model","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vbtkyczmy60","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vbtkyczmy60?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1359,"text":"22:39","a11yText":"Süre 22 dakika 39 saniye","shortText":"22 dk."},"views":{"text":"14,9bin","a11yText":"14,9 bin izleme"},"date":"13 tem 2019","modifyTime":1562976000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vbtkyczmy60?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vbtkyczmy60","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":1359},"parentClipId":"2266964054158548217","href":"/preview/2266964054158548217?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/2266964054158548217?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11264148236387297749":{"videoId":"11264148236387297749","title":"Change of probability measure for Poisson process","cleanTitle":"Change of probability measure for Poisson process","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0y56uUcPxvo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0y56uUcPxvo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":732,"text":"12:12","a11yText":"Süre 12 dakika 12 saniye","shortText":"12 dk."},"views":{"text":"3,8bin","a11yText":"3,8 bin izleme"},"date":"4 mayıs 2022","modifyTime":1651622160000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0y56uUcPxvo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0y56uUcPxvo","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":732},"parentClipId":"11264148236387297749","href":"/preview/11264148236387297749?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/11264148236387297749?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10307736433192947778":{"videoId":"10307736433192947778","title":"What are different ways to represent ODEs and PDEs? (General, normal, operator forms)","cleanTitle":"What are different ways to represent ODEs and PDEs? (General, normal, operator forms)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HeG7g9iPxdA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HeG7g9iPxdA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":436,"text":"7:16","a11yText":"Süre 7 dakika 16 saniye","shortText":"7 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"1 haz 2020","modifyTime":1590969600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HeG7g9iPxdA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HeG7g9iPxdA","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":436},"parentClipId":"10307736433192947778","href":"/preview/10307736433192947778?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/10307736433192947778?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3099857959132532378":{"videoId":"3099857959132532378","title":"Mathematical Modelling of Coronavirus spread","cleanTitle":"Mathematical Modelling of Coronavirus spread","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VcRcthopGTo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VcRcthopGTo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1412,"text":"23:32","a11yText":"Süre 23 dakika 32 saniye","shortText":"23 dk."},"views":{"text":"45,2bin","a11yText":"45,2 bin izleme"},"date":"14 mar 2020","modifyTime":1584144000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VcRcthopGTo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VcRcthopGTo","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":1412},"parentClipId":"3099857959132532378","href":"/preview/3099857959132532378?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/3099857959132532378?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4047800673807318392":{"videoId":"4047800673807318392","title":"Stochastic Modelling of Coronavirus spread","cleanTitle":"Stochastic Modelling of Coronavirus spread","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PsoL8-Q-Grk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PsoL8-Q-Grk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1686,"text":"28:06","a11yText":"Süre 28 dakika 6 saniye","shortText":"28 dk."},"views":{"text":"19,9bin","a11yText":"19,9 bin izleme"},"date":"28 mar 2020","modifyTime":1585348818000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PsoL8-Q-Grk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PsoL8-Q-Grk","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":1686},"parentClipId":"4047800673807318392","href":"/preview/4047800673807318392?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/4047800673807318392?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4785685722227646555":{"videoId":"4785685722227646555","title":"Social Contacts Matrix (Waifm) Estimation through surveys for infectious disease (Covid-19) models","cleanTitle":"Social Contacts Matrix (Waifm) Estimation through surveys for infectious disease (Covid-19) models","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Pl-4D-H3ftU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Pl-4D-H3ftU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1762,"text":"29:22","a11yText":"Süre 29 dakika 22 saniye","shortText":"29 dk."},"views":{"text":"2,5bin","a11yText":"2,5 bin izleme"},"date":"10 mayıs 2020","modifyTime":1589068800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Pl-4D-H3ftU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Pl-4D-H3ftU","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":1762},"parentClipId":"4785685722227646555","href":"/preview/4785685722227646555?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/4785685722227646555?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2879012092807094138":{"videoId":"2879012092807094138","title":"Calculating R0 from NGM","cleanTitle":"Calculating R0 from NGM","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xJ5mizenTII","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xJ5mizenTII?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV054MTdKdDZlVzRONGF5QUVpWGRFQQ==","name":"quantpie","isVerified":false,"subscribersCount":0,"url":"/video/search?text=quantpie","origUrl":"http://www.youtube.com/@quantpie","a11yText":"quantpie. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":178,"text":"2:58","a11yText":"Süre 2 dakika 58 saniye","shortText":"2 dk."},"views":{"text":"6,2bin","a11yText":"6,2 bin izleme"},"date":"16 mayıs 2020","modifyTime":1589587200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xJ5mizenTII?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xJ5mizenTII","reqid":"1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL","duration":178},"parentClipId":"2879012092807094138","href":"/preview/2879012092807094138?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","rawHref":"/video/preview/2879012092807094138?parent-reqid=1769431791817308-4524662826577846059-balancer-l7leveler-kubr-yp-klg-291-BAL&text=quantpie","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"5246628265778460597291","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"quantpie","queryUriEscaped":"quantpie","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}